Hindi language text search: a literature review

Pratibha Singha and Aditya Tripathib

aPh.D student, bAssociate Professor & Head of the Department, Department of Library and Information Science, Banaras Hindu University, Varanasi- 221005, E-mail: pratibhasinghbhu@gmail.com; aditya@bhu.ac.in

Received: 03 August 2016; revised: 11 December 2016; accepted: 06 February 2017

The literature review focuses on the major problems of Hindi text searching over the web. The review reveals the availability of a number of techniques and search engines that have been developed to facilitate Hindi text searching. Among many problems, a dominant one is when a text formed by combinatorial characters or words is searched.

Keywords: Conjunction; Combinatorial characters; Corpora; Lexicon; UNICODE

Introduction

Hindi, the national language of India is widely spoken in the country and is the most preferred language after English. Hindi not only has one of the richest vocabularies but it has an equally rich script, grammar, word collection, and parts of speech. Hindi originated from Sanskrit and the most spoken form of Hindi is “Khari Boli”. The influence of other languages over Hindi can be seen clearly in its present form as it has accepted words from other languages like Urdu, Arabic, Prakrit, Farsi and English1.

Several search engines such as Google, Yahoo, Raftaar, Hinkhoj, Khoj, and Guruji facilitate Hindi searching to satisfy the information needs of Hindi users2.

A word can be considered as one of the basic building blocks for a language. Words carry meaning and thus information content of the text is mainly based on the words used. Hindi has a wide variety of forms and dialects. It also has different grammatical rules for the formation of words, but Hindi lacks the rules for formation of masculine and feminine genders3. It has various combinatorial characters as well as combinational words, which makes it difficult to account these characters and words into a computational system.

The study aims to present literature review on the developments in Hindi search on the Internet. Unlike English, Internet technologies for Hindi and other Indian languages are still in the evolutionary stage. This study is an attempt to highlight the evolving technologies in Hindi language computing.

Objectives of the study

- To present an overview of works in the field of Indian languages;
- To list the major projects and technologies which are intended to promote Hindi language;
- To identify the hindrances to the performance of Cross Language Information Retrieval (CLIR) and Multilingual Information Retrieval (MLIR) systems; and
- To identify the major issues regarding Hindi language searching.

Methodology

This study adopts a systematic literature review. It differs from traditional narrative reviews by being more systematic and explicit in the selection of the studies and by employing rigorous and reproducible methods of evaluation. The databases used for review
of literature are ERIC, Google scholar, and Web of Science. The keywords used for search are ‘Hindi language searching’, ‘developing Hindi language search ’and ‘Hindi text search’. The articles retrieved were reviewed and filtered. Total of 33 articles, organizational reports and websites were studied to identify common themes and key issues. In most cases, the articles cited are based on the project reports of the different organizations, institutions and groups. Different Hindi grammar books, dictionaries and internet resources have been followed for the collection of terms to develop corpora. Institutional websites were also reviewed to know about the current trends and types of research going on in various institutes on the present topic or related field.

Literature review

Most challenging task of a research study is to review the past literature to extract a functional methodology or working model for a research problem. Meredith\(^4\) defined literature review as a summary of the existing literature by finding research focus, trends and issues. Fink\(^5\) further modified the definition and defined literature as a “systematic, explicit and reproducible design for identifying, evaluating and interpreting the existing body of recorded documents”. Brewerton and Millwards\(^6\) defined a literature review as content analysis, where qualitative and quantitative techniques are used to find the structural and content criteria.

Literature review is an essential approach to “conceptualize research areas and survey and synthesize prior research”\(^7\). According to Kenneth Lyons\(^8\), not to be confused with a book review, a literature review surveys scholarly articles, books and other sources (e.g. dissertations, conference proceedings) relevant to a particular issue, area of research, or theory providing a description, summary and critical evaluation of each work. The purpose of a literature review is to offer an overview of significant literature published on a topic. Systematic review is an efficient technique for hypothesis testing, for summarizing the results of existing studies and for assessing the consistency among previous studies. A systematic review should be based on some standards. There are four core principles suggested by experts for a literature review which are replicable, exclusive, aggregative and algorithmic\(^9\).

In this study, literature relating to Hindi language text searching was collected, scanned and reviewed.

Language research in India

Language research in India dates back to 1970s and is mostly related to language translation. Machine translation activity in India is relatively young. The earliest efforts dated from mid 80’s and early 90’s. There are different Indian institutions that have played important roles in the development of machine translation. These include the Indian Institute of Technology-Kanpur, Computer & Information Science Department-University of Hyderabad, National Center for Software Technology (NCST)-Mumbai, Centre for Digital and Advanced Computing (CDAC)-Mumbai & Pune and Department of Official Languages; Ministry of Home Affairs; Government of India.

However, research on Indian Language Processing (ILP) tools, Indian Language Resources: Corpora, Lexical Resources and Dictionaries, and Web based search tools are of utmost importance if Indian languages have to make a mark on the internet.

Indian language processing tools

For writing a language over the Web, a writing platform is required including a standard for character representation, fonts, glyphs and a text editor. There are number of standards for character representation like American Standard Code for Information Interchange (ASCII), Indian Standard Code for Information Interchange (ISCII) and UNICODE which have most developed code table for scripts of different languages. These standards have a set of characters (upper and lower case alphabets), symbols, control codes etc. UNICODE is the most developed global standard for character representation covering almost all the scripts of all languages around the world. Indic script table of UNICODE is built on ISCTII and UNICODE has a unique value for each character. Numbers of text editors are present in the present time like WordPad, Notepad, Microsoft office suit and Open office suit. All these tools are available with regular features like text editing, formatting and decoration but they are unable to count and sort the characters of the Indic script. UNICODE also lacks the sort order of characters for Indian languages. Counting of characters in case of combination
characters and hidden characters is also difficult for word processors in Hindi language10.

Indian language resources

A good quality corpus is the basis for computational linguistics. Processing of a language is done over the corpora to understand the possible outcomes. A dictionary is required to understand a word or sentence, where terms are arranged with their parts of speech, gender, and form etc. for example English WorldNet. Lack of optical recognition software is also a reason behind the lack of good corpora. Chitrankan, a software developed by Centre for Digital and Advanced Computing (C-DAC), Pune promises to convert text into editable form through scanning, but the software has many issues and still has a long way to go11.

Hindi also lacks rules regarding formation of words, for example there is no rule which identifies if a term is feminine or masculine or it is singular or plural. In some cases feminine and masculine are decided on the basis of ending alphabets of the terms. For example feminine is identified on the basis of vowels at the ending of terms for example मकई, लकड़ी etc. but गाय, किताब are also feminine hence, it is very difficult to identify the gender form of the term. The other major issue with the Hindi language search engine is word sense disambiguation. In Hindi, a single term have different meaning according to the context for example ‘कलम’ means कलम (pen) and तना (stem), ‘लाल’ meant for लाल रंग and it also meant for बेटा. It is very difficult to identify the context of the user’s query. To resolve the word sense ambiguity a search system developed should have the ability to measure the level of ambiguity in the query and having the feature of Word Sense Disambiguity (WSD)12.

Hindi also has number of terms, which are derived from the combination of words, and such words are broken into components during processing of text and after that search should be performed. For combinational words Hindi has well defined rules known as conjunctions (sandhi). Conjunctions are the formation of a new term by the combination of sounds of two terms next to each other. For example

| विद्यालय = विद्या + आलय |
| देवेत्र = देव + इभ्र |

Translation lexicons plays vital role in the field of information retrieval. A good quality of translation lexicon determines the retrieval performance of information system. Sometimes translation lexicons lack good coverage of proper nouns and it turns out that names appear often in queries and constitute the largest class of out-of-vocabularies terms in cross language information system. Regular updating of lexicons is also a tough job and this will affect the performance of Hindi searching over the web13.

Web based search tools

The major aspects of internet are searching and search engines. In the present time, searching is not limited to locate information but it has become a big market for advertisement and business. At an early stage of its development, search engines (Veronica, Archie and Jug Head) only provided dictionary based search, but with the development of ICT and its impact over different areas of information, role of search engines have changed. A number of search engines like Google, Yahoo, and Bing are emerging as players of the present time. About 72.3\% users of internet are non-English and this population is the target of search engine providers.

Search engine optimization technique, ranking and clustering of web pages are the strategies adopted to find out the possible market. To provide multilingual search facility is a big challenge for search engine providers who are targeting this multilingual user population. Considering Hindi alone, this language has several dialects and variations. It also has a loose grammar and phoneme methods. Hence, it is very difficult to mechanize Hindi searching. Like English, SoundEx technique has also evolved for Hindi language for searching homonymous as well as homophone terms. A number of search engines like Khoj.com, Raftaar.in, Guruji, Hinkhoj are specifically developed for Hindi searching are indexed with Hindi webpage. Google, Yahoo and Bing also support Hindi searching, but they are restricted to regular expressions. These search engines also facilitate combinatorial searching with Boolean operators. Lucene, an indexer which also provides Hindi searching by implementing UNICODE character search, is also limited to regular expressions only14.

Stemming a technique of extracting the root word from a given word is another approach for Hindi
searching. Hindi language is influenced by many other languages like Urdu, Farsi, Sanskrit, English, Awadhi, Prakrit and Arabic etc. These languages have different rules for word formation hence it is very difficult to form a rule for word formation through Hindi grammar during formation of sentence. Stemming algorithm also fails in formulating methods for mechanization of Hindi searching. Searching a query in natural language is not as simple as English searching. Hindi language searching is very much different from English language searching due to lack of rules. To understand a sentence semantically by a machine is still a big challenge. Even in English language searching, it requires a deep level syntactic analysis, and in case of Hindi searching lots of experiments and exercises still remain. Factors, which affect the searching of Hindi information on the web are given below.

- Morphology of Hindi language
- Phonetic nature of Hindi language
- Words synonyms
- Ambiguous words

In a large multi-lingual society like India, there is a great demand for translation of documents from one language to another. Most of the state governments work in the respective regional languages whereas the Union Government's official documents and reports are in bilingual form (Hindi/English). In order to have a proper communication there is a need to translate these documents and reports in the respective regional languages. A machine assisted translation system or a translator's workstation would increase the efficiency of the human translators. The market is largest for translation from English into Indian languages, primarily Hindi. Hence, it is no surprise that a majority of the Indian machine translation (MT) systems have been developed for English-Hindi translation. Machine translation activities in India are relatively young. The earliest efforts date from the mid 80s and early 90s.

A fully automatic machine translation system should have different modules such as morphological analyzer, part of speech tagger, chunker, named entity recognizer, word sense disambiguator, syntactic transfer module and target word generator. The different techniques used for translation differs in the number of modules used and also the way these modules are implemented. Both rule based and statistical approaches have been tried in the implementation of each of these modules. The machine translation systems developed for Indian languages have been discussed by Nair and Peter.

Mantra, a machine assisted translation tool, which translates government orders, notifications, circulars and legal documents from English to Hindi, was developed by Government of India in 1996. It is a domain specific tool based on Lexicalized Tree Adjoining Grammar (LTAG) formalism to represent English as well as Hindi grammar. The main aim of the tool is to provide translation tools to government agencies.

In 1995 Prof. R.M.K. Sinha developed ANUBHARTI at IIT Kanpur which is a machine translation tool based on hybridized example-based approach and was started in 2004. Prasad Pingali and Vasudeva Verma Language Technologies Research Center (LTRC) IIT, Hyderabad presented the experiments of LTRC in Cross-Language Evaluation Forum (CLEF) 2006. They focused on Hindi, Telugu and Afaan Oromo as query languages for retrieval from English document collection and contributed to Hindi and Telugu to English Cross Lingual Information Retrieval (CLIR) system with the experiment at CLEF.

In Cross Language Evaluation Forum (CLEF) 2007, Hindi to English and Marathi to English Cross Lingual Information Retrieval System were presented by Chinnakotla, Ranadive, Bhattacharyya and Damani of Department of CSE IIT, Bombay. They took a query translation based approach using bilingual dictionaries. The query term which is not found in the dictionary is transliterated using simple rule based approach which utilizes the corpus to return the ‘k’ closest English transliteration of the given Hindi or Marathi term. The resulting transliteration choices for each query term are disambiguated using an iterative page-rank style algorithm, which is based on term-term co-occurrence statistics, to produce the final translated query.

In CLEF 1, 2007, a cross-language retrieval system for English documents in response to queries in Hindi and Bengali was presented by Mandal, Dandapat, Banerjee, Gupta and Sarkar from Department of Computer Science and Engineering, IIT Kharagpur. In the presented system they followed the dictionary
based machine translation approach to generate the equivalent English query out of Hindi and Bengali23.

Om – a transliteration scheme was developed by Ganapathyraju, Balakrishnan, Balakrishnan and Reddy of Language Technologies Institute, Carnegie Mellon University (Pittsburg) in association with Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore. This scheme uses ASCII characters and has an ability to exploit the phonetic nature of alphabets to represent the Indian language alphabets. Om is beneficial for those users who cannot read other Indian scripts except their mother tongue. A text editor was also developed in the research for Indian languages which integrates the Om input into a word processor such as Microsoft WinWord for many other Indian languages24.

Om has more developed features than other transliteration tools which are designed and developed before Om. Some of key features of Om transliteration tool are as follows25.

- Om scheme is common to all Indian languages; the display of the text can be converted between the supported languages by choosing it on the menu.
- Easy support for new languages
- Key in the input as we speak
- Uses lowercase English alphabets and some special characters
- Switches between the languages at the click of a mouse
- Saves the output in ASCII and Unicode format
- Exchange email in Indian languages.

Bhattacharyya of IIT Mumbai developed a machine translation system based on Universal Networking Language (UNL) which is a United Nations project for developing the interlingua for languages of world. UNL is used for translating English language to Hindi26.

Das, Seetha, Kumar and Rana have investigated the impact of query expansion using Hindi WordNet in the context of English–Hindi CLIR system. WordNet is a lexical database, machine readable thesaurus of Hindi language. They have translated English query using Shabdanjali dictionary. The translated queries have been expanded using Hindi WordNet and nine query expansion strategies have been formulated. Run title field of topics were used for query formulation and expansion, in one run title + description field was use for formulation and expansion. The queries were translated then expanded and submitted to the retrieval system to retrieve documents from the Fire Hindi Test collection. Their observations suggest that simple query expansion using Hindi27.

Anglabharti is a machine translation technology developed by IIT Kanpur under the leadership of Prof. R.M.K. Sinha. It is a rule based system which translates in Indian languages from English and has approximately 1750 rules, 54000 lexical words divided into 46 to 58 paradigms. It uses pseudo Interlingua named as Pseudo Lingua for Indian Language (PLIL) as an intermediate language28.

Anusaaraka is fully-automatic general purpose high quality machine translation system which can translate any Indian language into another Indian language based on Panini Ashtadhyayi (grammar rules). It a Natural Language Processing (NLP) Research and Development project for Indian languages and English undertaken by (Chinmaya International Foundation). It was developed by the International Institute of Information Technology, IIT Hyderabad and Department of Sanskrit Studies, University of Hyderabad29.

C-DAC Kolkata developed a project named speech-to-speech MAT (Machine Aided Translation) based dialogue system from Hindi to Indian languages [Hindi-Bangla, Hindi-Punjabi, and Hindi-Malayalam] for education and tourism. Universal Speech Translation Advanced Research (USTAR) Consortium has developed a speech translation app which is speech to speech based and helps multiple users to communicate in different languages in real time either face to face or remotely. Application also contributes to overcome the barriers of languages as well as communication modalities. It helps users to communicate with the visually-impaired via spoken word or with the hearing impaired via text input. The application covers a total of 31 Asian and world languages.

A Multilingual Computer Lexicon has been also developed by C-DAC to provide and explain the terms and terminologies in the native language of those people who are not comfortable with English30.
C-DAC has developed plethora of tools to enable development of Indian language application with greater ease, below is a list to name a few:

- Intelligent Script Manager (ISM)
- Name Translation Tool from English to Indian Language
- Indian Language Software Development Kit
- iPlugin (web based development tool for Indian languages)

C-DAC Kolkata language processing team is working for the development of Bangla language focusing mainly translation of Bangla language to English and other Indian languages. In India, number of translation systems has been developed which facilitates source language translation into target language. Table 1 presents an overview of the existing machine translation systems.

Table 1—Language Translation Systems at a glance

<table>
<thead>
<tr>
<th>Year of development</th>
<th>Systems</th>
<th>Organization/developers</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>Anglabharti</td>
<td>IIT Kanpur, Prof. R.M.K. Sinha</td>
<td>English to Indian languages</td>
</tr>
<tr>
<td>1995</td>
<td>Anusaarka</td>
<td>IIT Kanpur, Prof. Rajeev Sangal</td>
<td>Indian language to other Indian language</td>
</tr>
<tr>
<td>1999</td>
<td>The Mantra (Machine assisted Translation tool)</td>
<td>CDAC, Mumbai</td>
<td>English text in Hindi specified domain</td>
</tr>
<tr>
<td>2002</td>
<td>English-Hindi translation system</td>
<td>Lata Gore</td>
<td>English to Hindi weather narration domain</td>
</tr>
<tr>
<td>2002</td>
<td>Vassaanubada</td>
<td>Kommaluri Vijayanand</td>
<td>Bilingual Bengali-Assamese</td>
</tr>
<tr>
<td>2003</td>
<td>UNL based English-Hindi translation system</td>
<td>IIT Bombay, Pushpak Bhattacharya</td>
<td>English to Hindi</td>
</tr>
<tr>
<td>2004</td>
<td>ANGLABHARTI II</td>
<td>IIT Kanpur</td>
<td>English to Indian Language</td>
</tr>
<tr>
<td>2004</td>
<td>The Matra system (KBSC) (NCST), (CDAC) Mumbai</td>
<td>English to Hindi</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>ANUBHARTI</td>
<td>IIT Kanpur, Prof. R.M.K. Sinha</td>
<td>Hindi to Indian language</td>
</tr>
<tr>
<td>2004</td>
<td>Shiva & Shakti</td>
<td>IIT Hyderabad, IIS-B and Carnegie Mellon University</td>
<td>English to Hindi</td>
</tr>
<tr>
<td>2004</td>
<td>ANUBAAD</td>
<td>Jadavpur University, Kolkata, Dr. Sivaji Badhopedhyaya</td>
<td>English to Bengali</td>
</tr>
<tr>
<td>2004</td>
<td>Hinglish</td>
<td>R. Mahesh, K. Sinha and Anil Thakur</td>
<td>Hindi to English</td>
</tr>
<tr>
<td>2006</td>
<td>IBM English-Hindi</td>
<td>IBM India Research LAB</td>
<td>English to Hindi</td>
</tr>
<tr>
<td>2007</td>
<td>Punjabi to Hindi</td>
<td>Gurpreet Singh Josan, Punjabi University, Patiala</td>
<td>Word to word Punjabi-Hindi</td>
</tr>
<tr>
<td>2009</td>
<td>Sampark</td>
<td>Consortium of Institutions: IITs, IITs Ana University, IIS-B and CDAC</td>
<td>Indian Language to Indian language</td>
</tr>
<tr>
<td>2009</td>
<td>Hindi to Punjabi</td>
<td>Vishal Goyal, Punjabi University, Patiala</td>
<td>Word to word Hindi-Punjabi</td>
</tr>
</tbody>
</table>

In India, number of translation systems has been developed which facilitates source language translation into target language. Table 1 presents an overview of the existing machine translation systems.

Conclusion

Developments, drawbacks, issues and scope of Hindi language in the computational system were studied based on literature review. It is found that a number of problems still exist in the area of translation involving the Hindi language. Many institutes are working on a number of projects for the development of Hindi language in the field of computers. However, searching for Indic languages using word formation techniques or morphological studies are yet to be undertaken.

References

3. Kumar S and Mansotra V, Factors affecting the performance of Hindi language searching on web: an experimental study,

13. Saravanan K, Raghvendra U and Kumaran A, Improving cross-language information retrieval by transliteration mining and generation, multilingual system research, Microsoft Research India, Bangalore

