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When Villanova University undertook a major project to restore a large-scale painting with possible ties to the 

workshop of 17th-century painter Pietro da Cortona, an important component of the work was detailed data collection, 

including time-lapse and multispectral photography. When this data needed to be presented to the general public, a number 

of open source technologies were used, including VuFind, the discovery layer developed at Villanova’s Falvey Memorial 

Library. This paper examines how VuFind was used as the glue to tie together the disparate components of the project, and 

by detailing the implementation strategies selected, demonstrates how VuFind's flexible and extensible architecture allows it 

to be adapted to a wide range of specialty projects. 
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Introduction 

From 2013 to 2015, a conservation project was 

undertaken at Villanova University to restore a huge 

painting of “The Triumph of David” that had hung in 

Falvey Memorial Library for decades and which was 

believed to have originated in Pietro da Cortona’s 

17th century workshop. This project was thoroughly 

documented, and one of its outputs was a wealth of 

digital imagery, including multispectral images and 

time-lapse photography showing progress on the 

restoration. 

Upon the completion of the project, a public 

website was created at www.thetriumphofdavid.com 

to share information about the painting and its 

restoration. This site was composed using several 

open source technologies: WordPress
1
 for blogging 

and simple content management; Omeka
2
 with the 

NeatLine
3
 plugin and a GeoServer

4
 backend to allow 

dynamic interactions with the project’s imagery; and 

VuFind
5
 to provide a common search layer across the 

other technologies. 

This paper will focus on the VuFind component of 

the project, showing some of the decision-making 

involved and demonstrating how VuFind’s 

extensibility enabled a relatively lightweight solution 

to a complex problem. 

Project Goals 

The VuFind component of The Triumph of David 

needed to achieve three key goals: 

1. Make the detailed information in the 

Omeka/Neatline exhibit searchable. 

2. Make the blog posts in WordPress searchable. 

3. Provide a simplified, more linear view of the 

Omeka/Neatline data as an alternative to the 

interactive timeline to improve accessibility. 

The first two goals played to VuFind’s strength as 

an integrated search tool. The third goal could likely 

have also been achieved in other layers of the system, 

but VuFind was chosen as the platform because the 

project team was familiar with its Zend Framework 

2.x
6
 architecture and because its Solr

7
 index offered 

convenient access to all of the data needed to allow 

the site’s “simple view” to be generated quickly and 

easily. 

Step 1: Choosing an Index Schema 

VuFind comes with support for a variety of 

different search systems. For projects like this one 

where a search engine is being created locally, it is a 

given that one of VuFind’s Solr cores will be used; 
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however, the developer has several predefined Solr 

schemas (and supporting PHP code bases) to choose 

from. Two options were strong contenders for this 

project. The first was VuFind’s standard “biblio” 

core, which was originally designed for indexing 

MARC (and MARC-like) records and which is 

complemented by PHP code that provides not just 

search capabilities but also rich functionality for 

interacting with individual records. The second was 

the lighter-weight “website” core, designed for 

indexing web pages and complemented by simpler 

PHP code providing links directly from search results 

to individual pages without an intervening record 

page. 

For this project, the rich functionality and detailed 

schema of the “biblio” core were not really needed -- 

the primary goal was to simply help users locate 

pages within the site, not to provide additional 

information or capabilities related to those pages. 

Thus, the “website” core was chosen as the 

foundation for the project’s VuFind implementation, 

since it provided existing code very close to the 

project’s use case, and because its simple schema 

would make the indexing process straightforward, 

especially due to the presence of existing tools for 

web crawling. 

Step 2: Indexing WordPress 

Because VuFind includes a simple tool to update 

the “website” Solr core by harvesting a site’s 

sitemap.xml file
8
 and analyzing its contents using 

Apache Tika
9
, including WordPress content in the 

index was one of the easiest parts of the project. 

To begin the work, a VuFind instance was installed 

and configured as documented in the project’s wiki
10

. 

During the installation process, a local Zend 

Framework module
11

 called Cortona was created; this 

would be used to house all custom PHP code 

generated during the course of the project, effectively 

separating it from the VuFind core and making long-

term maintenance easier by isolating all project code 

to a single location. Next, website indexing was set 

up, again following wiki documentation
12

, to allow 

the WordPress content to be harvested and analyzed 

by Tika. At this stage, simply by following online 

instructions, a fully functional WordPress search was 

implemented. 

In order to enrich the search experience, some 

custom code was written to take advantage of certain 

WordPress conventions in order to extract additional 

information into the index. VuFind’s web crawling 

tool uses an XSLT stylesheet hooked to custom PHP 

code in order to map a sitemap.xml file into a set of 

documents in the Solr index. VuFind provides hooks 

to extend and customize this code. A 

Cortona\XSLT\Import\VuFindSitemap class (see 

Listing 1) was written. This code cleans up the 

content of title fields, adds a hard-coded “category” 

facet of “Blog” and uses regular expressions to extract 

“subject” facet values and update dates for sorting 

from the HTML. Instructing the VuFind web crawler 

to use this custom class is as simple as copying the 

standard import/sitemap.properties file into VuFind’s 

local settings directory
13

 and modifying the 

“custom_class[]” setting to point to the custom class 

instead of the default one. 

Listing 1: Cortona\XSLT\Import\VuFindSitemap 

<?php 

/** 

 * XSLT importer support methods for sitemaps. 

 * 

 * PHP version 5 

 * 

 * Copyright (c) Demian Katz 2016. 

 * 

 * This program is free software; you can redistribute it and/or modify 

 * it under the terms of the GNU General Public License version 2, 

 * as published by the Free Software Foundation. 

 * 

 * This program is distributed in the hope that it will be useful, 

 * but WITHOUT ANY WARRANTY; without even the implied warranty of 

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

 * GNU General Public License for more details. 

 * 
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* You should have received a copy of the GNU General Public License 

 * along with this program; if not, write to the Free Software 

 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 

 * 

 * @category VuFind2 

 * @package  Import_Tools 

 * @author   Demian Katz <demian.katz@villanova.edu> 

 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 

 * @link  http://vufind.org/wiki/importing_records Wiki 

 */ 

namespace Cortona\XSLT\Import; 

 

/** 

 * XSLT support class -- all methods of this class must be public and static; 

 * they will be automatically made available to your XSL stylesheet for use 

 * with the php:function() function. 

 * 

 * @category VuFind2 

 * @package  Import_Tools 

 * @author   Demian Katz <demian.katz@villanova.edu> 

 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 

 * @link  http://vufind.org/wiki/importing_records Wiki 

 */ 

class VuFindSitemap extends \VuFind\XSLT\Import\VuFindSitemap 

{ 

    /** 

     * Extract key metadata from HTML. 

     * 

     * @param string $html HTML content. 

     * 

     * @return array 

     */ 

    protected static function getHtmlFields($html) 

    { 

        $fields = parent::getHtmlFields($html); 

 

        // Try to find a date in the HTML (favor posted date over modified date): 

        $patterns = [ 

            '|Posted Date:</strong>([^<]+)<|ms', '/Last Modified:([^<]+)</ms' 

        ]; 

        foreach ($patterns as $pattern) { 

            preg_match_all( 

                 $pattern, $html, $matches 

            ); 

            if (isset($matches[1][0]) && !empty($matches[1][0])) { 

                $date = $matches[1][0]; 

                break; 

            } 

        } 

        if (isset($date)) { 

            $fields['sort_date'] = date('Y-m-d\TH:i:s\Z', strtotime(trim($date))); 

        } 

 

        // Extract subject tagging from the HTML: 

        preg_match_all('|rel="category tag">([^<]+)</a>|ms', $html, $tags); 

        if (isset($tags[1]) && !empty($tags[1])) { 

            $fields['subject'] = $tags[1]; 

        } 

 

        // Hard-code the category: 

        $fields['category'] = 'Blog'; 
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Step 3: Indexing Neatline 

While the WordPress ingest was quite 

straightforward, indexing data from NeatLine 

provided a more significant challenge, as no existing 

tools were available to perform the task. After a 

detailed analysis of the MySQL database used by 

Omeka, it was determined that all of the data needed 

by VuFind could be found in two tables: 

omeka_neatline_exhibits and omeka_neatline_-

records. A PHP class, Cortona\Indexer (listing 2), was 

created to connect to MySQL using PDO
14

, run 

queries to extract data, format the data into Solr 

<add> documents
15

 for inclusion in the index, and 

post the data using VuFind’s provided 

VuFind\Solr\Writer class. To avoid including server 

and password details in the code, a Cortona.ini file 

was introduced to store key elements. A simple  
 

controller, Cortona\Controller\CortonaController 

(listing 3), was created to inject dependencies into the 

indexer and to allow it to be invoked from the 

command line. Once registered in the Cortona 

module’s module.config.php file, all data could be 

harvested from Omeka into VuFind with the 

command php $VUFIND_HOME/public/-

index.php cortona import. 

While the details of the code shared here are very 

specific to this project’s needs, they demonstrate a 

simple approach to mapping arbitrary database content 

into Solr documents using PHP. Also note the use of 

dynamic field suffixes like _str_mv (for multivalued 

strings) which allow arbitrary values to be stored in the 

index without the need to modify the VuFind-provided 

Solr schema configuration file. These custom values are 

used in the next step to build the “simple view.” 

        return $fields; 

    } 

 

    /** 

     * Support method for getDocument() -- retrieve associative array of field data. 

     * 

     * @param string $url URL of file to retrieve. 

     * 

     * @return array 

     */ 

    protected static function getDocumentFieldArray($url) 

    { 

        $fields = parent::getDocumentFieldArray($url); 

        // Trim trailing pipes: 

        $fields['title'] = rtrim($fields['title'], '| '); 

        return $fields; 

    } 

} 

Listing 2: Cortona\Indexer 

<?php 
/** 
 * Cortona Indexer 
 * 
 * PHP version 5 
 * 
 * Copyright (C) Villanova University 2016. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2, 
 * as published by the Free Software Foundation. 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
* 
 * You should have received a copy of the GNU General Public License 
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* along with this program; if not, write to the Free Software 
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 */ 
class Indexer 

{ 

    /** 

     * Index connection 

     * 

     * @var SolrWriter 

     */ 

    protected $solr; 

 

    /** 

     * Cortona.ini contents 

     * 

     * @var Config 

     */ 

    protected $config; 

 

    /** 

     * Database connection 

     * 

     * @var PDO 

     */ 

    protected $db; 

 

    /** 

     * Success count 

     * 

     * @var int 

     */ 

    protected $success = 0; 

 

    /** 

     * Failure count 

     * 

     * @var int 

     */ 

    protected $failure = 0; 

 

    /** 

     * Total record count 

     * 

     * @var int 

     */ 

    protected $total = 0; 

 

    /** 

     * Current work in progress record. 

     * 

     * @var string 

     */ 

    protected $currentRecord; 

 

    /** 

     * Contents of "allfields" field for work in progress record. 

     * 

     * @var array 

     */ 

    protected $allFields; 
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    /** 

     * Constructor 

     * 

     * @param SolrWriter $solr   Index connection 

     * @param Config     $config Cortona.ini contents 

     */ 

    public function __construct(SolrWriter $solr, Config $config) 

    { 

        $this->solr = $solr; 

        $this->config = $config; 

        $this->db = new PDO( 

            $config->Database->dsn, 

            $config->Database->username, 

            $config->Database->password, 

            [] 

        ); 

    } 

 

    /** 

     * Get count of successfully indexed records. 

     * 

     * @return int 

     */ 

    public function getSuccess() 

    { 

        return $this->success; 

    } 

 

    /** 

     * Get count of indexing failures. 

     * 

     * @return int 

     */ 

    public function getFailure() 

    { 

        return $this->failure; 

    } 

 

    /** 

     * Get count of total records encountered. 

     * 

     * @return int 

     */ 

    public function getTotal() 

    { 

        return $this->total; 

    } 

 

    /** 

     * Kick off the indexing process. 

     * 

     * @return void 

     */ 

    public function indexAll() 

    { 

        // Load exhibit data: 

        $exhibitStatement = $this->db->prepare("SELECT * FROM omeka_neatline_exhibits"); 

        $exhibitStatement->execute(); 

        $exhibits = []; 

        while ($row = $exhibitStatement->fetch()) { 

            $exhibits[$row['id']] = $row; 
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        } 

 

        // Load records: 

        $statement = $this->db->prepare("SELECT * FROM omeka_neatline_records"); 

        $statement->execute(); 

        while ($row = $statement->fetch(PDO::FETCH_ASSOC)) { 

            $this->total++; 

            $this->indexNeatlineRecord($row, $exhibits[$row['exhibit_id']]); 

        } 

 

        // If we encountered any records, we want to do a commit/optimize. 

        if ($this->total) { 

            // Issue a Commit Statement 

            $this->solr->commit('SolrWeb'); 

 

            // Issue a Optimize Statement 

            $this->solr->optimize('SolrWeb'); 

        } 

    } 

 

    /** 

     * Index a single Neatline record. 

     * 

     * @param array $row     Neatline record details 

     * @param array $exhibit Associated exhibit details 

     * 

     * @return void 

     */ 

    protected function indexNeatlineRecord($row, $exhibit) 

    { 

        // Determine which Simile contains (or IS) the current record; we can't 

        // add this to the index if we can't put it in proper context, since 

        // we want to display records in VuFind as a single Simile record with 

        // a series of associated items beneath it. 

        try { 

            $parentSimile = $this->getParentSimile($row); 

        } catch (\Exception $ex) { 

            $this->failure++; 

            echo 'Skipping item: ' . $ex->getMessage() . "\n"; 

            return; 

        } 

 

        // Reset the internal "record in progress": 

        $this->startNewRecord(); 

 

        // Fill in the values: 

        $this->addFieldToRecord('id', $row['id']); 

        $this->addFieldToRecord('category', $exhibit['title']); 

        $this->addFieldToRecord('description', $row['body']); 

        $this->addFieldToRecord('title', $row['title']); 

        $titleSort = ltrim($row['title'], '- ');    // strip leading "-- " 

        $this->addFieldToRecord('title_sort', $titleSort, false); 

        $this->addFieldToRecord('url', $this->getNeatlineRecordUrl($row, $exhibit)); 

        $this->addFieldToRecord('sort_date', $row['start_date'] . 'T00:00:00Z'); 

        $tags = array_map('trim', explode(',', $row['tags'])); 

        $this->addFieldToRecord('subject', $tags); 

        $widgets = empty($row['widgets']) ? [] : explode(',', $row['widgets']); 

        $this->addFieldToRecord('widgets_str_mv', $widgets); 

        $this->addFieldToRecord('simile_id_str', $parentSimile); 

        $this->addFieldToRecord('weight_sint', $row['weight']); 

        $urls = $this->getImageUrlDetails($row); 



ANN. LIB. INF. STU., DECEMBER 2016 

 

 

 

248 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        $this->addFieldToRecord('url_orig_str_mv', $urls['orig']); 

        $this->addFieldToRecord('url_full_str_mv', $urls['full']); 

        $this->addFieldToRecord('url_wms_str_mv', $urls['wms']); 

 

        // If this row IS a Simile, get the next and previous ones for 

        // navigation purposes. 

        if ($row['id'] == $parentSimile) { 

            $nav = $this->getSimileNavigation($row); 

            $this->addFieldToRecord('prev_simile_id_str', $nav['prev']); 

            $this->addFieldToRecord('next_simile_id_str', $nav['next']); 

        } 

 

        // Close up and save the record: 

        $this->endCurrentRecord(); 

        $this->saveCurrentRecord($row['id']); 

    } 

 

    /** 

     * Return image URL details for the specified row. 

     * 

     * @param array $row Current row 

     * 

     * @return array 

     */ 

    protected function getImageUrlDetails($row) 

    { 

        // Initialize the URL array. We have three types: original and full 

        // images which will be represented as parallel arrays (two sizes of 

        // the same things), plus WMS images pulled from the GeoServer. 

        $urls = ['orig' => [], 'full' => [], 'wms' => null]; 

 

        // First, use the item API to retrieve information about associated 

        // files; this will fill in the full and orig values: 

        $itemDetails = $this->getItemDetails($row['item_id']); 

        if (isset($itemDetails->files)) { 

            $list = is_array($itemDetails->files) 

                ? $itemDetails->files : [$itemDetails->files]; 

            foreach ($list as $file) { 

                foreach ($this->getFileDetails($file->url) as $current) { 

                    if (isset($current->file_urls->original) 

                        && isset($current->file_urls->fullsize) 

                    ) { 

                        $urls['orig'][] = $current->file_urls->original; 

                        $urls['full'][] = $current->file_urls->fullsize; 

                    } 

                } 

            } 

        } 

 

        // Next, construct a GeoServer link if WMS settings are present. Note 

        // that we use the "reflect" wrapper to cut down on the number of GET 

        // parameters required to render the layer. See more details at this URL: 

        // http://docs.geoserver.org/latest/en/user/services/wms/reference.html 

        if (isset($row['wms_address']) && !empty($row['wms_address']) 

            && isset($row['wms_layers']) && !empty($row['wms_layers']) 

        ) { 

            $base = isset($this->config->GeoServer->wms_base) 

                && $this->config->GeoServer->wms_base 

                ? $this->config->GeoServer->wms_base 

                : $row['wms_address']; 

            $urls['wms'] = $base . '/reflect?layers=' 
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                . urlencode($row['wms_layers']); 

        } 

 

        // Send back our collected details: 

        return $urls; 

    } 

 

    /** 

     * Retrieve file details from the JSON API, and force them to an array for 

     * consistent upstream processing. 

     * 

     * @param string $url URL to fetch 

     * 

     * @return array 

     */ 

    protected function getFileDetails($url) 

    { 

        $fileDetails = json_decode(file_get_contents($url)); 

        return is_array($fileDetails) ? $fileDetails : [$fileDetails]; 

    } 

 

    /** 

     * Retrieve information (in object format) about an item from the Omeka API. 

     * 

     * @param int $id Item ID 

     * 

     * @return object 

     */ 

    protected function getItemDetails($id) 

    { 

        if (empty($id)) { 

            return null; 

        } 

        $uri = $this->config->Omeka->api . '/items/' . $id; 

        return json_decode(file_get_contents($uri)); 

    } 

 

    /** 

     * Get the next and previous Similes based on date. 

     * 

     * @param array $row Details of the current Simile. 

     * 

     * @return array 

     */ 

    protected function getSimileNavigation($row) 

    { 

        $nav = ['prev' => false, 'next' => false]; 

 

        if (!empty($row['start_date'])) { 

            $q1 = "SELECT * FROM omeka_neatline_records " 

                . "WHERE (end_date < :start) " 

                . "AND widgets LIKE '%Simile%'" 

                . "ORDER BY end_date DESC LIMIT 1"; 

            $s1 = $this->db->prepare($q1); 

            $s1->execute([':start' => $row['start_date']]); 

            while ($c = $s1->fetch()) { 

                $nav['prev'] = $c['id']; 

            } 

        } 

 

        if (!empty($row['end_date'])) { 
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            $q2 = "SELECT * FROM omeka_neatline_records " 

                . "WHERE (start_date > :end) " 

                . "AND widgets LIKE '%Simile%'" 

                . "ORDER BY start_date ASC LIMIT 1"; 

            $s2 = $this->db->prepare($q2); 

            $s2->execute([':end' => $row['end_date']]); 

            while ($c = $s2->fetch()) { 

                $nav['next'] = $c['id']; 

            } 

        } 

 

        return $nav; 

    } 

 

    /** 

     * Figure out which Simile record contains (or IS) the specified row. 

     * 

     * @param array $row Row details 

     * @return int 

     * 

     * @throws \Exception 

     */ 

    protected function getParentSimile($row) 

    { 

        // We want to find a Simile record whose date range fully contains the 

        // dates of the provided $row. 

        $query = "SELECT * FROM omeka_neatline_records " 

            . "WHERE (start_date IS NULL OR start_date <= :start) " 

            . "AND (end_date IS NULL OR end_date >= :end) " 

            . "AND exhibit_id = :exhibit " 

            . "AND widgets LIKE '%Simile%'"; 

        $statement = $this->db->prepare($query); 

        $params = [ 

            ':start' => $row['start_date'], 

            ':end' => $row['end_date'], 

            ':exhibit' => $row['exhibit_id'] 

        ]; 

 

        // Count how many rows came back, and save the $id from the most 

        // recently retrieved row. (We can probably do this more efficiently, 

        // but this approach is very cross-DB-platform friendly). 

        $statement->execute($params); 

        $count = 0; 

        while ($parentRow = $statement->fetch(PDO::FETCH_ASSOC)) { 

            $id = $parentRow['id']; 

            $count++; 

        } 

 

        // If we had too few or too many matches, something is wrong and we 

        // should abort indexing for this record. 

        if ($count !== 1) { 

            throw new \Exception( 

                'Unexpected count (' . $count . ') of associated Simile rows for ' 

                . $row['id'] 

            ); 

        } 

 

        // If we got this far, it's safe to assume that $id is set, since the 

        // exception above covers cases where $id is unset. 

        return $id; 

    } 
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    /** 

     * Assemble a link into the Neatline exhibit. 

     * 

     * @param array $row     Neatline record details 

     * @param array $exhibit Associated exhibit details 

     * 

     * @return string 

     */ 

    protected function getNeatlineRecordUrl($row, $exhibit) 

    { 

        return "{$this->config->Omeka->base}/{$exhibit['slug']}#records/{$row['id']}"; 

    } 

 

    /** 

     * Reset the state of the current in-progress record. 

     * 

     * @return void 

     */ 

    protected function startNewRecord() 

    { 

        // Create Record 

        $this->currentRecord = '<?xml version="1.0" encoding="utf-8"?>' . "\n"; 

        $this->currentRecord .= '<add>' . "\n"; 

        $this->currentRecord .= '  <doc>' . "\n"; 

 

        // Initialize "all fields" list: 

        $this->allFields = array(); 

    } 

 

    /** 

     * Add data to the record in progress. 

     * 

     * @param string $name            Name of field 

     * @param mixed  $values          One or more values to insert into field 

     * @param bool   $saveToAllFields Should value(s) also go into allfields field? 

     * 

     * @return void 

     */ 

    protected function addFieldToRecord($name, $values, $saveToAllFields = true) 

    { 

        $values = (array)$values; 

        foreach ($values as $value) { 

            // Normalize whitespace, do not index empty values: 

            $value = trim($value); 

            if (strlen($value) == 0) { 

                continue; 

            } 

 

            // Sanitize the value for XML legality: 

            $regex = '/[^\x{0009}\x{000a}\x{000d}\x{0020}-\x{D7FF}\x{E000}-\x{FFFD}]+/u'; 

            $value = trim(preg_replace($regex, ' ', $value, -1)); 

 

            // Add the field: 

            foreach ((array)$name as $field) { 

                $this->currentRecord .= '    <field name="' . $field . '">' . 

                    htmlspecialchars($value) . '</field>' . "\n"; 

            } 

 

            // If requested, save the value into the "all fields" list: 

            if ($saveToAllFields) { 
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                $this->allFields[] = $value; 

            } 

        } 

    } 

 

    /** 

     * Close up the current record in progress. 

     * 

     * @return void 

     */ 

    protected function endCurrentRecord() 

    { 

        // Put in the "all fields" list as the final value: 

        $this->addFieldToRecord('keywords', implode(' ', $this->allFields), false); 

 

        // Close the record: 

        $this->currentRecord .= '  </doc>' . "\n"; 

        $this->currentRecord .= '</add>' . "\n"; 

    } 

 

    /** 

     * Save the record-in-progress to the index. 

     * 

     * @param string $id ID of record being saved (for debugging only). 

     * 

     * @return void 

     */ 

    protected function saveCurrentRecord($id) 

    { 

        // Clean up content 

        try { 

            $this->solr->save('SolrWeb', new RawXMLDocument($this->currentRecord)); 

            $this->success++; 

        } catch (\Exception $e) { 

            $this->failure++; 

            echo "Failure: " . $e->getMessage() . " : $this->currentRecord\n"; 

            file_put_contents('import-log', '[' . date('r') . 

                '] Could not import record ' . $id . ':' . 

                $e->getMessage() . "\n", FILE_APPEND); 

        } 

    } 

} 

Listing 3: Cortona\Controller\CortonaController 

<?php 
/** 
 * CLI Controller Module 
 * 
 * PHP version 5 
 * 
 * Copyright (C) Villanova University 2016. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2, 
 * as published by the Free Software Foundation. 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
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Step 4: Building the “Simple View” 

The Neatline exhibit for The Triumph of David 

was constructed as a collection of SIMILE 

Timelines
16

. These interactive timelines feature 

layered images and pop-up boxes containing 

additional information. The “Simple View” in VuFind 

was designed to make the same information available 

in a more linear, less interactive format as an alternate 

presentation for users with mobile devices, 

disabilities, or other limitations or preferences 

restricting the usefulness of the full timeline view. 

At index time, every point on every timeline is 

indexed as a distinct Solr record, allowing users to 

perform very precise searches. Each Solr record 

contains a field identifying its parent timeline as well 

as additional fields containing all of the text and 

image URLs necessary to display the content. The 

“Simple View” is implemented as a controller 

(Cortona\Controller\CortonaRecordController, listing 4) 

which performs a simple Solr query to retrieve all of the 

points on a specified timeline and passes the data to a 

template (cortonarecord/view.phtml, listing 5) which 

renders the data in a linear fashion, using HTML 

anchors to allow direct linking to any specific point on 

the timeline. Note that the custom template was created 

inside a custom VuFind theme
17

 which, like the Cortona 

Zend Framework module, helps to clearly separate local 

customizations from the core VuFind distribution. Also 

note that some additional entries had to be added to the 

Cortona module’s module.config.php to expose the new 

controller and related route. 

* along with this program; if not, write to the Free Software 
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 * 
 * @category VuFind2 
 * @package  Controller 
 * @author   Demian Katz <demian.katz@villanova.edu> 
 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 
 * @link  http://vufind.org/wiki/vufind2:building_a_controller Wiki 
 */ 
namespace Cortona\Controller; 
use Cortona\Indexer, Zend\Console\Console; 
 
/** 
 * This controller handles various command-line tools 
 * 
 * @category VuFind2 
 * @package  Controller 
 * @author   Demian Katz <demian.katz@villanova.edu> 
 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 
 * @link  http://vufind.org/wiki/vufind2:building_a_controller Wiki 
 */ 
class CortonaController extends \VuFindConsole\Controller\AbstractBase 

{ 

    /** 

     * Import records 

     * 

     * @return \Zend\Console\Response 

     */ 

    public function importAction() 

    { 

        $importer = new Indexer( 

            $this->getServiceLocator()->get('VuFind\Solr\Writer'), 

            $this->getServiceLocator()->get('VuFind\Config')->get('Cortona') 

        ); 

        $importer->indexAll(); 

        Console::writeLine("Import Completed\n"); 

        Console::writeLine( 

            "Imported " . $importer->getSuccess() . " Records of " . $importer->getTotal() . 

            " total with " . $importer->getFailure() . " failures" 

        ); 

 

        return $this->getSuccessResponse(); 

    } 

} 
 



ANN. LIB. INF. STU., DECEMBER 2016 

 

 

 

254 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 4: Cortona\Controller\CortonaRecordController 

<?php 
/** 
 * CLI Controller Module 
 * 
 * PHP version 5 
 * 
 * Copyright (C) Villanova University 2016. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2, 
 * as published by the Free Software Foundation. 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
 * along with this program; if not, write to the Free Software 
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 * 
 * @category VuFind2 
 * @package  Controller 
 * @author   Demian Katz <demian.katz@villanova.edu> 
 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 
 * @link  http://vufind.org/wiki/vufind2:building_a_controller Wiki 
 */ 
namespace Cortona\Controller; 
use VuFindSearch\ParamBag; 
 
/** 
 * This controller handles various command-line tools 
 * 
 * @category VuFind2 
 * @package  Controller 
 * @author   Demian Katz <demian.katz@villanova.edu> 
 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 
 * @link  http://vufind.org/wiki/vufind2:building_a_controller Wiki 
 */ 
class CortonaRecordController extends \VuFind\Controller\AbstractBase 

{ 

    /** 

     * Display a Cortona record in "static" mode. 

     * 

     * @return mixed 

     */ 

    public function viewAction() 

    { 

        // The incoming ID will be the top-level "Simile" record.... 

        $id = $this->params()->fromRoute('id'); 

 

        // Connect to Solr and retrieve all of the records associated with the 

        // specified Simile, sorting them by weight. There should never be more 

        // than a dozen or so, so limiting to 1000 should ensure that we get 

        // everything we need in a single request. 

        $solr = $this->getServiceLocator()->get('VuFind\Search\BackendManager') 

            ->get('SolrWeb')->getConnector(); 

        $params = new ParamBag( 

            [ 
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                'q' => 'simile_id_str:' . $id, 

                'sort' => 'weight_sint asc', 

                'rows' => '1000', 

                'wt' => 'json', 

            ] 

        ); 

        $results = json_decode($solr->search($params)); 

        return $this->createViewModel(['docs' => $results->response->docs]); 

    } 

} 

Listing 5: cortonarecord/view.phtml 

<? 

  // Set page title (first document in array is the top-level Simile). 

  $this->headTitle(isset($docs[0]) ? $docs[0]->title : ''); 

  $this->layout()->searchClassId = 'SolrWeb'; 

  $this->layout()->timelineLink = isset($docs[0]) 

    ? $this->escapeHtmlAttr($docs[0]->url) : null; 

?> 

<div class="record row"> 

  <div class="<?=$this->layoutClass('mainbody')?>"> 

    <? /* we have an array of documents associated with the Simile... */ ?> 

    <? $lastBodyHadContent = true; ?> 

    <? $toc = ''; // build table of contents as we go.... ?> 

    <? foreach ($docs as $i => $doc): ?> 

      <div id="record-<?=$doc->id?>"> 

        <? /* the first record is the Simile itself, so it gets an h1 instead of h2. */ ?> 

        <? $header = $i > 0 ? 'h2' : 'h1'; ?> 

        <? $trimmedTitle = ltrim($doc->title, '- '); if ($doc->title != $trimmedTitle) { $header = 

'h3'; } ?> 

        <? /* Skip displaying the header if the previous body was empty.... */ ?> 

        <? if ($lastBodyHadContent): ?> 

          <<?=$header?>><?=$this->escapeHtml($trimmedTitle)?></<?=$header?>> 

          <? $toc .= '<li style="margin-left: ' . ((str_replace('h', '', $header) - 1) * 1.5) . 

'em;"><a href="#record-' . $doc->id . '">' . $this->escapeHtml($trimmedTitle) . '</a></li>'; ?> 

        <? endif; ?> 

        <? $lastBodyHadContent = false; // reset flag, recheck below... ?> 

        <? /* we can assume that the "orig" and "full" image URL arrays have the same 

              number of values, since this is guaranteed at index time. We just want 

              to display the "full" web-friendly sizes with links to the originals. */ ?> 

        <? if (isset($doc->url_orig_str_mv) && !empty($doc->url_orig_str_mv)): ?> 

          <? $lastBodyHadContent = true; ?> 

          <? foreach ($doc->url_orig_str_mv as $i => $orig): ?> 

            <a href="<?=$this->escapeHtmlAttr($orig)?>"> 

              <img src="<?=$this->escapeHtmlAttr($doc->url_full_str_mv[$i])?>" /> 

 
            </a><br /> 

          <? endforeach; ?> 

        <? endif; ?> 

        <? /* next we want to display GeoServer links, if any; note that we might 

              be able to append some GET parameters here to change background 

              colors, scale to different sizes, etc. -- these are dynamic! */ ?> 

        <? if (isset($doc->url_wms_str_mv) && !empty($doc->url_wms_str_mv)): ?> 

          <? $lastBodyHadContent = true; ?> 

          <? foreach ($doc->url_wms_str_mv as $wms): ?> 

            <img src="<?=$this->escapeHtmlAttr($wms)?>" /><br /> 

          <? endforeach; ?> 

        <? endif; ?> 

        <? if (isset($doc->description) && !empty($doc->description)): ?> 

          <? $lastBodyHadContent = true; ?> 
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Step 5: Customizing Record Displays 

With the index fully populated and the “simple 

view” implemented, the next step is to ensure that 

search results display in the desired format and link 

both to the Omeka/Neatline timeline view and to the 

VuFind-hosted “simple view.” 

VuFind uses a system of “record drivers”
18

 that 

allow different records within the Solr index to be 

handled in different ways. Each record driver class is 

responsible for providing public methods to access 

Solr data elements, and each class is also associated 

with its own set of templates, allowing different sorts 

of records to be displayed in completely different 

ways if necessary. 

For the purposes of this project, the standard 

SolrWeb record driver used by the code  
 

accompanying VuFind’s “website” Solr core was  
 

almost completely suitable. However, the record 

driver needed to be extended to provide access to a 

couple of dynamic fields (see listing 6) and a custom  
 

search result template was created in the cortona 

theme to adjust the default display to include  
 

additional links to the timeline and simple views (see 

listing 7). In addition to these two files, some further  
 

Cortona module.config.php changes were needed, 

bringing it to its final state as shown in listing 8, as  
 

was the creation of a simple factory class (listing 9) to  
 

build the custom record driver. 

          <p><?=$this->escapeHtml($doc->description)?></p> 

        <? endif; ?> 

      </div> 

    <? endforeach; ?> 

  </div> 

 

  <div class="<?=$this->layoutClass('sidebar')?>"> 

    <? if (isset($docs[0]->prev_simile_id_str) || isset($docs[0]->next_simile_id_str)): ?> 

      <div class="btn-group"> 

        <? if (isset($docs[0]->prev_simile_id_str)): ?> 

          <a href="<?=$this->url('cortona-record', ['id' => $docs[0]->prev_simile_id_str])?>" 

class="btn btn-default"> 

            Previous Event 

          </a> 

        <? endif; ?> 

        <? if (isset($docs[0]->next_simile_id_str)): ?> 

          <a href="<?=$this->url('cortona-record', ['id' => $docs[0]->next_simile_id_str])?>" 

class="btn btn-default"> 

            Next Event 

          </a> 

        <? endif; ?> 

      </div> 

    <? endif; ?> 

    <!--<a href="<?=$this->layout()->timelineLink?>">Timeline View</a>--> 

    <h2>Contents</h2> 

    <ul><?=$toc?></ul> 

  </div> 

</div> 

 

Listing 6: Cortona\RecordDriver\SolrWeb 

<?php 
/** 
 * Model for Solr web records (customized for Cortona project). 
 * 
 * PHP version 5 
 * 
 * Copyright (C) Villanova University 2016. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2, 
 * as published by the Free Software Foundation. 
 * 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
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* GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
 * along with this program; if not, write to the Free Software 
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 * 
 * @category VuFind2 
 * @package  RecordDrivers 
 * @author   Demian Katz <demian.katz@villanova.edu> 
 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 
 * @link  http://vufind.org/wiki/vufind2:record_drivers Wiki 
 */ 
namespace Cortona\RecordDriver; 

 
/** 
 * Model for Solr web records (customized for Cortona project). 
 * 
 * @category VuFind2 
 * @package  RecordDrivers 
 * @author   Demian Katz <demian.katz@villanova.edu> 
 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 
 * @link  http://vufind.org/wiki/vufind2:record_drivers Wiki 
 */ 
class SolrWeb extends \VuFind\RecordDriver\SolrWeb 

{ 

    /** 

     * Get the ID of the Simile record that contains the current record (or 

     * false if this is inapplicable -- e.g. for blog posts). Note that if the 

     * current record IS a Simile record, it will return its own ID here. 

     * 

     * @return int|bool 

     */ 

    public function getContainingSimile() 

    { 

        return isset($this->fields['simile_id_str']) 

            ? $this->fields['simile_id_str'] : false; 

    } 

 
    /** 

     * Get the sort date. 

     * 

     * @return string|bool 

     */ 

    public function getSortDate() 

    { 

        return isset($this->fields['sort_date']) 

            ? $this->fields['sort_date'] : false; 

    } 

} 

Listing 7: RecordDriver/SolrWeb/result-list.phtml 

<? 

  $url = $this->driver->getUrl(); 

?> 

<div class="listentry col-xs-11"> 

  <div class="resultItemLine1"> 

    <a href="<?=$this->escapeHtmlAttr($url)?>" class="title"> 

      <?=ltrim($this->record($this->driver)->getTitleHtml(), '- ')?> 

    </a> 

  </div> 
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  <div class="resultItemLine2"> 

    <? $snippet = $this->driver->getHighlightedSnippet(); ?> 

    <? $summary = $this->driver->getSummary(); ?> 

    <? if (!empty($snippet)): ?> 

      <?=$this->highlight($snippet['snippet'])?> 

    <? elseif (!empty($summary)): ?> 

      <?=$this->escapeHtml($summary[0])?> 

    <? endif; ?> 

  </div> 

 
  <div class="resultItemLine3"> 

    <?=''//disabled 10/20/15 DDK - $this->escapeHtml($url)?> 

    <? $id = $this->driver->getUniqueId(); $simileId = $this->driver->getContainingSimile(); if 

(false !== $simileId): ?> 

      <a href="<?=$this->escapeHtmlAttr($url)?>"> 

        <i class="fa fa-sliders"></i> timeline view 

      </a>&nbsp; 

      <a href="<?=$this->url('cortona-record', ['id' => $simileId]) . ($id === $simileId ? '' : 

'#record-' . $id)?>"> 

        <i class="fa fa-sticky-note-o"></i> simple view 

      </a> 

    <? endif; ?> 

    <? $sortDate = $this->driver->getSortDate(); list($sortDate) = explode('T', $sortDate); if 

(!empty($sortDate)): ?> 

      <? if (false !== $simileId): ?><br /><? endif; ?> 

      <?=$this->transEsc('Date')?>: <?=$this->escapeHtml(trim($sortDate))?> 

    <? endif; ?> 

  </div> 

</div> 

Listing 8: Final Cortona module.config.php 

<?php 

 

return array ( 

  'controllers' => array ( 

    'invokables' => array ( 

      'cortona' => 'Cortona\Controller\CortonaController', 

      'cortonarecord' => 'Cortona\Controller\CortonaRecordController', 

    ), 

  ), 

  'router' => array ( 

    'routes' => array ( 

      'cortona-record' => array ( 

        'type' => 'Zend\Mvc\Router\Http\Segment', 

        'options' => array ( 

          'route' => '/View/:id', 

          'defaults' => array ( 

            'controller' => 'CortonaRecord', 

            'action' => 'View', 

          ), 

        ), 

      ), 

    ), 

  ), 

  'vufind' => array ( 

    'plugin_managers' => array ( 

      'recorddriver' => array ( 

        'factories' => array ( 

          'solrweb' => 'Cortona\RecordDriver\Factory::getSolrWeb', 

        ), 
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      ), 

    ), 

  ), 

); 

Listing 9: Cortona\RecordDriver\Factory 

<?php 
/** 
 * Record Driver Factory Class 
 * 
 * PHP version 5 
 * 
 * Copyright (C) Villanova University 2016. 
 * 
 * This program is free software; you can redistribute it and/or modify 
 * it under the terms of the GNU General Public License version 2, 
 * as published by the Free Software Foundation. 
 * 
 * This program is distributed in the hope that it will be useful, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * GNU General Public License for more details. 
 * 
 * You should have received a copy of the GNU General Public License 
 * along with this program; if not, write to the Free Software 
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 
 * 
 * @category VuFind2 
 * @package  RecordDrivers 
 * @author   Demian Katz <demian.katz@villanova.edu> 
 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 
 * @link  http://vufind.org/wiki/vufind2:hierarchy_components Wiki 
 */ 
namespace Cortona\RecordDriver; 
 
/** 
 * Record Driver Factory Class 
 * 
 * @category VuFind2 
 * @package  RecordDrivers 
 * @author   Demian Katz <demian.katz@villanova.edu> 
 * @license  http://opensource.org/licenses/gpl-2.0.php GNU General Public License 
 * @link  http://vufind.org/wiki/vufind2:hierarchy_components Wiki 
 * 
 * @codeCoverageIgnore 
 */ 
class Factory 

{ 

    /** 

     * Factory for SolrWeb record driver. 

     * 

     * @param ServiceManager $sm Service manager. 

     * 

     * @return SolrWeb 

     */ 

    public static function getSolrWeb(\Zend\ServiceManager\ServiceManager $sm) 

    { 

        $web = $sm->getServiceLocator()->get('VuFind\Config')->get('website'); 

        return new \Cortona\RecordDriver\SolrWeb( 

            $sm->getServiceLocator()->get('VuFind\Config')->get('config'), $web, $web 

        ); 

    } 

} 
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Step 6: Finishing Touches 

At this point, the goals of the project were met and 

the site was fully functional. The only remaining steps 

were cosmetic: adjusting some further templates and 

CSS files to introduce a consistent look and feel 

across the disparate components of the site. The 

interface unification goal was modest: providing a 

consistent set of navigation buttons and a search box 

at the top of all pages. VuFind’s theme system makes 

these types of customizations quite simple, and no 

major obstacles were encountered in adjusting 

WordPress and Omeka to match. Obviously, 

maintaining a consistent style across multiple systems 

can be burdensome in the long term in environments 

where change is frequent; however, for this sort of 

one-off project where future redesigns are relatively 

unlikely, applying cosmetic changes to multiple 

systems was ultimately less difficult than attempting 

to shoehorn all of the desired functionality into a 

single unified system. 

Conclusion 

With a wide variety of indexing tools and options 

and an extensible architecture built on Zend 

Framework, VuFind is a strong candidate when a 

search system is needed to glue together disparate 

sites in a seamless fashion. The example of the 

Triumph of David project demonstrates some patterns 

that could be easily adapted to similar situations. 

VuFind also boasts a strong and supportive 

development community. If anything in this paper 

remains unclear or if you encounter a use case that 

you are not sure how to approach, please feel free to 

reach out through the mailing lists or other 

communication channels listed on the VuFind 

website
19
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