

Annals of Library and Information Studies Vol. 67, September 2020, pp. 144-147

Assessment of journal usage based on the cited journals in the published documents of an institute: a collection development perspective

Umesha Naik¹ and E.R. Prakash²

¹Department of Library & Information Science, Mangalore University, Mangalagangothri, Karnataka, India – 574199 ²Corresponding author: Scientific Information Resource Division, Knowledge Management Group,

Bhabha Atomic Research Centre, Mumbai, India – 400 085,

Email: prak@barc.gov.in

Received: 07 January 2020; revised: 18 August 2020; accepted: 26 August 2020

Journal collection in special libraries play a vital role for imparting the R&D programmes of any research institute. Building a good journal collection which suits the research needs and within the available fund needs evaluation of subscribed and to be subscribed journals in terms of usage and cost benefit. There are many ways to assess the usage of journals for taking collection development decisions and they are mainly categorized as 'User centered approaches' and 'Materials centered-approaches'. Many journals are well used in terms of citing, publishing by the library users but they may not be subscribed by the library and the journals subscribed by the library may not be much used by the users. The present study assume that the journals referred in the publications of an institute may be of relevant to the user community and treated as one type of usage. The study has analysed the publications of Bhabha Atomic Research Centre (BARC), Mumbai, India published during 2015-2019 and identified 753 journals which are cited more than 40 times. Among them 463 journals are not being subscribed by BARC Library. The 753 journals are categorised in three zones based on the number of times cited: Zone 1 of 26 journals which are cited by BARC scientists and engineers heavily (minimum 2193 times and a maximum of 6882 times); Zone 2 of 99 journals which are moderately cited (minimum 402 times and a maximum of 1446 times); and Zone 3 of 628 journals which are less used. The journals in the first zone are of greater importance to the user community which are all there in the list of subscribed journals except two as they are open access journals. Moderately used Zone 2 journals which are not being subscribed by BARC Library may be considered for the next year subscription by replacing the subscribed journals which are less used subject to fund availability.

Keywords: Journal usage; Collection development; Referencing; Institutional publications; Journal collection

Introduction

Libraries have not been immune to the growing difficulty of management problems in a world of increasing demand and decreasing resources¹. The term "collection development" refers to the process of systematically building library collections to serve study, teaching, research, recreational, and other needs of library users. The process includes selection and de-selection of current and retrospective materials, the planning of strategies for continuing acquisition, and evaluation of collections to determine how well they serve user needs. Overall, collection development encompasses many library operations ranging from the selection of individual titles for purchase to the withdrawal of expendable materials².

The subscription of journals is always being hampered by the escalating cost of journals and the diminishing fund allocations. With the limited fund, the libraries have to build a collection which is best suitable and relevant to the library user community. Journals are being assessed based on their usage (both current and future) and they are ranked to take some objective journal collection development decisions like which are the journals to be added, retained, discontinued etc. There are many usage parameters which are already in use for ranking journals and many distinct methods are discussed in literatures³⁻¹³. These methods may be categorized in the following manner:

- *User centered approaches*: The methods of the approach may be counts of re-shelving, interlibrary loan, circulation, point-of-use surveys in the library, taking copies
- *Materials centered-approaches*: The techniques adopted generally may be citation analysis, cost-effectiveness, impact factor, inclusion in reputed indexing databases, classified profile
- Combination of above methods

• *Other new methods*: Download statistics, denial reports from the publishers. These are applicable only to online journals.

Some of the parameters like impact factors of the journals are indicators of the world usage of the journals. Sometimes, even though the parameter will be high but the local usage will be very less. In contrary, sometimes the local usage of journals will be very high but the world usage may be very less. The collection development decisions must be based on the local usage rather than world usage.

Library users take copies of articles for reading purposes at later stage or download articles and keep it for reading. It may not be necessary that the copied or downloaded articles must have read by the users. But, when the library users referred the articles in their published documents, it may be sure that the researcher must have used the journal for referring the article. Aim of the present study is to quantify the cited journals in publications of an institute asa case study and rank the journals based upon the number of times referred. The list will be compared with the journals subscribed by the institution which will provide information about how many journals are highly used for referring and not subscribed by the library and how many journals are subscribed by the library but they are not much cited in the publications of the institute.

Methodology

Bhabha Atomic Research Centre (BARC), Mumbai, India is a premier multi-disciplinary Nuclear India Research Centre of having excellent infrastructure for advanced Research & Development with expertise covering the entire spectrum of Nuclear Science & Engineering and related areas. Scientific Information Resource Division (SIRD) of BARC satisfies the scientific and technical information needs of more than 5000 researchers of BARC. Journals articles published by SIRD during last five years (2015 to 2019) and indexed in SCOPUS database of Elsevier publishers are taken as the sample of published documents to analyse the references in them. SIRD subscribed to 702 journals in 2019 as R& D support services and these journals are being compared with the cited journals in BARC publications.

Results and Discussion

As per the objectives of the study, 'References' field in the 7541 records of journal articles published by BARC during 2015-2019 and appeared in *SCOPUS* database are analysed for the cited references. The results are discussed in the following sessions.

BARC has referred a total of 3,31,834 references through the 7541 publications with an average of 44 references per paper. The study has identified 753 top cited journals (at least 40 times) in the publications and the criteria for taking the top cited journals is chosen as those journals which are cited more than 40 times. The threshold is kept as more than 40 times so that the list of top cited journals comes near to the number of subscribed journals by the institute. Out of the 753 top cited journals, about 39% (290 journals) are being subscribed by the BARC Library. The non-subscribed 463 journals are altogether cited 55,055 times. The journals are ranked based on number of times cited and categorized in to three zones as highly cited, moderately cited and less cited keeping the number of times journals are cited in each zone is almost equal as being done in Bradford's law of scattering. The top cited 26 journals in the first zone with number of times cited are listed in Table 1. These journals are highly used journals by BARC scientists and engineers and they are treated as a must

Table 1—Top cited journals in BARC publications during 2015-2019 with subscription status (zone 1)					
Journal	TC*	Subscription Status			
Jour Nucl Mat	6882	Yes			
Phys Rev Lett	6626	Yes			
Phys Rev B	6122	Yes			
Jour Am Chem Soc	5327	Yes			
Phys Rev C	3762	Yes			
Jour App Phys	3182	Yes			
Jour Chem Phys	3150	Yes			
Jour Phys Chem B	3139	Yes			
Jour Phys Chem C	2690	Yes			
Phys Rev	2497	Yes			
Appl Phys Lett	2418	Yes			
Jour Instrum	2411	Yes			
Jour Alloys Compds	2255	Yes			
Jour High Energy Phys	2236	Open Access			
Jour Radioanal Nucl Chem	2195	Yes			
RSC Advances	2193	Open Access			
Langmuir	2034	Yes			
Nature	1853	Yes			
Science	1825	Yes			
Phys Chem Chem Phys	1763	Yes			
Chem Rev	1727	Yes			
Inorg Chem	1700	Yes			
Angew Chem Int Ed	1651	Yes			
NucEng Des	1626	Yes			
Nuc Inst Meth A	1619	Yes			
Chem Commun	1527	Yes			
Jour Nucl Mat	6882	Yes			
*TC = No. of times cited					

list by the present study for BARC library. All the journals from the highly cited first zone journals are subscribed by BARC Library except *Journal of High Energy Physics* and *RSC Advances* as they are open access journals.

The second zone consist of 99 journals (Appendix I) which are cited moderately by at least 400 times and a maximum of 1446 times. These journals may be included in the to-be-subscribed list of journals by replacing journals with less usage and subject to availability of fund.

The third zone consists of 628 journals which are cited at least 40 times and a maximum of 396 times may be considered for subscription only if need arises. Few journals at the bottom of zone two journals which are not much used and subscribed by BARC Library may be replaced with journals in the top of the third zone list. This has to be decided based on other parameters and decision of the authorities.

Conclusion

Escalating cost of journals and scarcity of enough fund are real problems faced by libraries of research organisations. Best collection of journals which suits the budget as well as the changing research front of each institution needs a careful evaluation of journals. The ranking of journals based on relevancy and usage will help in collection development decision making. The present method provides a concrete idea about the journals directly used by the library users in their publications. The chronology-wise analysis of highly cited journals may provide highly used journals in different time periods because of the changes in research fronts of a research institution. The list of cited journals may vary in number by the nature of the research organization. The more the multi-disciplinarily research in nature the more the number of cited journals. The present method can be easily adopted in academic institutions like colleges and universities where the publications are comparatively less and it is recommended that the cited journals may be classified according to the subject. This type of analysis can be done without depending on any indexing databases when the

number of publications are less in number and then the results will be more precise.

References

- 1 White HS, Publishers, libraries, and costs of journal subscriptions in times or funding retrenchment, *Library Quarterly*, 46(4) (1967) 359-377.
- 2 Fordham AE, The collection development planning process. In, *Special Libraries Management Handbook: The Basics* (University of South Carolina College of Library and Information Science; South Carolina). (1999).
- 3 Venable GT, Shepherd BA, Roberts ML, Taylor DR, Khan NR and Klimo PJ, An application of Bradford's law: identification of the core journals of pediatric neurosurgery and a regional comparison of citation density, *Child's Nervous System*, 30(10) (2014) 1717-1727.
- 4 Hunt GE, Walter G, Cleary M, Soh N, Martin A and Malhi GS, Fields of Interest and Influence: A New Method for Sourcing and Ranking Journals in Psychiatry, *Australian and New Zealand Journal of Psychiatry*, 45(8) (2011) 614-618.
- 5 Smith DR, Identifying a set of 'core' journals in occupational health, part 2: lists derived by bibliometric techniques, *Archives of Environmental Health: An International Journal*, 65(3) (2010) 173-175.
- 6 Miller EP and O'Neill AL, Journal deselection and costing, *Library Acquisitions: Practice & Theory*, 14(2) (1990) 173-178.
- 7 Wible JG, Comparative Analysis of Citation Studies, Swept Use, and ISI's Impact Factor as Tool for Journal Deselection, In, *IAMSLIC at a Crossroads*, 15th Annual Conference of International Association of Marine Science Libraries and Information Centers (St. Petersburg, FL) (1990).
- 8 Dul J and Karwowski W, An assessment system for rating scientific journals in the field of ergonomics and human factors. *Applied Ergonomics*, 35(3) (2004) 301-310.
- 9 Hatua SR, Journal selection and the theory of marginal utility, *Annals of Library and Information Studies*, 48(3) (2001) 107-110.
- 10 Dunn K, Chisnell C, Szak S and Sittig DF, A quantitative method for measuring library user journal needs: a pilot study using CD plus MEDLINE usage statistics. In, Annual Symposium on Computer Application in Medical Care (Washington, DC), (1994).
- 11 Bastille JD and Mankin CJ, A Simple Objective Method for Determining a Dynamic Journal Collection, *Journal of the Medical Library Association*, 68(4) (1980) 357-366.
- 12 Ugaz A G, Drilling deeper into the core: an analysis of journal evaluation methodologies used to create the "Basic List of Veterinary Medical Serials," third edition, *Journal of the Medical Library Association*, 99(2) (2011) 145-152.
- 13 Oluié-Vuković V and Pravdić N, Document Journal selection model: An indirect evaluation of scientific journals, *Information Processing and Management*, 26(3) (1990) 413-431.

Appendix I

Moderately cited journals in BARC publications and not subscribed in BARC Library (zone 2)

Journal	TC Subscription Status		Journal	ТС	Subscription Status
Dalton Transactions	1446	Yes	Colloid Surf A	643	Yes
J Phys Chem A	1318	Yes	Prog Nucl Energy	643	Yes
Nuc Inst Meth	1306	Yes	Sep Sci Technol	639	Yes
J Phys : Condens Matter	1299	Yes	Chem Eng J	633	Yes
Int J Hydrogen Energy	1275	Yes	Macromolecules	630	Yes
Nuc Phys A	1268	Yes	J Mater Chem A	629	Yes
Ann Nucl Ener	1259	Yes	J Appl Cryst	625	No
J Phys Chem	1243	Yes	Radiat Phys Chem	624	Yes
J MagnMagn Mater	1188	Yes	Carbon N Y	622	Yes
Comput Phys Commun	1162	Yes	Phys B Condens Matter	614	Yes
Chem Mater	1158	Yes	Sep Purif Rev	602	No
Sens Actuators B Chem	1138	Yes	J Biol Chem	598	Yes
Nuc Phys B	1117	Yes	J Environmental Radioactivity	590	Yes
Mater Sci Eng A	1114	Yes	J Non Cryst Solids	586	Yes
J Colloid and Interface Science	1097	Yes	J Power Sources	584	Yes
J Electrochem Soc	1088	Yes	Mater Lett	578	Yes
Appl RadiatIsotop	1075	Yes	Phys Rev A	578	Yes
J Phys D	1069	Yes	J Phys G: Nucl Part Phys	573	No
Chem Phys Lett	1059	Yes	Nanoscale	570	Yes
Astrophys J	1038	Yes	Nuc Technol	566	Yes
Chem Soc Rev	1041	Yes	Thin Solid Films	552	Yes
J Mater Chem	1034	Yes	Phys Rep	542	Yes
			Mater Res Bull	530	Yes
Nuc Inst Meth B	1020	Yes	Chem Eng Sci	516	Yes
J Hazardous Materials	1003	Yes	Mater Sci Technol	514	No
Sol Extr Ion Exch	1003	Yes	Powder Technol	504	Yes
Proc Natl Acad Sci	996	Yes	Soft Matter	501	No
Environ Sci Technol	971	Yes	Scr Mater	499	Yes
J Solid State Chem	907	Yes	Int J Heat Mass Transf	494	Yes
Nano Lett	902	Yes	Nanotechnology	488	Yes
J Lumin	892	Yes	Fusion Eng Des	484	Yes
Appl Surf Sci	871	Yes	Water Research	478	Yes
Mater Chem Phys	867	Yes	solid state commun	470	Yes
Radiat Measurements	864	Yes	J Phys Chem Solid	467	Yes
Sci Rep	857	Yes	Corros Sci	464	Yes
Radiat Protect Dosim	844	Yes	Bioresour Technol	462	Yes
Radiochim Acta	824	No	Mater Sci Forum	457	No
Rev Sci Instrum	818	Yes	Nature Commun	456	No
Talanta	816	Yes	J Nucl Sci Tech	446	Yes
J Membrane Science	803	Yes	Nuc Med Biol	445	Yes
Metal Mater Trans A	790	Yes	J Mater Chem C	434	Yes
J Nucl Med	788	Yes	J Phys : Conf Ser	433	No
Chem - Eur J	759	Yes	New J Chem	430	Yes
Ind Eng Chem Res	756	Yes	Polymer	427	Yes
Nature Mater	701	Yes	Phys Lett B	426	No
Electrochimica Acta	694	Yes	Coord Chem Rev	418	Yes
J Mater Sci	684	Yes	Solid State Ion	408	Yes
J Phys Chem Lett	677	Yes	Biochimie	406	No
Ceram Int	672	Yes	IEEE Trans Nucl Sci	402	Yes
PLoS One	646	No	Nuc Acids Res	402	No