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Natural compounds obtained from various sources have been used in the treatment of many diseases for many years and 
are very important compounds for drug development studies. They can also be an option to treat COVID-19, which is 
affecting the whole world and not curable with medication, yet. In this study, two 2-arylbenzofuran derivatives from 
Sesbania cannabina which are newly entered the literature were investigated computationally with the assistance of 
computational techniques including DFT calculations, molecular docking calculation and molecular dynamics simulations. 
The study consists of four parts, in the first part of the study DFT calculations were performed on the 2-arylbenzofurans, and 
geometry optimizations, vibrational analyses, molecular electrostatic potential (MEP) map calculations, frontier molecular 
orbital (FMO) calculations and Mulliken charge analyses were carried out. In the second part, molecular docking 
calculations were performed to investigate the interactions between the molecules and two potential target, SARS-CoV-2 
main protease (SARS-CoV-2 Mpro) and SARS-CoV-2 spike receptor binding domain – human angiotensin converting 
enzyme 2 complex (SARS-CoV-2 SRBD – hACE2). In the third part, MD simulations were performed on the top-scoring 
ligand – receptor complexes to investigate the stability of the complex and the interactions between ligands and receptors in 
more detail. Finally, drug-likeness analyses and ADME (adsorption, desorption, metabolism, excretion) predictions were 
performed on the investigated compounds. Results showed that investigated natural compounds effectively interacted with 
the target receptors and gave comparable results to the reference drug molecules. 
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SARS-CoV-2 continues to spread rapidly all over the 
world since its first appearance in December 2019 and 
grew into a global pandemic nowadays. Although 
there are many studies carried out all over the world 
against SARS-CoV-2, an effective and specific drug 
treatment has not yet been developed. Studies against 
COVID-19 can be divided into three groups: (1) 
vaccine development, (2) drug repurposing and (3) 
new drug development. Since some drugs on the 
market are known to be beneficial in the treatment of 
COVID-19, they are used in the treatment of this 
disease. However, these drugs are not the drugs 
developed specifically for COVID-19 and their 
effectiveness is not at the desired level. For now, 
although vaccine development studies seem to be the 
most effective way to develop a treatment in a short 
time, development of new specific drugs is needed 
and will be needed in the future, too.  

SARS-CoV-2 Mpro has an important role in viral 
replication and transcription, and this makes it an 
appealing target for the treatment of COVID-19. On the 

other hand, it is known that SARS-CoV-2 uses its spike 
receptor binding domain to bind to human angiotensin 
converting enzyme-2 (hACE2) and enter the human cell. 
Preventing this interaction between SARS-CoV-2 
SRBD and hACE2 could provide an important method 
for treating the disease, as it could prevent the entrance 
of the virus into the human cell. In the literature, there 
are various studies targeted the inhibition of SARS-
CoV-2 Mpro1–6 or preventing SARS-CoV-2 SRBD to 
interact with hACE27–9. 

In this study, two natural compounds which have 
recently been added to the literature by Fu et al10., have 
been investigated computationally. Fu et al. have 
evaluated the anticancer activities of these natural 
compounds in their study but to the best of our 
knowledge these compounds have not yet been studied 
experimentally or computationally for their antiviral 
effects against SARS-CoV-2. The structures of these  
2-arylbenzofuran derivatives are given in (Fig. 1)10. 
 

Materials and Methods 
 

DFT Calculations 
In this part of the study, geometry optimizations, 

vibrational analyses, MEP map calculations, FMO 
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calculations and Mulliken charge analyses were carried 
out. All calculations in this part were performed in both 
gas and solution phasewith the use of Becke three-
parameter hybrid functional combined with Lee-Yang-
Parr correlation functional (B3LYP) and Austin-Frisch-
Petersson functional with dispersion method (APF-D). 
In the calculations performed in solution phase, 
IEFPCM (Polarizable Continuum Model using the 
integral equation formalism variant) solvation model 
was used, and water was selected as solvent. All  
the calculations were performed with the use  
6-311+G(2d,p) basis set. Gaussian 09 Rev.D0111, 
GaussView 512, VeraChemV conf13 software packages 
were used in the calculations. 
 

Molecular Docking Calculations 
In molecular docking calculations, the structures of 

SARS-CoV-2 Mproand SARS-CoV-2 SRBD – hACE2 
were obtained from RCSB Protein Data Bank (PDB 
ID: 5r80 and 6lzg)14–16. The 3D structures of  
2-arylbenzofurans were obtained from DFT 
calculations. In molecular docking calculations, 
AutoDock Tools17and AutoDock Vina18 program 
packages were used and Discovery Studio Visualizer19 
was used in the representation of the docking results. 
Water and ligand molecules were removed, hydrogens 
and Gasteiger charges were added to prepare the 
receptors for docking. Lamarckian genetic algorithm 
was used in the docking procedure. Gridbox size was 
set to 20 × 25 × 20 Å3 and 20 × 20 × 20 Å3 for SARS-
CoV-2 Mpro and SARS-CoV-2 SRBD – hACE2, 
respectively, and grid spacing was set to 1 Å in all 
cases. After each docking calculation, nine docking 
poses having highest binding scores were obtained.  
 

Molecular Dynamics Simulations 
MD simulation studies on top-scoring ligand – 

receptor complexes followed the molecular docking 
calculations to investigate the interactions in more 
detail and to investigate the stability of the complexes. 
MD simulations were performed for 30 ns. In MD 
simulations, GROMACS 202020 program package 
was used. Ligand topologies were obtained from 
Acpype Server21 and topologies of the receptors were 
obtained with the use of AMBER22 force field and 

TIP3P water model. First, in each case, system was 
neutralized, and energy minimization procedure was 
run by employing steepest descent minimization 
algorithm. NVT and NPT ensemble equilibrations 
were performed for 200 ps. MD simulations were 
performed in a dodecahedron simulation box at 1 bar 
and 300 K reference pressure and temperature.  
 

Drug-likeness Analyses and ADME Predictions 
Drug-likeness analyses and ADME predictions 

were performed via Swiss ADME23web server and 
some important parameters such as physicochemical 
properties, lipophilicity and water solubility were 
predicted. In this part, Lipinski24, Ghose25, Veber26, 
Egan27 and Muegge28 filters were used to perform 
drug-likeness analysis on the investigated compounds. 
 

Results and Discussion 
 

DFT Calculations 
In this part, a conformer search was carried out 

prior to geometry optimizations in order to assure that 
global minimum was obtained for each structure. 
Additionally, frequency calculations followed the 
geometry optimizations to confirm that each 
optimized geometry corresponds to a global minimum. 
Geometry optimized structures of the investigated 
compounds which were obtained in gas phase with 
the use of B3LYP method and 6-311+G(2d,p) basis 
set are given in (Fig. 2). In Figure 3, calculated 

 
 

Fig. 1 — Molecular structures of 2-arylbenzofurans 

 
 
Fig. 2 — Geometry optimized structures of the investigated 
compounds 
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infrared spectra of the investigated compounds 
obtained at the same level of theory are given. 

MEP maps give information about the electron rich 
and electron deficient parts of a given molecule. 
These electron rich and electron deficient centers play 
important role in the interactions between investigated 

compounds and receptors. MEP maps of the 
investigated compounds are given in (Fig. 4). Results 
showed that negative charge was predominantly on 
the oxygen atoms, while hydroxyl group hydrogens 
carried positive charge. The results also showed that 
the method used in the calculations and the phase  
in which the calculations were performed (gas or 
solution phase) affect the charge distribution in MEP 
maps. It was observed that the charge ranges obtained 
from the calculations performed in solution phase  
are wider than the ranges obtained from the 
calculations performed in gas phase. It was also seen 
that the charge ranges obtained with the use of  
APF-Dare wider than the ranges obtained with the use 
of B3LYP. 

HOMO and LUMOs of a given molecule are used 
to estimate how this molecule interacts with other 
compounds. HOMO and LUMOs of the investigated 
compounds and the energies obtained with the use of 
different methods are given in (Fig. 5). Results 
showed that in gas phase, HOMO-LUMO gaps of 
compound 2 were found to be larger than those of 
compound 1. In contrast to gas phase, results obtained 
from the calculations performed in water showed that 
HOMO-LUMO gaps of compound 1 were found to be 
larger than those of compound 2. FMO analyses 
indicated that delocalization is occurred over all 
atoms except methyl groups for both molecules. 
Additionally, relatively large HOMO-LUMO gaps 
indicate that both molecules have quite stable 
structures. 

Calculated Mulliken charges of the investigated 
compounds with the use of B3LYP and APF-D in gas 
phase and solution phase are given in (Table 1).  
In both cases 6-311+G(2d,p) basis set was used. 

 

Fig. 4 — MEP maps of the investigated compounds 

 
 
Fig. 3 — Calculated infrared spectra of the investigated 
compounds (A) compound 1; and (B) compound 2 
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Mulliken atomic charges of a given molecule 
significantly influence some important parameters 
such as dipole moment, polarizability, and electronic 
structure. For both compounds, all hydrogen atoms 
have a positive charge while all oxygen atoms have a 
negative charge. On the other hand, the Mulliken 
charges of carbon atoms highly influenced by their 
environment and have both positive and negative 
charges.  
 
Molecular Docking Calculations 

Molecular docking calculations were performed  
to obtain top-scoring docking poses for compounds  
1 and 2. Additionally, to make a comparison, 
calculations were repeated for remdesivir, lopinavir, 
favipiravir and hydroxychloroquine which are the 
drugs currently under investigation for their potential 
use against COVID-19. Especially remdesivir is 
widely used because of being an FDA-approved  
drug for the treatment of COVID-19. 3D structures of 
remdesivir, favipiravir and hydroxychloroquine  
were obtained from PubChem Database29 and  

the structure of lopinavir was obtained from  
Zinc Database30. Results for SARS-CoV-2-SRBD – 
hACE2 showed that, investigated 2-arylbenzofurans 
have higher binding score than all other compounds. 
On the other hand, for SARS-CoV-2 Mpro, the binding 
scores of 2-arylbenzofurans are higher than those of 
favipiravir and hydroxychloroquine and comparable 
to the binding scores of lopinavir and remdesivir 
(Table 2). 
 
Molecular Dynamics Simulations 

After performing molecular docking calculations, 
30 ns molecular dynamics simulations were 
performed for each top-scoring ligand-receptor 
complex to investigate the stability and the ligand-
receptor interactions in more detail.  

In Figure 6, the superimposed structures of SARS-
CoV-2 Mpro – 1 complex extracted every 5 ns of the 
simulation are given. 2D representations of these 
interactions are given in (Fig. 7). Results showed that 
ligand remained in the receptor binding pocket 
throughout the entire simulation.  

 
 

Fig. 5 — FMOs of the investigated compounds 
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Results for SARS-CoV-2 Mpro – 1 complex showed 
that, in most of the simulation time, MET49, PRO168, 
MET165, GLN189, HIS41, THR190 and ARG188 took 
part in the interactions between ligand and receptor. 

Superimposed structures of the SARS-CoV-2 Mpro 
– 2 complex extracted every 5 ns of the simulation are 
given in (Fig. 8) and 2D representations of these 
interactions are given in (Fig. 9). Results showed that 
ligand remained in the receptor binding pocket 
throughout the entire simulation. 

Table 2 — Binding scores of the investigated compounds. 

Compound 6LZG1 5R802 

1 −7.5 −7.6 
2 −7.4 −7.0 
Remdesivir −6.9 −7.9 
Lopinavir −6.8 −8.2 
Favipiravir −6.8 −5.1 
Hydroxychloroquine −5.9 −6.3 

1SARS-CoV-2 SRBD – hACE2 
2SARS-CoV-2 Mpro 

Table 1 — Mulliken atomic charges of compounds 1 and 2 

 Mulliken Charges  Mulliken Charges 

Comp. 1 B3LYP B3LYP/H2O APF-D APF-D/H2O Comp. 2 B3LYP B3LYP/H2O APF-D APF-D/H2O 
1C −0.286 −0.345 −0.427 −0.474 1C −0.061 −0.055 0.054 0.078 
2C 0.382 0.391 0.347 0.345 2C 0.319 0.306 0.255 0.223 
3C −0.481 −0.425 −0.482 −0.437 3C −0.242 −0.257 −0.424 −0.431 
4C 0.249 0.254 0.158 0.148 4C 0.185 0.169 −0.010 −0.030 
5C 0.710 0.696 0.927 0.928 5C 0.721 0.704 0.920 0.925 
6C −0.254 −0.276 −0.346 −0.370 6C −0.754 −0.736 −0.897 −0.930 
7O −0.454 −0.486 −0.388 −0.418 7O −0.570 −0.575 −0.502 −0.506 
8C −0.158 −0.168 −0.252 −0.266 8C −0.148 −0.165 −0.245 −0.264 
9O −0.400 −0.416 −0.353 −0.371 9O −0.410 −0.438 −0.369 −0.400 
10C 0.042 −0.003 0.083 −0.039 10C 0.296 0.269 0.429 0.311 
11C 0.402 0.313 0.636 0.549 11C 0.474 0.393 0.764 0.708 
12C 0.063 0.208 −0.158 0.017 12C 0.201 0.367 −0.048 0.159 
13O −0.419 −0.508 −0.405 −0.487 13O −0.414 −0.501 −0.402 −0.481 
14O −0.321 −0.364 −0.292 −0.336 14O −0.326 −0.368 −0.297 −0.342 
15C 0.288 0.224 0.346 0.245 15C 0.328 0.241 0.442 0.316 
16C 0.456 0.428 0.231 0.361 16C 0.463 0.432 0.210 0.351 
17C −0.499 −0.440 −0.448 −0.426 17C −0.516 −0.450 −0.476 −0.442 
18C 0.040 0.056 0.062 0.005 18C 0.057 0.075 0.096 0.031 
19C −0.286 −0.276 −0.367 −0.333 19C −0.327 −0.309 −0.438 −0.390 
20C 0.322 0.298 0.262 0.249 20C 0.370 0.351 0.337 0.301 
21O −0.460 −0.505 −0.454 −0.500 21O −0.455 −0.504 −0.448 −0.498 
22O −0.429 −0.467 −0.413 −0.448 22O −0.429 −0.466 −0.413 −0.447 
23O −0.442 −0.466 −0.351 −0.379 23O −0.440 −0.464 −0.345 −0.376 
24C −0.157 −0.168 −0.267 −0.260 24C −0.157 −0.167 −0.272 −0.263 
25H 0.094 0.112 0.114 0.133 25O −0.478 −0.527 −0.477 −0.522 
26H 0.100 0.128 0.119 0.147 26H 0.088 0.120 0.109 0.141 
27H 0.100 0.120 0.124 0.142 27H 0.098 0.117 0.120 0.140 
28H 0.139 0.151 0.160 0.172 28H 0.139 0.153 0.162 0.176 
29H 0.136 0.152 0.162 0.177 29H 0.142 0.155 0.161 0.175 
30H 0.138 0.152 0.162 0.177 30H 0.141 0.154 0.164 0.177 
31H 0.245 0.289 0.250 0.292 31H 0.245 0.290 0.249 0.293 
32H 0.071 0.117 0.090 0.138 32H 0.071 0.117 0.090 0.138 
33H 0.081 0.113 0.100 0.134 33H 0.081 0.113 0.101 0.135 
34H 0.288 0.329 0.292 0.333 34H 0.290 0.330 0.294 0.333 
35H 0.273 0.313 0.280 0.319 35H 0.273 0.313 0.279 0.319 
36H 0.144 0.156 0.165 0.176 36H 0.144 0.156 0.164 0.176 
37H 0.153 0.159 0.188 0.186 37H 0.153 0.159 0.188 0.186 
38H 0.130 0.153 0.147 0.173 38H 0.131 0.153 0.147 0.173 

     
39H 0.318 0.345 0.327 0.353 
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Results showed that, when compared to SARS-
CoV-2 Mpro – 1 complex, for SARS-CoV-2 Mpro – 2 
complex there were considerable differences in the 
interactions between ligand and receptor. In this 
complex, in most of the simulation time, CYS145, 
THR26, SER46 and THR25 took part in the interactions 
between ligand and receptor. When considered together 
with the binding score, it can be concluded that the 
interactions in this complex are lower than those in the 
SARS-CoV-2 Mpro – 1 complex. 

Superimposed structures of SARS-CoV-2 SRBD-
hACE2 – 1 complex extracted every 5 ns of the 

 
 

Fig. 7 — 2D representations of the ligand – receptor interactions in SARS-CoV-2 Mpro– 1 complex 

 
 

Fig. 6 — Superimposed structures of SARS-CoV-2 Mpro– 1 
complex extracted every 5 ns of the simulation 
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simulation are given in (Fig. 10) and 2D representations 
of these interactions are given in (Fig. 11). Results 
showed that ligand remained in the receptor binding 
pocket in the interface between SARS-CoV-2 SRBD 
and hACE2 throughout the entire simulation. 

Results for SARS-CoV-2 SRBD-hACE2 – 1 complex 
showed that, throughout almost the entire simulation 
period, PRO389, ASP30 and HIS34 took part in the 
interactions between ligand and receptor. Additionally, 
LEU29, GLN96, LYS417, LYS26, ASN33, GLN388, 

 
 

Fig. 8 — Superimposed structures of SARS-CoV-2 Mpro – 2 
complex extracted every 5 ns of the simulation 

 
 

Fig. 9 — 2D representations of the ligand – receptor interactions in SARS-CoV-2 Mpro– 2 complex 

 
 

Fig. 10 — Superimposed structures of SARS-CoV-2 SRBD-
hACE2 – 1 complex extracted every 5 ns of the simulation 
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ARG393, ALA386, ALA387, ARG403 and TYR453 
took part in the stabilization of the complex.  

Finally, superimposed structures of SARS-CoV-2 
SRBD-hACE2 – 2 complex extracted every 5 ns  
of the simulation are given in (Fig. 12 and 2D) 
representations of these interactions are given in  
(Fig. 13). Results showed that ligand remained in the 
receptor binding pocket in the interface between 
SARS-CoV-2 SRBD and hACE2 throughout the 
entire simulation. 

Results showed that, when compared to SARS-CoV-
2 SRBD-hACE2 – 1 complex, for SARS-CoV-2 SRBD-
hACE2 – 2 complex there were some differences in the 
interactions between ligand and receptor. In this 
complex, in most of the simulation time, HIS34, 

GLU35, SER494, TYR505, ARG403, GLU406 and 
ASN33 took part in the interactions between ligand and 
receptor. Additionally, GLU37, LYS353, ARG393, 
ALA387, PRO389, TYR495, ASP38 and GLN388 
participated in the interactions. 

 
 

Fig. 11 — 2D representations of the ligand – receptor interactions in SARS-CoV-2 SRBD-hACE2 – 1 complex 

 
 
Fig. 12 — Superimposed structures of SARS-CoV-2 SRBD-
hACE2 – 2 complex extracted every 5 ns of the simulation 
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The interactions in the structures of all complexes 
belong to 30th ns of the simulation are shown in  
(Fig. 14). 

Root mean square deviation (RMSD) and radius of 
gyration (RG) are often used to determine the stability of 
proteins. RMSDs of proteins compared to their initial 
positions in all four ligand-receptor complexes are given 
in (Fig. 15). Average RMSD values of proteins and 
standard deviations were found to be 0.2535 (0.1306), 

0.2491 (0.1321), 0.2548 (0.1297) and 0.2954 (0.1346) 
nm for SARS-CoV-2 Mpro– 1, SARS-CoV-2 Mpro– 2, 
SARS-CoV-2 SRBD-hACE2 – 1 and SARS-CoV-2 
SRBD-hACE2 – 2 complexes, respectively.  

In the study, RMSDs of ligands compared to the 
position of the receptors were monitored for each 
complex to investigate how well the binding poses 
were preserved during the MD simulation. Obtained 
results are given in (Fig. 16). 

 
 

Fig. 13 — 2D representations of the ligand – receptor interactions in SARS-CoV-2 SRBD-hACE2 – 2 complex 
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Results showed that there was no considerable 
change in the relative position of the ligand in  
SARS-CoV-2 Mpro– 1 and SARS-CoV-2 SRBD-
hACE2 – 2 complexes (Fig. 16A-D). For SARS- 
CoV-2 Mpro– 2 and SARS-CoV-2 SRBD-hACE2 – 1 
complexes, it was found that the position of the ligand 
reached its equilibrium position about 15th ns and 
after this time there was no considerable change in the 
relative position of the ligand. 

Radius of gyration is another parameter to estimate 
the stability of a given protein. RG of the proteins in 
all four complexes were monitored during the MD 
simulation and are given in (Fig. 17).  

Average RG values of proteins and standard 
deviations were found to be 2.2316 (0.0138), 2.2331 
(0.0141), 3.1341 (0.0204)and 3.1296 (0.0205) nm for 
SARS-CoV-2 Mpro – 1, SARS-CoV-2 Mpro – 2, SARS-
CoV-2 SRBD-hACE2 – 1 and SARS-CoV-2 SRBD-

 
 
Fig. 14 — The interactions in the structures of the complexes belong to 30th ns of the MD simulation (A) SARS-CoV-2 Mpro– 1; 
(B) SARS-CoV-2 Mpro– 2; (C) SARS-CoV-2 SRBD-hACE2 – 1; and (D) SARS-CoV-2 SRBD-hACE2 – 2 
 

 
 

Fig. 15 — RMSDs of proteins compared to their initial positions (A) SARS-CoV-2 Mpro– 1; (B) SARS-CoV-2 Mpro– 2; (C) SARS-CoV-2 
SRBD-hACE2 – 1; and (D) SARS-CoV-2 SRBD-hACE2 – 2 
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hACE2 – 2 complexes, respectively. Results showed 
that there was no considerable change in the radius of 
gyration of the proteins in all of the complexes. 
 

Drug-likeness and ADME Predictions 
In the study, in addition to DFT calculations, 

molecular docking calculations and molecular 
dynamics simulations, drug-likeness analyses and 

ADME predictions were performed via Swiss ADME 
web server23. Drug-likeness and ADME prediction 
results are given in (Tables 3 & 4).  

Results showed that both molecules have no more 
than 10 hydrogen bond acceptors and 5 hydrogen 
bond donors which means both molecules obey the 
Lipinski rule. Molecular weights do not exceed the 

 
 

Fig. 16 — RMSDs of ligands compared to the positions of the receptors (A) SARS-CoV-2 Mpro– 1; (B) SARS-CoV-2 Mpro– 2; 
(C) SARS-CoV-2 SRBD-hACE2 – 1; and (D) SARS-CoV-2 SRBD-hACE2 – 2 
 

 
 

Fig. 17 — Change in the RG of protein during the MD simulation (A) SARS-CoV-2 Mpro – 1; (B) SARS-CoV-2 Mpro – 2; 
(C) SARS-CoV-2 SRBD-hACE2 – 1; and (D) SARS-CoV-2 SRBD-hACE2 – 2 
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limits suggested by Lipinski and Ghose rules. Number 
of rotatable bonds was found to be 4 for both 
molecules and met the requirements of Veber and 
Muegge rules. Fraction C sp3 value was found to be 
0.12 for both molecules. Increasing fraction C sp3 
values correspond to higher degrees of saturation and 
it is proposed that increasing degrees of saturation 
increases the clinical success rate of a molecule31,32.  

Molar refractivities of the molecules 1 and 2 were 
found to be 85.64 and 87.66, respectively. Since the 
Ghose rule states that the molar refractivity should be 
between 40-130, both molecules fulfill this rule. In 
prediction of the drug-likeness of a given molecule, 
topological polar surface area (TPSA) is also used33. 
TPSA values of the compounds were found to be 
109.36 and 129.59 Å2, respectively, and met the 
requirements of Veber rule. As is known, Veber rule 

stated that the TPSA of a given molecule should not 
be greater than 140 Å2. The average partition 
coefficient34–40 of the molecules 1 and 2 were found to 
be 2.29 and 1.90, respectively. According to ESOL41 

and ALI42, water solubilities of molecules 1 and 2 
were predicted to be soluble and moderately soluble, 
respectively. On the other hand, SILICOS-IT40 
predicted that the water solubility of molecules 1 and 
2 are moderately soluble and soluble, respectively. 
Gastrointestinal absorptions of the molecules were 
predicted to be high, but it was predicted that 
molecules cannot penetrate blood-brain barrier.  

In the study it was found that both molecules obey 
Lipinski, Ghose, Veber, Egan and Muegge rules, and 
bioavailability scores43 were estimated to be 0.56 for 
both molecules. Additionally, no alert was observed 
for PAINS44, Brenk45 and leadlikeness46 analyses, and 
synthetic accessibility scores of molecules 1 and 2 
were found to be 3.32 and 3.44, respectively. 
 
Conclusion 

In the study, DFT calculations, molecular docking 
calculations, MD simulation studies, drug-likeness 
analyses and ADME predictions have been performed 
on two newly introduced 2-arylbenzofuran derivatives 
obtained from Sesbania cannabina by Fu et al.9, to 
investigate them computationally for their potential 
use against SARS-CoV-2. In DFT calculations, four 
different methods (B3LYP/6-311+G(2d,p) in gas 
phase, B3LYP/6-311+G(2d,p) in solution phase, 
APF-D/6-311+G(2d,p) in gas phase and APF-D/6-
311+G(2d,p) in solution phase) were used for each 
compound and the results were compared. In 
molecular docking and MD simulation studies, two 
potential targets, SARS-CoV-2 Mpro and SARS-CoV-2 

Table 3 — Results of ADME analyses of the  
investigated compounds 

Compound 1 2 

Physicochemical Properties   
Number of H-Bond 
Acceptors 

7 8 

Number of H-Bond Donors 3 4 
Molecular Weight (g/mol) 330.3 346.3 
Number of heavy atoms 24 25 
Number of aromatic heavy 
atoms 

15 15 

Fraction C sp3 0.12 0.12 
Number of rotatable bonds 4 4 
Molar refractivity 85.64 87.66 
TPSA (Å2) 109.36 129.59 
Lipophilicity   
iLOGP 2.26 1.95 
XLOGP3 2.75 2.39 
WLOGP 3.23 2.93 
MLOGP 0.78 0.26 
SILICOS-IT 2.45 1.97 
Consensus logPo/w 2.29 1.90 
Water Solubility   
ESOL S S 
ALI MS MS 
SILICOS-IT MS S 
Pharmacokinetics   
GI Absorption High High 
BBB Permeation No No 
Skin permeation, logKp 
(cm/s) 

−6.36 −6.72 

TPSA: Topological Polar Surface Area, GI: Gastrointestinal, 
BBB: Blood Brain Barrier, MS: Moderately soluble, S: Soluble, 
VS: Very soluble 

Table 4 — Results of drug-likeness and medicinal  
chemistry analyses 

Compound 1 2 
Drug-likeness   
Lipinksi Yes Yes 
Ghose Yes Yes 
Veber Yes Yes 
Egan Yes Yes 
Muegge Yes Yes 
ABS 0.56 0.56 
Medicinal Chemistry   
PAINS 0 alert 0 alert 
Brenk 0 alert 0 alert 
Leadlikeness Yes Yes 
SAS  3.32 3.44 

ABS: Abbott Bioavailabilty Score, PAINS: Pan Assay 
Interference Structures, SAS: Synthetic Accessibility Score 
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SRBD – hACE2 complexes, suggested for the 
treatment of COVID-19 were selected. Results 
showed that the compounds were effectively bound to 
the active sites of the investigated receptors and 
remained in the binding pocket throughout the entire 
MD simulation. Additionally, in drug-likeness  
and ADME analyses, no violation was observed  
for the investigated 2-arylbenzofuran derivatives.  
In the study, it was concluded that the investigated 
compounds can be promising structures for further 
studies on COVID-19 treatment. 
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