Supplementary Information

New Schiff base copper(II) and nickel(II) complexes for biomedical applications with reference to SARS-CoV-2 and HIV virus

Aprajita & Mukesh Choudhary*

Department of Chemistry, National Institute of Technology Patna, Patna -800 005, Bihar, India *E-mail: mukesh@nitp.ac.in

Fig. S1—¹H-NMR of synthesized Schiff base Ligand L¹H

Fig. S3 — ¹H-NMR of synthesized Schiff base Ligand $L^{2}H$

Fig. S5 — FT-IR of synthesized Schiff base Ligand L^1H

Fig. S6 — FT-IR of synthesized Schiff base Ligand L^2H

Fig. S8— FT-IR of synthesized Ni(II) complex $[Cu(L^2)_2]$ (3)

Fig. S9 — UV-visible absorption spectra of synthesized Schiff base ligand $L^{1}H$ and its metal(II) complexes (1) and (2)

Fig. S10 — UV- visible absorption spectra of synthesized Schiff base ligand L^2H and its metal(II) complexes (3) and (4)

Fig. S11 — Graphical view of the Hirshfeld surfaces mapped with d_{norm} property visualizing the interaction of the Schiff base ligand $L^{1}H$. d_{norm} color scale in between -0.59 au (blue) and 2.07au (red). Shape index surfaces: (Red colors-Hollows, bumps-blue colors). Curvedness: (edges-blue color; flat region - green color)

Fig. S12— Graphical view of Hirshfeld surface with 2D-fingerprint plots with characteristic features for $\mathbf{L}^{1}\mathbf{H}$; d_{i} and d_{e} are the distances from the surface to the nearest atoms interior and exterior to the surface respectively

Fig. S13 — Graphical view of Hirshfeld surface with 2D-fingerprint plots with characteristic features for $\mathbf{L}^{1}\mathbf{H}$; d_{i} and d_{e} are the distances from the surface to the nearest atoms interior and exterior to the surface respectively

Fig. S14 — Frontier molecular orbitals diagram of Schiff base Ligand (L^1H)

Fig. S15 — Frontier molecular orbitals diagram of Schiff base Ligand (L^2H)

Fig. S16 — Molecular electrostatic potential (MEP) maps and electron density surface representation of $L^{1}H$ and $L^{2}H$

Fig. S17 — The docked Schiff base ligand $L^{1}H$ inside the SARS-CoV M^{Pro}(7VNB) with its focused view for interacting residues around the docked complex

Fig. S18 — The docked Schiff base ligand L^2H inside the SARS-CoV $M^{Pro}(7VNB)$ with its focused view for interacting residues around the docked complex

Fig. 19 – 2-D representation of docked Schiff bnase ligands $L^{1}H$ and $L^{2}H$ inside the SARS-CoV M^{Pro}(7VNB) with its focused view for interacting residues around the docked complex

Fig. S20 – The docked Ni(II) complex $[Ni(L^1)_2]$ (1) inside the SARS-CoV $M^{Pro}(7VNB)$ with its focused view for interacting residues around the docked complex

Fig. S21 — The docked Ni(II) complex $[Cu(L^1)_2]$ (2) inside the SARS-CoV M^{Pro}(7VNB) with its focused view for interacting residues around the docked complex

Fig. S22 — The docked Ni(II) complex $[Ni(L^2)_2]$ (3) inside the SARS-CoV $M^{Pro}(7VNB)$ with its focused view for interacting residues around the docked complex

Fig. S23 — The docked Cu(II) complex $[Cu(L^2)_2]$ (4) inside the SARS-CoV M^{Pro}(7VNB) with its focused view for interacting residues around the docked complex

Fig. S24 — The $L^{1}H$ inside the HIV virus (1REV) with its focused view for interacting residues around the docked complex

Fig. S25 — The L^2H inside the HIV virus (1REV) with its focused view for interacting residues around the docked complex

Fig. S26 – 2-D representation of docked Schiff bnase ligands $L^{1}H$ and $L^{2}H$ inside the HIV virus (1REV) with its focused view for interacting residues around the docked complex

Fig. S27 – The Ni(II) complex $[Ni(L^1)_2]$ (1) inside the HIV virus (1REV) with its focused view for interacting residues around the docked complex

Fig. S28 — The Cu(II) complex $[Cu(L^1)_2]$ (2) inside the HIV virus (1REV) with its focused view for interacting residues around the docked complex

Fig. S29 – The Ni(II) complex $[Ni(L^1)_2]$ (3) inside the HIV virus (1REV) with its focused view for interacting residues around the docked complex

Fig. S30 — The Cu(II) complex $[Cu(L^1)_2]$ (4) inside the HIV virus (1REV) with its focused view for interacting residues around the docked complex

Table S1 — Bond distances (Å) and bond angles (°) for Schiff base ligand (L^1H)									
Bond lengths (Å)									
C (6)-N (3)	1.407(3)	C (9)-S (1)	1.719(2)						
C (7)-O (1)	1.236(2)	C (12)-S (1)	1.703(2)						
C (7)-N (3)	1.346(3)	N (1)-N (2)	1.373(2)						
C (7)-N (2)	1.362(3)	N(2)-H(2A)	0.877(15)						
C (8)-N (1)	1.275(3)	N(3)-H(3A)	0.843(16)						
Bond angles (°)									
C (1)-C (6)-N (3)	124.32(19)	C (5)-C (6)-N (3)	116.58(18)						
O (1)-C (7)-N (3)	124.72(19)	O (1)-C (7)-N (2)	120.18(19)						
N (3)-C (7)-N (2)	115.09(18)	N (1)-C (8)-C (9)	121.47(18)						
N (1)-C (8)-H (8)	119.3	C (10)-C (9)-S (1)	111.09(15)						
C (8)-C (9)-S (1)	122.02(15)	C (11)-C (12)-S (1)	112.88(17)						
S (1)-C (12)-H (12)	123.6	C (8)-N (1)-N (2)	116.23(17)						
C (7)-N (2)-N (1)	119.78(17)	C(7)-N(2)-H(2A)	121.1(14)						
N(1)-N(2)-H(2A)	118.1(14)	C (7)-N (3)-C (6)	129.75(17)						
C(7)-N(3)-H(3A)	113.1(16)	C(6)-N(3)-H(3A)	117.1(16)						
C (12)-S (1)-C (9)	91.00(11)								

Table S2 — Interaction energies for L^1H calculated with CE-B3LYP model. It can be seen from the interaction energies table that the hydrogen bonding motif between the central molecules (highlighted in yellow mesh) and the -x +1/2, y+1/2, z +1/2 symmetry-related molecule (line green) is by far the strongest interaction among near neighbors

	N	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
	2	-y+1/3, x-y+2/3, z+2/3	8.82	B3LYP/6-31G(d,p)	-2.3	-0.8	-12.8	9.3	-8.4
	2	-x+y+2/3, -x+1/3, z+1/3	9.40	B3LYP/6-31G(d,p)	3.6	-1.2	-10.9	5.2	-3.4
	2	x, y, z	5.62	B3LYP/6-31G(d,p)	-6.7	-2.0	-50.1	25.8	-36.3
	1	-x+1/3, -y+2/3, -z+2/3	7.45	B3LYP/6-31G(d,p)	-101.8	-24.6	-18.7	97.9	-81.6
	1	x-y+2/3, x+1/3, -z+1/3	7.99	B3LYP/6-31G(d,p)	-3.1	-0.8	-15.4	8.2	-12.3
	1	y+2/3, -x+y+1/3, -z+1/3	7.99	B3LYP/6-31G(d,p)	-3.1	-0.8	-15.4	8.2	-12.3
	1	-x+1/3, -y+2/3, -z+2/3	8.08	B3LYP/6-31G(d,p)	-3.8	-1.6	-6.6	0.3	-10.8
	1	x-y+2/3, x+1/3, -z+1/3	7.25	B3LYP/6-31G(d,p)	-10.6	-2.6	-11.0	10.5	-16.3
	1	y+2/3, -x+y+1/3, -z+1/3	7.25	B3LYP/6-31G(d,p)	-10.6	-2.6	-11.0	10.5	-16.3
Energy Model			k_ele	k_po	l k_disp		k_rep		
CE-HF HF/3-21G electron densities			1.019	0.65	51 0.	901	0.811		
CE-B3LYP B3LYP/6-31G(d,p) electron densities			1.057	0.74	10 0.	871	0.618		