Supplementary Information

Syntheses, spectral characterization and antidiabetic activities of oxidovanadium(V) complexes with bi-and tridentate ligands

Neetu Patel, A K Patel, A K Prajapati* & R N Jadeja* Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India

*E-mail: rjadeja-chem@msubaroda.ac.in

Received 30 September 2021; revised and accepted 10 February 2022

S. No.	Contents	Pg. No.
1	Fig. S1 — HOMO-LUMO of complexes 1-4	2
2	Fig. S2–FTIR spectra of complexes 1-4	3-4
3	Fig. S3 –ESI Mass spectra of complexes 1-4	5-6
4	Table S1 –Theoretical Bond lengths [Å] and angles [°] for complexes 1-4	7-8
5	Table S2 - The spin densities of metal and donor atoms for complexes 1-4	8-9

LUMO	LUMO+1	LUMO+2	LUMO+3
•3.3602 eV	-2.0438 eV	-1.7766 eV	-1.4334 eV
, ch	a porta	, ale	, and a
HOMO	HOMO-1	HOMO-2	H0M0-3
-3.3627eV	-7.1934 eV	-7.3428 eV	-7.3831 eV
ø.	a entra	pha	pal .

Image: Single state state

LUMO	LUMO+1	LUM0+2	LUMO+3
-2.9567 eV	-2.7314 eV	-1.7602 eV	-1.2693 eV
<u>s</u>	, starter of the second		
HOMO	HOMO-1	HOMO-2	НОМО-3
-3.8446 eV	-6.4887 eV	-6.9347 eV	-6.9439 eV
51	ç de la	<u></u>	9 6 - 0

4 Fig. S1 — HOMO-LUMO of complexes 1-4

Fig. S2 — FTIR spectra of complexes 1-4

Fig. S3 — ESI Mass spectra of complexes1-4

Table S1 — Theoretical Bond lengths [Å] and angles [°] for complexes 1-4						
1	-	•				
Bond lengths						
V(22)-O(4)	1.863	V(22)-O(29)	1.868			
V(22)-O(20)	1.865	V(22)-O(33)	1.636			
V(22)-O(27)	1.866	V(22)-N(9)	1.887			
Bond angles						
O(4)-V(22)-N(9)	95.593	N(9)-V(22)-O(33)	89.664			
O(4)-V(22)-O(27)	89.094	O(20)-V(22)-O(27)	86.246			
O(4)-V(22)-O(29)	88.541	O(20)-V(22)-O(29)	96.998			
O(4)-V(22)-O(33)	89.487	O(20)-V(22)-O(33)	95.727			
N(9)-V(22)-O(20)	79.260	O(27)-V(22)-O(29)	87.951			
N(9)-V(22)-O(27)	96.330	O(29)-V(22)-O(33)	86.131			
2						
Bond lengths						
V(21)-O(4)	1.872	V(21)-O(27)	1.871			
V(21)-O(18)	1.826	V(21)-O(29)	1.862			
V(21)-O(22)	1.614	V(21)-N(9)	1.827			
Bond angles						
O(4)-V(21)-N(9)	93.905	N(9)-V(21)-O(27)	94.893			
O(4)-V(21)-O(18)	88.448	O(18)-V(21)-O(22)	91.362			
O(4)-V(21)-O(27)	90.910	O(18)-V(21)-O(29)	98.379			
O(4)-V(21)-O(29)	86.156	O(22)-V(21)-O(27)	89.281			
N(9)-V(21)-O(18)	81.612	O(22)-V(21)-O(29)	93.814			
N(9)-V(21)-O(22)	86.123	O(27)-V(21)-O(29)	85.116			
3						
Bond lengths						
V(21)-O(4)	1.848	V(21)-O(27)	1.880			
V(21)-O(18)	1.864	V(21)-O(29)	1.881			
V(21)-O(22)	1.635	V(21)-N(9)	1.869			
Bond angles						
O(4)-V(21)-N(9)	92.229	N(9)-V(21)-O(27)	96.818			
O(4)-V(21)-O(18)	93.620	O(18)-V(21)-O(27)	79.266			
O(4)-V(21)-O(22)	94.544	O(18)-V(21)-O(29)	105.617			
O(4)-V(21)-O(29)	83.708	O(22)-V(21)-O(27)	94.697			
N(9)-V(21)-O(18)	80.266	O(22)-V(21)-O(29)	87.232			
N(9)-V(21)-O(22)	87.413	O(27)-V(21)-O(29)	88.109			

4						
Bond lengths						
V(18)-O(4)	1.859	V(18)-O(24)	1.885			
V(18)-O(16)	1.870	V(18)-O(26)	1.892			
V(18)-O(19)	1.636	V(18)-N(9)	1.911			
Bond angles	Bond angles					
O(4)-V(18)-N(9)	85.096	N(9)-V(18)-O(26)	112.532			
O(4)-V(18)-O(16)	119.342	O(16)-V(18)-O(19)	79.671			
O(4)-V(18)-O(19)	88.530	O(16)-V(18)-O(24)	83.750			
O(4)-V(18)-O(24)	155.044	O(16)-V(18)-O(26)	162.891			
O(4)-V(18)-O(26)	73.791	O(19)-V(18)-O(24)	106.063			
N(9)-V(18)-O(16)	80.960	O(19)-V(18)-O(26)	90.342			
N(9)-V(18)-O(19)	153.289	O(24)-V(18)-O(26)	85.752			
N(9)-V(18)-O(24)	89.856					

Table S2 — The spin densities of metal and donor atoms for complexes 1-4				
Complexes	Metal and Donor	Spin	Mulliken	Natural
	atom	population	population	population
	V(22)	+0.383	+0.576	+0.696
	N(9)	-0.257	-0.182	-0.265
	O(4)	-0.522	-0.432	-0.545
1	O(20)	-0.518	-0.327	-0.573
	O(27)	-0.533	-0.352	-0.619
	O(29)	-0.545	-0.380	-0.583
	O(33)	-0.214	-0.318	-0.294
	V(21)	+0.375	+0.514	-0.284
	N(9)	-0.240	-0.171	-0.092
	O(4)	-0.612	-0.440	-0.301
2	O(18)	-0.442	-0.259	-0.220
	O(22)	-0.346	-0.410	-0.087
	O(27)	-0.495	-0.283	-0.246
	O(29)	-0.581	-0.434	-0.301
	V(21)	+0.430	+0.568	-0.262
	N(9)	-0.263	-0.161	-0.101
	O(4)	-0.582	-0.453	-0.342
3	O(18)	-0.507	-0.333	-0.251
	O(22)	-0.320	-0.387	-0.056
	O(27)	-0.540	-0.357	-0.274

	O(29)	-0.581	-0.405	-0.294
	V(18)	+0.482	+0.581	-0.171
	N(9)	-0.267	-0.191	-0.104
	O(4)	-0.567	-0.420	-0.320
4	O(16)	-0.522	-0.306	-0.242
	O(19)	-0.282	-0.358	-0.053
	O(24)	-0.518	-0.350	-0.260
	O(26)	-0.607	-0.436	-0.309