Supplementary Information

Synthesis and characterization of bioactive isoxazole and 1,3,4-oxadiazole heterocycle containing scaffolds

Kaushik Joshi^{a,*}, Anil Mahida^b and Jayant Rathod^c

^aDepartment of Chemistry, D K V Arts and Science College, Jamnagar 361 008, Gujarat, India

^bDepartment of Chemistry, Government Science College, Fort-Songadh 394 670, Gujarat, India

^eDepartment of Chemistry, Government Science College, Dhanpur 389 382, Gujarat, India

*E-mail: kajoshi@dkvjamnagar.edu.in

- - -

_

S. No.	Contents	Pg. No.
1	General Information	2
2	Fig. S1 — ¹ H NMR spectrum of 8a	3
3	Fig. S2 — 13 C NMR spectrum of 8a	4
4	Fig. S3 — IR spectrum of 8a	5
5	Fig. S4 — ¹ H NMR spectrum of 8b	6
6	Fig. S5 — ¹³ C NMR spectrum of 8b	7
7	Fig. S6 — IR spectrum of 8b	8
8	Fig. S7 — ¹ H NMR spectrum of $8c$	9
9	Fig. S8 — 13 C NMR spectrum of 8 c	10
10	Fig. S9 — IR spectrum of 8c	11

~ --

~

General Information

Intermediated B benzhydrezide derivative was prepared in the lab as per the literature report.¹ Required reagents, solvents, and catalysts were procured from various chemical vendors Spectrochem, Avra chemicals, and S.D. fine chem., otherwise stated. Anhydrous solvent, when required were prepared according to standard drying methods. The melting point was recorded in the open capillary in Büchi Melting point B-545. ¹H and ¹³C NMR spectra were recorded at 400 MHz and 101 MHz respectively, on bruker AV400 Avance using CDCl3 purchased from Merck as internal standard (CDCl3 at 7.27 ppm for ¹H and 77.00 ppm for ¹³C) with reference to TMS. Chemical shifts (δ) are given in ppm. IR analysis was carried out on Perkin- Elmer and Shimadzu FTIR. Mass analysis was carried out in Shimadzu LCMS, showing the molecular ion peak. The activity was carried out at Microcare laboratory, Surat. The strains were procured from the Institute of Microbial Technology, Chandigarh.

Reference

¹Ohigashi, A., Kanda, A., Tsuboi, H., Hashimoto, N.; Org. Process Res. Dev. 2005, 9, 179-184

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.5 Hz, 2H), 8.17 (d, *J* = 8.9 Hz, 2H), 8.04 (d, *J* = 8.5 Hz, 3H), 7.78 (d, *J* = 8.8 Hz, 2H), 7.63 (ddd, *J* = 8.3, 7.5, 1.7 Hz, 1H), 7.39 – 7.32 (m, 1H), 7.20 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.16 (d, *J* = 8.9 Hz, 2H), 7.00 (d, *J* = 8.9 Hz, 2H), 6.77 (s, 1H), 4.03 (t, *J* = 6.6 Hz, 2H), 1.87 – 1.78 (m, 2H), 1.52 – 1.35 (m, 4H), 0.95 (t, *J* = 7.1 Hz, 3H).

Fig. S1 — ¹H NMR spectrum of 8a

¹³C NMR (101 MHz, CDCl₃) δ 186.15, 171.09, 164.20, 164.09, 161.95, 160.97, 159.48, 148.92, 142.10, 134.55, 132.49, 129.12, 127.48, 127.46, 127.42, 126.06, 124.88, 122.38, 119.55, 118.55, 114.99, 95.97, 68.23, 28.86, 28.17, 22.45, 14.02.

Fig. S2 — 13 C NMR spectrum of **8a**

IR (KBr) cm⁻¹: 3883, 3660, 3435, 3328, 3210, 3125, 3025, 2942, 1997, 1735, 1599, 1552, 1484, 1381, 1262, 1190, 1021, 836, 776, 684;

Fig. S3 — IR spectrum of 8a

¹**H NMR (400 MHz, CHLOROFORM-D)** δ 8.26 (d, *J* = 8.3 Hz, 2H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.84 – 7.75 (m, 4H), 7.68 (d, *J* = 7.0 Hz, 2H), 7.13 (dd, *J* = 14.8, 8.9 Hz, 3H), 7.00 (d, *J* = 8.8 Hz, 2H), 6.77 (s, 1H), 4.03 (t, *J* = 6.5 Hz, 2H), 1.87 – 1.77 (m, 2H), 1.50 – 1.36 (m, 4H), 0.95 (t, *J* = 7.1 Hz, 3H).

Fig. S4 — ¹H NMR spectrum of **8b**

¹³C NMR (101 MHz, CDCl₃) δ 189.77, 171.15, 164.94, 162.93, 161.89, 160.99, 160.24, 154.64, 136.49, 134.48, 132.89, 127.64, 127.54, 127.49, 126.83, 124.62, 124.22, 122.85, 119.72, 118.64, 115.00, 95.95, 68.24, 28.86, 28.17, 22.45, 14.02.

Fig. S5 — 13 C NMR spectrum of **8b**

IR (KBr) cm⁻¹: 3643, 3549, 3380, 3211, 3126, 3025, 2939, 2533, 2354, 2256, 1696, 1601, 1530, 1487, 1422, 1352, 1244, 1179, 1012, 817;

Fig. S6 — IR spectrum of 8b

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.30 - 8.21 (m, 5H), 8.04 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.5 Hz, 2H), 7.28 - 7.21 (m, 3H), 7.14 (d, J = 9.1 Hz, 2H), 7.00 (d, J = 8.9 Hz, 2H), 6.77 (s, 1H), 4.02 (t, J = 6.5 Hz, 2H), 1.86 - 1.77 (m, 2H), 1.50 - 1.35 (m, 4H), 0.95 (t, J = 7.1 Hz, 3H).

Fig. S7 — ¹H NMR spectrum of 8c

¹³C NMR (101 MHz, CDCl₃) δ 191.77, 178.46, 171.13, 164.23, 164.05, 161.93, 161.87, 160.99, 158.10, 143.55, 132.60, 129.32, 127.49, 127.45, 126.15, 124.91, 120.56, 120.46, 119.74, 118.31, 115.00, 95.95, 68.24, 28.86, 28.17, 22.46, 14.03.

Fig. S8 — 13 C NMR spectrum of 8c

IR (KBr) cm⁻¹: 3813, 3655, 3376, 3308, 3221, 3124, 3083, 3023, 2948, 1729, 1693, 1603, 1525, 1494, 1426, 1347, 1249, 1183, 1126, 1028, 949, 832, 768, 685;

Fig. S9 — IR spectrum of 8c