

Morphology-dependent photocatalytic activity of TiO₂ crystals

Guowei Wang^a, Hongguang Zhang^{b,*}, Meng Wang^c, Yu Wang^d, Chunhui Xia^b, Shuang Fu^b & Feng Xu^b

^a College of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China

^b College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China

^c College of Adult and Continuing Education, Qiqihar Medical University, Qiqihar 161006, PR China

^d College of Basic Medicine, Qiqihar Medical University, Qiqihar 161006, PR China

E-mail: zhanghg@qmu.edu.cn

Received 30 August 2019; revised and accepted 20 April 2020

TiO₂ crystals with different morphologies have been successfully synthesized by simple hydrothermal method. All samples are characterized carefully by XRD, SEM, TEM, and BET techniques and the morphological effect on the photocatalytic activity of the obtained TiO2 crystals has been evaluated by degrading the pollutant molecules. The experimental results show that the TiO₂ samples with different morphologies exhibited different activities to pollutant degradation. The coreshell spheres have exhibited the best photocatalytic activity, with the almost complete degradation of methyl orange (MO) and rhodamine B within 15 min under UV-light irradiation. After 20 min UV-light irradiation, the degradation efficiency of the MO solution is about 68.9%. It can be concluded that a morphological effect is responsible for the photocatalytic performance. The crystals with large BET surface area, the small crystallite size shows the better the photocatalytic performance.

Keywords: TiO₂, Hydrothermal method, Different morphologies, Photocatalytic activity

Photocatalytic degradation of metal oxide semiconductor materials has become one of the most intensive areas of research during recent years¹. In particular, the problem of environmental pollution and energy shortage has received considerable critical attention. The photocatalytic method is considered to be a promising method for the removal of environment pollutants². Recently, great efforts have been made to design and develop the highly efficient semiconductor photocatalysts, such as $TiO_2^{3,4}$, CdS^5 , ZnO^6 , $BiVO_4^7$, MoS_2^8 , CeO_2^9 , Cu_2O^{10} , $Fe_2O_3^{11}$, and SnO_2^{12} etc. Among the various types semiconductor, TiO₂ (titanium dioxide) is one of the

most promising materials for photocatalytic applications¹³. It has outstanding mechanical strength, high thermal and chemical stabilities, low cost, good optical, electronic, and excellent catalytic properties¹⁴⁻¹⁶. As we know, the photocatalytic activity of TiO₂ depends on its surface area, crystallite size, crystal phase and crystallinity¹⁷. Thus, it is highly desirable to develop a generalized and efficient strategy to synthesize TiO₂ with high photocatalytic activity.

To date, a wide variety of TiO₂ have been developed including nanorods, nanoparticles, nanodisks, nanotubes, nanowires, nanocages, nanoflowers, thin films, microspheres, core-shell spheres. spheres. hollow and SO on. nanostructures of TiO₂ can be tuned by careful selection of the experimental parameters and synthesis technology. For example, Weon et al. reported that the doubly open-ended TiO₂ nanotubes exhibited high activity and durability for the photocatalytic degradation of gaseous acetaldehyde and toluene¹⁸. Tsuji et al. found that the Au/TiO₂ photocatalysts showed enhanced methyl orange (MO) degradation rates in neutral and acidic solutions¹⁹. Jia et al. demonstrated that the TiO₂ hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of organic pollutant methylene blue ²⁰. Although photocatalytic degradation by using TiO₂ has achieved great progress for the removal of environment pollutants, nevertheless, there are few literatures that concerned the shape of TiO₂ nanostructure on their photocatalytic properties.

this work, TiO₂ with three different morphologies (nanorod, core-shell sphere and flower sphere) have been successfully prepared by hydrothermal method. The photocatalytic activities of the as-fabricated samples were evaluated by decomposing methyl orange (MO), rhodamine B (RhB) and phenol under UV-light irradiation. Compared with TiO₂ nanorod, TiO₂ flower sphere, and P25-TiO2, TiO2 core-shell sphere was found to have best photocatalytic activity towards pollutant degradation. The results show exhibits TiO₂ morphology-dependent photocatalytic activities.

NOTES 647

Materials and Method

Reagents and materials

Titanium sulfate $(Ti(SO_4)_2)$, ethylenediamine tetraacetic acid (EDTA), citric acid ($C_6H_8O_7\cdot H_2O$), ethanediamine ($C_2H_8N_2$), and hydrofluoric acid (HF) were obtained from Sinopharm Chemical Reagent Co., Ltd. All reagents were A.R. grade and used without further purification.

Synthesis of TiO_2 core-shell sphere, TiO_2 nanorod, and TiO_2 flower sphere

All of the samples were prepared by hydrothermal method. TiO₂ core-shell sphere (TiO₂-C): 0.2400 g of Ti(SO₄)₂ and 1.461 g of EDTA were dissolved in 30 mL H₂O by stirring. TiO₂ nanorod (TiO₂-N): 0.2400 g of $Ti(SO_4)_2$ and 0.063 g of H_3Cit ($C_6H_8O_7 \cdot H_2O$) were dissolved into 24 mL of H₂O/C₂H₅OH mixed solvent (7:5, v/v) by stirring. Subsequently, 8.0 ml of ethanediamine was dropwise added into the above solution. TiO₂ flower sphere (TiO₂-F): 0.2400 g of Ti(SO₄)₂ and 0.063 g of H₃Cit were dissolved into 12.8 mL of H₂O by stirring. Subsequently, 8 ml of ethanediamine, 10 mL of C₂H₅OH, and 1.2 mL of HF were added into the above solution in turn. After that, the three mixed solution were transferred into three Teflon lined autoclave of 50 mL capacity and kept in an oven at 180 °C for 8 h. After reaction, the precipitates were collected, washed with deionized water and absolute ethanol for 3 times, and dried at 60 °C for 12 h in air.

Characterization techinques

The crystal phase of all the samples were recorded using X-ray diffractometer (XRD) (XRD-6000, Shimadzu) equipped with Cu Kα radiation $(\lambda = 1.5406 \text{ Å})$ in the 20 range from 10° to 70°. Scanning electron microscope (SEM) equipped with an energy-dispersive X-Ray spectrometer (EDX) Hitachi) and transmission (S-4800,electron microscope (TEM) (Tecnai G2 S-Twin, FEI) were used to characterize the morphology and size of all the samples. The specific surface areas were calculated by a Brunauer-Emmett-Teller (BET) specific surface analysis device (ASAP 2010, Micromeritics). The optical absorption spectra of pollutants were targeted recorded by UV-visible spectrophotometer (UV-1750, Shimadzu). Concentration of chemical oxygen demand (COD) was determined HACH DR2800 spectrophotometer.

Photocatalytic experiments

The photocatalytic activities of the samples (TiO₂ core-shell sphere, TiO₂ nanorod, TiO₂ flower sphere, and P25-TiO₂) were evaluated with MO as targeted pollutant. Generally, 10 mg of the sample was placed into a MO aqueous solution (40 mL, 20 mg·L⁻¹). Before the irradiation, the mixed solution was stirred in the dark for 60 min to achieve a saturated adsorption. A 500 W mercury lamp was used as the UV-light source. 2 mL of suspension were taken out at a given time interval. Subsequently, the absorbance spectra of MO solutions were analyzed by a UV-visible spectrometer. Additionally, when phenol aqueous solution (40 mL, 20 mg·L⁻¹) or RhB aqueous solution (40 mL, 20 mg·L⁻¹) was used as targeted pollutant, we used a process which was similar to that described above.

Results and Discussion

The structure and composition of the P25-TiO₂, TiO₂-C, TiO₂-F, and TiO₂-N were investigated by XRD (Fig. 1). For the XRD pattern of the P25-TiO₂, two diffraction peaks at 27.5, and 36.1° were assigned to the (110), and (101) crystal planes of rutile TiO₂ (JCPDS, No. 73-1765), all other diffraction peaks could be indexed to anatase TiO₂ (JCPDS, No. 21-1272). The result showed that P25-TiO₂ contained anatase and rutile crystalline phases. As for the TiO₂-C, TiO₂-F, and TiO₂-N samples, all of the characteristic peaks could be well indexed as a pure anatase TiO₂ (JCPDS, No. 21-1272). The average crystallite size of the sample was estimated using the Debye-Scherrer's equation: D=0.89λ/(βcosθ), where D is the average grain size, λ is the X-ray wavelength

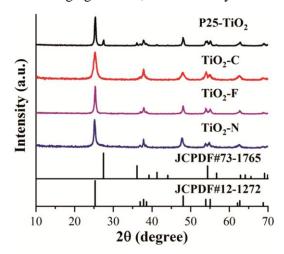


Fig. 1 — XRD patterns of the as-formed $\rm TiO_2$ -C, $\rm TiO_2$ -N, $\rm TiO_2$ -F, and $\rm P25$ -TiO₂.

(0.15405 nm), β and θ are the full-width at half maximum and diffraction angle, respectively. Thus, the average crystallite sizes of the TiO₂-C, TiO₂-F, TiO₂-N, and P25-TiO₂ were estimated to be approximately 11.82, 22.68, 12.78, and 21.19 nm, respectively.

The morphologies of the TiO₂-C, TiO₂-N, TiO₂-F, and P25-TiO₂ were investigated by SEM. As showed in Fig. 2a, we can see that the TiO₂-C sample shows a core-shell structure with diameter of 0.5-1.5 μm. In Fig. 2b, the morphology of the TiO₂-N sample is highly uniform nanorods with an average diameter of 460 nm. Fig. 2c shows SEM image of the TiO₂-F sample, clearly exhibiting that the sample is composed of flower spheres with a diameter of about 1-2 μm. Furthermore, it is obvious from Fig. 2d that the P25-TiO₂ is composed of nanoparticles with

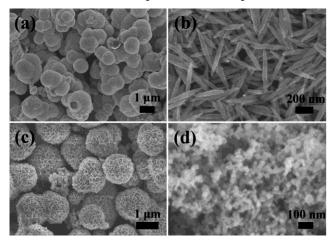


Fig. 2 — SEM images of (a) TiO_2 -C, (b) TiO_2 -N, (c) TiO_2 -F, and (d) P25- TiO_2 .

diameters of 30-40 nm. Interestingly, when different reagents were added into the system, including EDTA, ethanediamine, and HF, the morphologies of the TiO₂ samples were significantly different. This phenomenon occurs because they can be selectively adsorbed on different crystal faces of TiO₂ during the growth of crystal, which results in different growth rates on different crystal faces. Therefore, TiO₂ samples exhibited significantly different morphologies during anisotropic growth.

The morphologies of the TiO₂-C, TiO₂-N, and TiO₂-F were further examined using TEM as illustrated in Fig. 3. The TEM images of three samples describe the similar structure as observed by the SEM images. From Fig. 3a, the core-shell structure of the TiO2-C can be confirmed by light and dark contrast. For TiO₂-N (Fig. 3b), the sample exhibits an obviously ordered nanorod structure. The TEM image of the TiO₂-F reveals that it consists of solid flower spheres (Fig. 3c), which is consistent with the result shown in the SEM image. The chemical compositions of three samples were analyzed by EDX spectroscopy (Fig. 3d-3f). The EDX results confirmed that all of the three samples were composed of titanium (Ti) and oxygen (O), which was in excellent agreement with the XRD analysis.

The surface areas of the TiO₂-C, TiO₂-N, TiO₂-F were also measured by using nitrogen adsorption/desorption isotherms. The N₂ adsorption/desorption isotherms displayed in Fig. 4 shows the type III behavior with a distinct H3 hysteresis loop in the range of 0.8-1.0 P/P₀ according

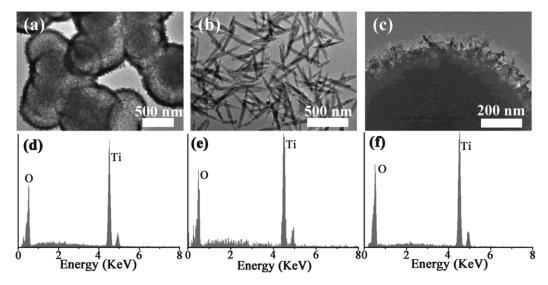


Fig. 3 — TEM images and energy dispersive X-ray spectra (EDX) of (a, d) TiO₂-C, (b, e) TiO₂-N, and (c, f) TiO₂-F.

NOTES 649

to the IUPAC classification²¹. The Brunauer-Emmett-Teller (BET) specific surface area, crystallite size, and crystal phase of the different samples are listed in Table 1. As shown in Table 1, the specific surface area of the TiO₂-C, TiO₂-N, TiO₂-F, and P25-TiO₂ is 134.32, 54.18, 32.10, and 50.00 m²/g²², respectively. The specific surface area of TiO₂-C is the largest among the four samples, which will absorb more catalyst and provide more surface active sites.

The photocatalytic activities of the four samples were evaluated by the degradation of MO under UVlight irradiation. Prior to the photocatalytic test, all samples took 60 min to reach adsorption saturation in the dark. As can be seen in Fig. 5a, MO shows nearly no change in the absorption intensity upon UV-light irradiation in the absence of any catalyst. The TiO₂-C has shown significantly enhanced photocatalytic ability in contrast to other samples under UV-light irradiation at the same time. It can be seen that TiO₂-C could rapidly remove MO from the solutions and the removal efficiency could reach up to 93.4% within 10 min, and the MO aqueous solution could be completely decomposed in 15 min. However, for P25-TiO₂, TiO_2 -N, and TiO₂-F samples, photodegradation efficiency of MO aqueous solution was 84.3%, 27.2%, and 18.8% after 20 min,

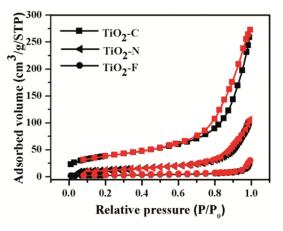


Fig. 4 — Nitrogen adsorption/desorption isotherms of TiO_2 -C, TiO_2 -N, and TiO_2 -F.

Table 1 — Summary of BET surface area, crystallite size, and crystal phase of the different samples			
Sample	crystallite size (nm)	BET surface area (m ² /g)	crystal phase
TiO ₂ -C	11.82	134.32	anatase
TiO ₂ -N	12.78	54.18	anatase
TiO ₂ -F	22.68	32.10	anatase
P25-TiO ₂	21.19	50.00	anatase-rutile

respectively. It is now well established that the photocatalytic activity of a catalyst is dependent on its specific surface area, crystallite size, and crystal phase^{17,23,24}. Thus, the excellent photocatalytic ability may be due to the cause that the TiO2-C has larger specific surface area (134.32 m²/g) and smaller crystallite size (11.82 nm). The large specific surface area of the photocatalyst can provide more surface active sites and adsorb more pollutant molecules on its surface. Besides, the small crystallite size of the photocatalyst can maximize the number of active Those factors cause an increase photocatalytic performance. Compared with the TiO₂-C, although the P25-TiO₂ has lower surface area (50.00 m²/g) and larger crystallite size (21.19 nm) (Table 1), the relatively high photocatalytic ability is due to the e⁻ and h⁺ could be effectively separated in rutile-anatase heterojunction²⁵. Fig. 5c shows the kinetic curves of the photodegradation of MO using the plot of $ln(C_0/C)$ versus illumination time. It can be seen that the highest activity was found for TiO2-C sample, with a degradation constant rate of 0.2179 min⁻¹. To further test the conclusions obtained from the above analyses, we also performed the degradation experiment of RhB solution under the same conditions. As shown in Fig. 5b and 5d, TiO₂-C sample displayed better degradation efficiency of RhB solution than other samples under UV-light illumination and possessed a maximum rate constant of 0.2554 min⁻¹. This result further proved the high photocatalytic activity of TiO₂-C sample.

We also investigated the changes in pH and COD before and after the degradation of MO solutions in the presence of TiO₂-C photocatalyst. As shown in Fig. 6a, we can see that the pH value of the MO solution decreased from 5.4 to 4.8 after degradation. After 20 min UV-light irradiation, the COD concentration of the MO solution decreased from the initial 76.3 mg/L to the final 23.7 mg/L, which confirmed that the MO solution was photodegraded by the TiO₂-C photocatalyst. Furthermore, the dosage of catalyst is a key factor in its practical application. It can be seen that the more amount of TiO₂-C catalyst used, the greater degradation efficiency of MO solution it would show (Fig. 6b). After 20 min UVlight irradiation, we found that the photodegradation rates of MO solution were 98.6%, 97.8%, 80.3%, and 57.9% when the dosages of TiO2-C catalyst were 12 mg, 10 mg, 8 mg, and 5 mg, respectively. After comprehensive consideration of the catalytic

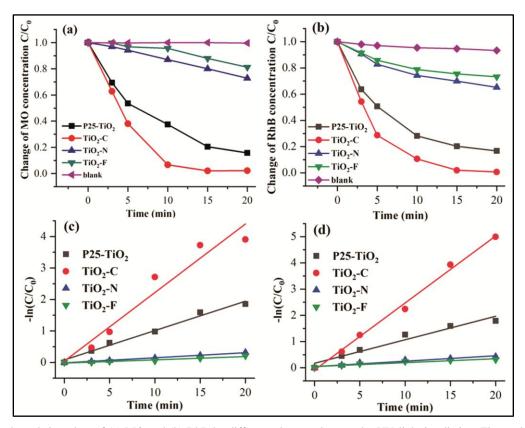


Fig. 5 — Photodegradation plots of (a) MO and (b) RhB by different photocatalysts under UV-light irradiation. First-order plots for the photodegradation of (c) MO and (d) RhB using different photocatalysts.

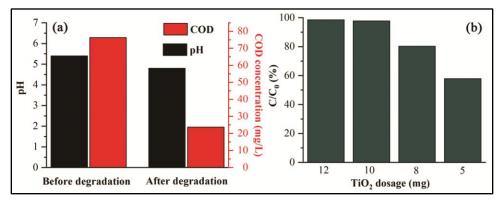


Fig. 6 — Graphs for (a) the change in pH and COD of MO solution before and after degradation using TiO_2 -C catalyst and (b) photodegradation of MO in the presence of different dosages of TiO_2 -C catalyst.

efficiency and cost of catalyst, we think that the optimal addition amount of TiO₂-C catalyst is 10 mg.

In order to further explore the photocatalytic properties of the TiO₂-C, we continued the same test by dispersing the TiO₂-C and P25-TiO₂ into a phenol solution (20 mg/L), and the results are shown in Fig. 7. As shown in Fig. 7a, the degradation of phenol solution can be hardly observed in the absence of catalyst. Here we found that the P25-TiO₂ has poor photocatalytic activity and only 8.2% phenol was

degraded after 60 min UV-light irradiation, while the TiO₂-C exhibited better photocatalytic activity and the degradation rate of the phenol solution was 32.4% in 60 min. This result also further demonstrates the superiority of TiO₂-C catalysts for the photocatalytic process. The time-dependent absorption spectra of the phenol solution during the irradiation are displayed in Fig. 7b. We can see that the maximum absorbance of the phenol solution decreases greatly after UV-light irradiation within 60 min for the TiO₂-C.

NOTES 651

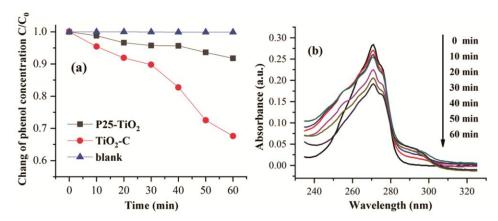


Fig. 7 — (a) Photodegradation plots of phenol by TiO_2 -C and P25- TiO_2 under UV-light and (b) the absorption spectra of the aqueous phenol solution with different irradiation time in the presence of the TiO_2 -C.

Conclusions

In conclusion, a series of TiO₂ crystals with various morphologies were synthesized by hydrothermal method. Detailed morphology analysis implies that the core-shell spherical, rod-like, and flower-like TiO₂ crystals were generated. The different morphologies photocatalysts exhibited photocatalytic activities. As a result, the resulting TiO₂ core-shell spheres exhibited higher activity for pollutant degradation relative to the TiO₂ nanorods, TiO₂ flower spheres, and P25-TiO₂, which may be attributed to its larger surface area and smaller crystallite size. Thus, we conclude that the morphology of the TiO₂ crystals can affect its photocatalytic activity. This provides a useful strategy to design and fabricate highly efficient photocatalysts.

Acknowledgment

This work is financially supported by the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (Grant No. UNPYSCT-2018028).

References

- 1 Chan S H S, Yeong Wu T, Juan J C & Teh C Y, J Chem Techno Biotechno, 86 (2011) 1130.
- 2 Hoffmann M R, Martin S T, Choi W & Bahnemann D W, *Cheml Rev*, 95 (1995) 69.
- 3 Fakhrutdinova E, Shabalina A, Svetlichnyi V & Salanov A, J Chem Res, 12 (2016) 729.
- 4 Kite S, Sathe D, Kadam A, Chavan S & Garadkar K, Res on Chem Intermed, 46 (2020) 1255.
- 5 Cheng L, Xiang Q, Liao Y & Zhang H, Energy Environ Sci, 11 (2018) 1362.

- 6 Ong C B, Ng L Y & Mohammad A W, Renewable Sustainable Energy Rev 81 (2018) 536.
- 7 Petala A, Noe A, Frontistis Z, Drivas C, Kennou S, Mantzavinos D & Kondarides I, *J Hazardous Mater*, 372 (2019) 52.
- 8 Ritika, Kaur M, Umar A, Mehta S K, Singh S, Kansal S K, Nanosci Nanotechnol Lett, 9 (2017) 1966.
- 9 Chen B, Wang B, Sun Y, Wang X, Fu M, Wu J, Chen L, Tan Y, & Ye D, *Catalysts*, 9 (2018) 2.
- 10 Li H B, Jiang P, Zhang W B, Chen S G & Li F J, Nanosci Nanotechnol Let, 11 (2019) 31.
- 11 Mishra M & Chun D M, Appl Catal A, 498 (2015) 126.
- 12 Bhosale T, Kuldeep A, Pawar S, Shirke B & Garadkar K, J Mater Sci: Mater Electron, 30 (2019) 18927.
- 13 Low J, Cheng B & Yu J, Appl Surf Sci, 392 (2017) 658.
- 14 Zhang B, Cao S, Du M, Ye X, Wang Y & Ye J, Catalysts, 9 (2019) 91.
- 15 Carlucci C, Degennaro L & Luisi R, Catalysts, 9 (2019) 75.
- 16 Etacheri V, Di Valentin C, Schneider J, Bahnemann D & Pillai S C, J Photochem Photobiol C, 25 (2015) 1.
- 17 Vorontsov A V, Kabachkov E N, Balikhin I L, Kurkin E N, Troitskii V N & Smirniotis P G, J Adv Oxid Technol, 21 (2018) 127.
- 18 Weon S, Choi J, Park T & Choi W, Appl Catal B, 205 (2017) 386.
- 19 Tsuji M, Matsuda K, Tanaka M, Kuboyama S, Uto K, Wada, Kawazumi H, Tsuji T, Ago H & Hayashi J, Chem Select, 3 (2018) 1432.
- 20 Jia C, Zhang X & Yang P, Appl Surf Sci, 430 (2018) 457.
- 21 Sing K S W, Pure Appl Chem, 57 (1985) 603.
- 22 Guo C, Ge M, Liu L, Gao G, Feng Y & Wang Y, Environ Sci Technol, 44 (2010) 419.
- 23 Li D & Haneda H, Chemosphere, 51 (2003) 129.
- 24 Dong P, Wang Y, Li H, Li H, Ma X & Han L, J Mater Chem A, 1 (2013) 4651.
- 25 Wang P Q, Bai Y, Liu J Y, Fan Z & Hu Y Q, Catal Commun, 29 (2012) 185.