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A systematic investigation of structural, magnetic and transport properties of NiCr1.9R0.1O4 (R = Eu, Dy and Ho) has 

been undertaken. Rietveld analysis of powder X-ray diffraction data revealed that all the compounds crystallize in the cubic 

symmetry with mFd
_
3 space group having small volume fraction of orthorhombic phase RCrO3. Both lattice parameter and 

cell volume decreases with the substitution of heavier rare earth ion which is consistent with the decrease in ionic radius of 
rare earth ion. The temperature dependent magnetization studies have shown that all our investigated compounds have 
negative value of Weiss constant. It indicates the dominance of anti-ferromagnetic interactions in the samples. The phases 

are semi-conductors and the conduction mechanism is dominated by Arrhenius model in the high temperature paramagnetic 
semiconducting region.  
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Spinels are an important class of materials with 
general formula AB2O4, where A is a divalent cation 
and B is a trivalent cation

1
. They have a cubic 

structure with the mFd
_

3  space group, having three 
different cation distributions between A and B sites 
known as normal, random and inverse. In the normal 
spinel structure, A and B ions occupy the tetrahedral 
and octahedral sites, respectively while in the inverse 
spinel, half of the B ions enter the tetrahedral sites and 
all the A ions migrate to the octahedral sites

2–4
.  

The physical and catalytic properties of spinels are 
influenced by the nature and the oxidative state of 

transition metal ions and also by their distribution in 
the spinel structure

5
. 

Recently, chromites MCr2O4 (M = Mn, Co and Ni) 
have been extensively studied for their potential 
applicability as sensors, spintronics, catalysts, etc

6,7
. 

They exhibit spinel structure, in which the M
2+ 

ions 
occupy the tetrahedral (A) sites and the Cr

3+ 
ions 

occupy the octahedral (B) sites because of its strong 
crystal field stabilization of the half occupied non 
degenerate t2g states and empty eg states

8
. Among 

spinel chromites, NiCr2O4 is a promising material, 
owing to the presence of its multiferroicity as well as 

magnetodielectricity
7
. It crystallizes in cubic structure 

when temperature is higher than 310 K
9
. Below 310 K 

cooperative Jahn-Teller distortion is induced by 

orbital degeneracy on tetrahedral Ni
2+

 ( 44

2 gget )
10

.  
The average structural symmetry is decreased and the 
crystal structure is changed from cubic with  
space group mFd

_

3  to tetragonal with space group 
I41/amd. Both long range order ferrimagnetic and 
antiferromagnetic components were found in NiCr2O4 
with antiferromagnetic ordering at 31 K and the 
ferrimagnetic ordering at relatively higher temperature 
below 74 K

11
. It has been shown that the substitution 

with rare-earth ions leads to a structural distortion by 
inducing lattice strain in the spinel structures which 
significantly modify the magnetic and electrical 

properties in the materials
12–16

. Although structural and 
magnetic properties NiCr2O4 have been widely 
studied

17,18
, there is hardly any report on electrical 

transport properties. Moreover, to our knowledge, there 
is only one report of rare earth substitution in NiCr2O4 
pertaining to structural and magnetic properties

19
. In this 

contest, we have synthesized rare earth doped nickel 
chromites NiCr1.9R0.1O4 (R = Eu, Dy and Ho) and their 
structural, magnetic and electrical properties have been 
investigated. 
 

Materials and Methods 

Powder samples of nickel chromites NiCr1.9R0.1O4 

(R = Eu, Dy and Ho) were synthesized by ceramic 

method using high purity (99.9%) Eu2O3, Dy2O3, 
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Ho2O3, NiO and Cr2O3 as starting materials. The rare 

earth oxides were fired at 1273 K to remove the traces 

of water and adsorbed gases before weighing. 
Stoichiometric amounts of reactant oxides were 

mixed thoroughly in cyclohexane in an agate mortar 

to get homogeneous powders. The powders were 

pressed into pellets under high pressure using 
hydraulic press and calcined in the electric tube 

furnace at 1250 
o
C in air for 50 h with two 

intermittent grindings to obtain the final product. 
 X-ray diffraction (XRD) technique was used at 

room temperature using a Rigaku SmartLab 9 kW 

rotating anode to determine the structure and phase 

purity of polycrystalline samples. The measurements 
were performed with monochromatized CuKα 

radiation (λ = 1.54056 Å) in the 2θ range 10°‒100°. 

The structural parameters were obtained by Rietveld 
method using GSAS program. The topography and 

morphology of the synthesized phases were done by 

employing FE-SEM Quanta 200 FEG scanning 
electron microscope (SEM). DC magnetization in the 

range 80–300 K in zero-field cooled (ZFC) condition 

was carried out using a Faraday magnetic balance, 

provided with Polytronic made electromagnet. 
Thermal variation of electrical resistivity was done 

using standard four-probe resistivity method ranging 

from room temperature to 450 K using electrometer 
(Motoron Semiconductors Corporation, India). For 

resistivity measurements, copper wires were attached 

to the smooth surface of circular pellets by using 
silver epoxy.  
 

Results and Discussion 
XRD pattern of the NiCr1.9R0.1O4 spinels are shown 

in Fig. 1. It is clearly seen that all the diffraction 

maxima were well indexed and peered well with 
cubic NiCr2O4 (JCPDS No. 01-075-1728). The 

presence of the major lattice planes (220), (311), 

(222), (422), (511), (400) and (440) confirms the 
formation of cubic spinel structures having space 

group mFd
_

3  (227). The cubic spinel structure with 

space group mFd
_

3  has also been observed in case of 

Dy doped NiCr2O4 having small volume fraction of 

orthorhombic phase DyCrO3
19

. Some peaks of Cr2O3 

and RCrO3, characteristic of secondary phases were 
also noticed. This shows that R

3+
 has slight solid 

solubility. With decrease in size of rare earth ion R
3+

, 

the peaks of Cr2O3 and RCrO3 moderately decrease in 

size. The weight % of orthoferrite (RCrO3) has been 
calculated using the following relation and the 

obtained values of weight% of orthoferrite, Cr2O3 and 

spinel phases are gathered in Table 1. 
 

100%

32
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From the table it can be seen that weight% of 

spinel phase increases with decrease in ionic radius of 

R
3+

. Hence, it can be inferred that even a small mass 
of R

3+ 
ions in NiCr2O4 can influence the phase 

composition and also the size of the spinel matrix, 

that is because of the formation of orthoferrite 
(RCrO3) phase. 

To get complete information concerning the crystal 

structure of the prepared samples, Rietveld refinement 
was done on the XRD data employing the 

GSAS/EXPGUI program
20

 by using essential 

 
 

Fig. 1 ― Typical Miller-indexed XRD patterns for NiCr1.9R0.1O4 

 

Table 1 ― Phase analysis of NiCr1.9R0.1O4 

R Eu Dy Ho 

Weight % of the spinel phase 75.8 76.1 79.9 
Weight % of orthoferrite 18.8 18.4 15.9 
Weight % of Cr2O3 5.4 5.5 4.2 

 

…(
1) 
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structural data from the literature. The refinement of 

the samples was started with scale and background 

parameters succeeded by the unit cell parameters.  
The standard of refinement was testified through 

various parameters like Rwp, Rp and χ
2 

obtained from 

Rietveld refinement. The linear difference between 

experimental and calculated data (Fig. 2) has been 
noticed by using the Rietveld analysis which confirms 

a good concordance between observed and calculated 

XRD patterns. The refined structural parameters for 
the samples are summarized in Table 2 and the 

selected interatomic distances and bond angles in 

Table 3. The values of lattice parameter a and cell 

volume V are found to be in good agreement with 
those reported earlier by Mandal et al

19
. It can be 

observed from Table 2 that both a and V decreases 

with the substitution of heavier rare earth ion which is 
consistent with the decrease in ionic radius of rare 

earth ion. Moreover, R
3+

 ions occupy the grain 

boundaries forming RCrO3 phase whose 

concentration rises with substitution of larger rare 
earth ion which is established by XRD results, thereby 

restraining the grain growth and applying pressure  

on the grains affecting the decrease in a and  

V values
21–23

. That is why a small decrease in both a 
and V is observed with decrease in R

3+
. 

In the AB2O4 spinel structures, oxygen ions form 
cubic close packing while the metal ions occupying 

one eighth of the tetrahedral and one half of the 
octahedral sites. The spinel structure is obtained when 

A
2+

 ions occupy the tetrahedral sites and the B
3+

 ions 

the octahedral sites. When the tetrahedral sites are 

occupied by half of the B
3+

 ions with the other half of 
the B

3+
 and the A

2+
 ions are distributed over the 

octahedral sites, the structure is regarded as inverse 

spinel structure. Since R
3+ 

ions have large size and 
Cr

3+ 
ions have high octahedral crystal field 

stabilization energy (Table 4), they have a high 

preference for an octahedral environment
24–26

, so the 
normal spinel structure is expected. Moreover, the 

nickel ions are in a regular tetrahedral environment, as 

reflected by the value of the O–Ni–O angle  

(Table 3). The rare earth substituted nickel chromites 

 
 

Fig. 2 ― Rietveld profile fitting for the XRD patterns of 
NiCr1.9R0.1O4 

Table 2 ― Structural parameters obtained from the Rietveld 
refinement of X-ray diffraction pattern for NiCr1.9R0.1O4. The 

atomic sites are: Ni 8b(0.375, 0.375, 0.375); Cr/R 16c(0, 0, 0);  

O 32e (x, x, x) in the space group mFd
_

3  

R  Eu Dy Ho 

a (Ǻ)  8.3163(3) 8.3160(3) 8.3061(3) 

V (Ǻ3)  575.16(4) 575.10(4) 573.05(4) 

x O 0.2446(7) 0.2454(6) 0.2456(6) 

Uiso (Ǻ
2) Ni 0.0099(1) 0.0119(4) 0.0114(4) 

 Cr/R 0.0157(2) 0.0177(4) 0.0192(8) 

 O 0.0136(8) 0.0226(9) 0.0273(2) 

Rwp  0.3695 0.3296 0.3143 

Rp  0.2794 0.2517 0.2364 

χ2  4.708 3.915 4.262 
 

Table 3 ― Selected bond lengths (Å) and selected bond angles () 

of NiCr1.9R0.1O4 

R Eu Dy Ho 

Ni–O 1.85529(5) 1.85273(5) 1.85322(4) 

Cr/R–O 2.04794(8) 2.04928(7) 2.04531(7) 

Cr/R–Cr/R 2.94025(8) 2.94016(7) 2.93664(7) 

O–Ni–O 109.471(3) 109.471(1) 109.471(1) 

O–Cr/R–O 179.972(0) 180.00 180.00 

O–Cr/R–O 91.783(0) 91.699(0) 91.789(0) 

O–Cr/R–O 88.217(0) 88.301(0) 88.211(0) 
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can therefore be represented by the formula 

(Ni)[Cr1.9R0.1]O4, where the square brackets indicate 

the ions occupy at the octahedral sites while the round 
brackets to those at the tetrahedral sites. 

SEM provides information on particle sizes and 

shapes over a wide range of magnification. SEM can 
produce very high-resolution images of a sample 

surface, revealing details that are ~1 nm in size. It also 

has a large depth of field giving a characteristic three 

dimensional appearance which helps in understanding 
the surface structure of a sample. To determine the 

topography and microstructure of the samples, SEM 

analysis was done. The surface morphology of 
NiCr1.9R0.1O4, (R = Eu, Dy, Ho) is shown in Fig. 3. 

All the samples synthesized by ceramic method show 

the polycrystalline structure and exhibit more or less 

near spherical morphology of grains. Agglomeration 
of particles with high homogeneity has also been 

observed to a certain extent. The average grain size 

was calculated from SEM images using line intercept 
method and its values are 0.65, 0.62 and 0.56 μm for 

Eu, Dy, Ho doped samples, respectively.  

The variation of temperature-dependent magnetic 
behaviour at 0.5 T applied magnetic field for all the 

samples under ZFC conditions is shown in Fig. 4. The 

increase of magnetic susceptibility in upward 

direction at low temperature indicates the existence of 
ferromagnetic component at low temperature. By the 

increasing temperature, molar magnetic susceptibility 

(
m ) of all the samples has started to decrease and 

finally the samples exhibited paramagnetic behaviour 

at higher temperature. The variation of inverse molar 

magnetic susceptibility with temperature for all the 

samples is shown in Fig. 5. The linearity of the 1
m –T 

plots indicate that the Curie-Weiss law
27

 is obeyed in 

the high-temperature region where the phases are 
entirely paramagnetic. 




T

C
T )(  

Here Θ is the Curie-Weiss temperature and C is the 

Curie constant. We have derived the parameters C and 

Θ by fitting the linear paramagnetic region of the data 
and their values are given in Table 5. It can be seen 

that Θ is negative for all the phases indicating the 

Table 4 ― Crystal field stabilization energy (kcal/mol) 

Metal ion Octahedral Tetrahedral Preference for 
octahedral 

Ni2+ 29 9 20 

Cr3+ 54 16 38 

 

 

 
 

Fig. 3 ― SEM micrographs of polycrystalline powders of 
NiCr1.9R0.1O4 

 

 
 

Fig. 4 ― Temperature dependence of the molar magnetic 
susceptibility ( m ) for NiCr1.9R0.1O4 
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dominance of anti-ferromagnetic interactions in the 

samples. Further, with increase in ionic radius of 

lanthanide ion, anti-ferromagnetic interactions A–B 
become dominant because of increase in Θ. This 

could be due to the presence of anti-ferromagnetic 

RCrO3 secondary phase which becomes dominant 

with ionic radius of lanthanide ion as revealed by 
XRD. The effective magnetic moment of the samples 

in the paramagnetic region was ascertained by the 

formula: 
 

Ceff 828.2  
 

The calculated paramagnetic magnetic moment is 

given by the relationship
28, 29

; 
 

222
332 1.09.1  

RCrNical 
 

 

where, 2Ni
 , 3Cr

  and 3R
 are the respective  

spin only magnetic moments of Ni
2+

 (2.83 B.M.),  

Cr
3+

 (3.87 B.M.) and R
3+

 ( 3Eu
 = 7.94 B.M.;  

3Dy
 = 10.63 B.M.; 3Ho

  = 10.6 B.M.) ions in their 

high spin states. The eff
 
and cal values are included 

in Table 5. The smaller eff  values than cal  could be 

due to presence of anti-ferromagnetic interactions in 

the phases. 

For the measurement of electrical resistivity, the 
well compact pellets were obtained by pressing the 

powdered samples under 20 MPa pressure using 
hydraulic press followed by sintering at 1200 

o
C. The 

resistivity versus temperature (ρ‒T) behaviour in zero 
field for NiCr1.9R0.1O4 spinels is shown in the Fig. 6.  
It can be seen that resistivity decreases with increase 
of temperature showing typical semiconducting nature 
of our samples. The mobilization of thermally 
activated charge carriers is responsible for the 
decrease of resistivity with temperature

30
. 

In order to get the information regarding the type 

of conduction mechanism, various hoping models 

have been proposed such as:  

 Arrhenius model where electrons or charge 

carriers hop between nearest neighbours having 

activation or hopping energy (Ea), which is given 

by the equation
31

 
















Tk

E

B

a
o exp  

 In the small polaron hopping model, the most 

rapid motion of a small polaron happens when the 
carrier hops each time the configuration of 

vibrating atoms in an adjoining site coincides 

with that in the occupied site. The resistivity in 
this temperature range is given by the relation:  

 
 

Fig. 5 ― Plot of temperature dependent inverse molar magnetic 

susceptibility ( 1
m ) for NiCr1.9R0.1O4 

 

Table 5 ― Magnetic and electrical parameters of NiCr1.9R0.1O4 

R Θ 

(K) 

C 

(Kemu/mol) 

µobs 

(B.M.) 

µcal 

(B. M.) 

Ea 

(meV) 

Ro L  

(Ǻ) 

Eu -84 2.716 4.661 6.542 309.9 0.9982 2.9398 

Dy -46 3.634 5.391 6.914 278.2 0.9987 2.9397 

Ho -23 3.473 5.270 6.909 264.2 0.9970 2.9362 
 

 
 

Fig. 6 ― Resistivity (ρ) dependence on temperature (T) for 
NiCr1.9R0.1O4 
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Tk

E
T

B

a
o exp  

 

where Ea is the activation energy of a polaron, T is the 

absolute temperature, kB is Boltzmann constant, and 
ρo is a pre-exponential factor (residual resistivity).  

 If the electron does not have enough energy to 

hop between neighbours it will hop to the distant 

states following Mott variable range hopping 
(VRH) conduction

31,32 
given by 

 

4/1

exp 









T

To
o

  

where, To is the Mott temperature
33

.  

We have tried to fit our resistivity data with the 
above models and found that, Arrhenius type model 

fits well to our obtained data with best agreement 

factors Ro. The activation energy was then calculated 

from the relation 
 

RT

Ea
o

303.2
loglog    

 

A plot of log ρ versus 1/T (Fig. 7) gives a straight 
line with slope = Ea/2.303R. The activation energies 

are calculated from the slopes of the plot of log  

ρ versus 1/T and their values are presented in Table 5. 
It can be seen that the activation energy decreases 

with doping of heavier rare earth ion. This behaviour 

of activation energy can be explained in terms of the 
jump length (L). The hopping process and activation 

energy may be affected by jump length of charge 

carriers on the octahedral B-sites. The jump length is 

calculated from the following relation
34

:  

L = a (√2/4)  
 

where a is the lattice parameter and its values are 
listed in Table 5. It has been observed that the jump 

length decreases with decreasing ionic radius of rare 

earth ion. The decrease in jump length with ionic 
radius causes a decrease in activation energy required 

for the charge carriers to jump between sites. 

 

Conclusions 
Rare-earth doped nickel chromites crystallize in 

cubic spinel structure with space group mFd
_

3 . Small 

fraction of orthorhombic phase RCrO3 was found in 

all the phases whose content decreases with decrease 
in the size of rare-earth ion. Magnetic studies  

show that Wiess constant is negative for all the  

phases indicating the presence of dominant anti-

ferromagnetic interactions in them. The phases are 
semiconductors and conduction in them is dominated 

by Arhenius model. 
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