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Versatility of magnetic Fe3O4 supported copper nanocomposite catalyst towards 
reduction of carbonyl and nitro compound  
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Ferrite supported copper nanocomposite catalyst has been synthesized and characterized by TEM, SEM-EDS mapping, 
XRD, XPS and ICP-AES analysis. This nanocomposite is found to be more efficient and versatile towards carbonyl and 
nitro reduction under mild reaction condition with very good yield and turn over number. The catalyst is magnetically 
recoverable and also reusable for a minimum of four catalytic cycles.  
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Among the various important processes of organic 
synthesis, the processes involving the reduction of 
substrates such as azido, nitro and carbonyl 
compounds are one of the most important 
fundamental processes due to their significant role in 
the pharmaceuticals and biological synthesis1. 
Although a number of metal catalysts have been 
reported for hydrogenation reaction, yet they have 
lack of applicability due to their high cost2. 
Nowadays, nanoparticles (NPs) especially iron 
nanoparticles (FeNPs), emerge as one of the 
important catalysts for this purpose due to their non-
toxicity, economy and effectiveness3. This iron 
nanoparticle can also be used as precursors to seed, 
reduce and support another metal. Again, these NPs 
are magnetically recoverable which makes them 
unique for easy and environmental friendly recovery 
of the catalyst4. When FeNPs are used as precursor 
to another metal such as palladium nanoparticles, it 
results in hybrid nanoparticles which were 
proven to be active and recyclable catalysts for 
Suzuki coupling5. 

In this context, we report here a magnetically 
recyclable and versatile ferrite supported copper 
nanocomposites for reduction of carbonyl and nitro 
compound. 

Materials and Methods  
All chemical reagents like FeCl3.H2O, 

FeSO4.7H2O, Cu(OAc)2, NaOH and KOH were 

purchased from Ranbaxy and solvents like EtOH, 
MeOH, iPrOH, Toluene etc. were obtained from 
Merck and used without further purification.  

In our study, we have adopted a number of 
methodologies which are summarized as follows: 

Preparation of Fe3O4 nanoparticles 
5.41 g FeCl3.H2O and 3.6 g urea were dissolved 

in water (200 mL) at 85 to 90 °C for 2 h and it turned 
to brown colour. Then it was cooled to room 
temperature. To this mixture, FeSO4.7H2O  
(2.78 g) was added followed by the addition of 
0.1 M NaOH solution until its pH becomes 10. 
Then it was ultrasonicated at 30-35 °C for 30 min. 
After aging for 5 h, black crystalline powder was 
obtained6. 

Preparation of Fe3O4-Cu nanocomposite 
Fe3O4 (2 g) and Cu(OAc)2 (10 wt% of Cu on 

Fe3O4) were stirred at room temperature in 
aqueous solution for 1 h. pH was then adjusted to 
12 by adding 0.5 M NaOH solution and stirred for 
10-12 h. Then it was washed with distilled water
and reduced by adding 0.2 M NaBH4 solution
dropwise under gentle stirring in an ice-water bath
for 30 min until no bubble was observed in the
solution. The resulting Fe3O4-Cu nanoparticle
suspension was subjected to ultrasonication for
10 min and then washed with distilled water
and subsequently with ethanol followed by
centrifugation6.
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Fig. 2 — (a) TEM image of Fe3O4, (b) SAED pattern of Fe3O4 and (c) histogram 
 

 
 

Fig. 3 — (a) TEM image of Fe3O4-Cu, (b) SAED pattern of Fe3O4 -Cu and (c) histogram 
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Fig. 4 — Deconvoluted X-ray photoelectron spectra of Fe3O4-Cu for (a) Fe and (b) Cu 
 

Table 1 — Optimization of reaction condition for reduction of carbonyl compounda 

 
Entry Catalyst (mg) Solvent Base Time (h) Yieldb (%) 

1 - H2O KOH 2 - 
2 Fe3O4 (15) H2O KOH 2 Trace amount 
3 Fe3O4-Cu (15) H2O KOH 0.5 89 
4 Fe3O4-Cu (15) MeOH KOH 2 65 
5 Fe3O4-Cu (15) iPrOH KOH 2 78 
6 Fe3O4-Cu (15) DMF KOH 2 60 
7 Fe3O4-Cu (15) CH3CN KOH 2 58 
8 Fe3O4-Cu (15) iPrOH:H2O KOH 0.5 96 
9 Fe3O4-Cu (10) iPrOH:H2O KOH 0.5 90 
10 Fe3O4-Cu (20) iPrOH:H2O KOH 0.5 96 
11 Fe3O4-Cu (15) DMF:H2O KOH 2 66 
12 Fe3O4-Cu (15) iPrOH:H2O K2CO3 2 68 
13 Fe3O4-Cu (15) iPrOH:H2O Et3N  2 64 
14 Fe3O4-Cu (15) iPrOH:H2O

 NaOH 2 66 
15 Fe3O4-Cu (15) iPrOH:H2O

 KOH 2 96c 
16 Fe3O4-Cu (15) iPrOH:H2O

 KOH 2 90d 
17 Fe3O4-Cu (15) iPrOH:H2O - 3 45 

aReaction condition: acetophenone (1 mmol), Catalyst, solvent (4 mL), base (0.2 mmol) at 30 °C temperature. bisolated yield; 
c1 mmol KOH, d0.1 mmol KOH 

Fe3O4-Cu nanocomposite catalyst are given in 
Supplementary data. The amount of Cu loading in this 
Fe3O4-Cu catalyst was determined by ICP-AES 
analysis and found to be 3.8 (wt%).  

Here we have developed a magnetic Fe3O4 
supported copper nanocomposite catalyst and studied 
the versatile catalytic activity of the same. At first, we 
have taken acetophenone as model substrate, water as 
solvent and KOH as base (Table 1) in order to 
observe its catalytic activity. Initially, the reaction 
was performed by using KOH alone as well as with 
the mixture of KOH and Fe3O4, but the transfer 
hydrogenation reaction did not occur under these 

conditions even at 100 °C (Table 1, entries 1, 2). 
However, when the mixture of KOH and Fe3O4-Cu 
was used, it resulted in the quantitative conversion of 
acetophenone to the corresponding alcohol (Table 1, 
entry 3). The effect of different bases such as K2CO3, 
Et3N, NaOH etc. and that of different solvents such as 
MeOH, iPrOH, DMF, CH3CN etc. (Table 1, entries 4-
14) has also been observed throughout our study. It 
revealed that a mixture of H2O: iPrOH as solvent with 
KOH as base gave the highest yield of the product 
(Table 1, entry 8). When the reaction was carried out 
with catalyst using iPrOH: H2O as solvent in absence 
of a base, then it is observed that the reaction took 
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longer time and the product yield is also low which 
indicates the crucial role of the base in the reaction. 
Since the reaction proceeds to some extent in absence 
of base, it can be concluded that iPrOH acts as a 
hydrogen source in this reaction12 (Table 1, entries 17). 

On optimizing the amount of catalyst (entries 9, 
10) and amount of base (entries 15, 16), it was 
observed that 0.2 mmol KOH and 15 mg of this solid 
catalyst was sufficient for this good conversion  
(Table 1, entry 8).We have chosen a wide range of 
carbonyl compound for observing the catalytic 
activity of the catalyst as shown in Table 2. 

In order to check the versatility of our catalyst, we 
have studied the efficiency of the catalyst for 

reduction of aromatic nitro compounds. Initially the 
reaction did not proceed satisfactorily when we have 
used a mixture of H2O: iPrOH as solvent, KOH as 
base and 4-chloro nitrobenzene as model substrate 
(Table 3, entry 1). The effect of some bases (Table 3, 
entries 3, 13) and some solvents (Table 3, entries 3-7) 
have also been studied in this context. From this 
study, it was found that the reaction cannot  
occur in absence of base and satisfactory results  
have been observed in solvents with higher polarity. 
Table 3 showed that the reaction proceeds very  
well to provide the desired product with water  
as solvent and H2N-NH2.H2O as hydrogen source  
(Table 3, entry 4).  

Table 2 — Reduction of carbonyl compounda 

 
Entry Substrate Product Time (h) Yieldb (%) TON TOF 

1 O

 

OH

 

0.5 96 168.42 336.84 

2 

CH3

O

Br  

CH3

OH

Br  

1 90 157.89 157.89 

3 

CH3

O

Cl  

 

2 85 149.12 74.56 

4 

CH3

O

MeO  
 

1 89 156.14 156.14 

5 O

 
 

1 88 154.38 154.38 

6 

  

1 92 161.40 161.40 

7 

  

2 88 154.38 77.19 

8 

  

0.5 90 157.89 317.8 

aReaction condition: substrate (1 mmol), Catalyst (15 mg), solvent (4 mL), base (0.2 mmol) at 30 °C temperature. bisolated yield, 
TON = mole of product/mole of catalyst; TOF=TON/time 
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Table 3 — Optimization of reaction condition for reduction of nitro compounda 

 
Entry Catalyst (mg) Solvent Base Time (h) Yieldb (%) 

1 Fe3O4-Cu (15) iPrOH:H2O KOH 2 -c 
2 Fe3O4-Cu (15) iPrOH:H2O KOH 2 - 
3 Fe3O4-Cu (15) iPrOH:H2O H2N-NH2. H2O 2 78 
4 Fe3O4-Cu (15) H2O H2N-NH2. H2O 2 91 
5 Fe3O4-Cu (15) MeOH H2N-NH2. H2O 2 48 
6 Fe3O4-Cu (15) EtOH H2N-NH2. H2O 2 56 
7 Fe3O4-Cu (15) Toluene H2N-NH2. H2O 2 - 
8 Fe3O4-Cu (10) H2O H2N-NH2. H2O 2 80 
9 Fe3O4-Cu (20) H2O H2N-NH2. H2O 2 91 
10 Fe3O4-Cu (15) H2O H2N-NH2. H2O 2 91d 
11 Fe3O4-Cu (15) H2O H2N-NH2. H2O 2 88e 
12 Fe3O4-Cu (15) H2O  -  - 
13 Fe3O4-Cu (15) H2O NaBH4 2 43 

aReaction condition: 4-chloronitrobenzene (1 mmol), Catalyst, solvent (2 mL), base (0.5 mL) at 60 °C temperature  
bisolated yield; cat 30 °C temperature; d0.6 mL base used; e0.3 mL base used 
 

 

Table 4 — Reduction of nitro compounda 

 
Entry Substrate Product Time (h) Yieldb (%) TON TOF 

1 

  

2 91 159.64 79.82 

2 

  

5 80 140.35 28.07 

3 

  

4 87 152.63 38.15 

4 

  

6 89 156.00 26.02 

5 

  
5 62 108.77 21.75 

6 

  

4.5 80 140.35 31.18 

7 

  

3 83 145.61 48.53 

8 

  

5 85 149.12 29.842 

aReaction condition: substrate (1mmol), Catalyst (15 mg), solvent (2 mL), base (0.5 mL) at 60 °C temperature.  
bisolated yield; TON = mole of product/mole of catalyst; TOF=TON/time 

 

With the above optimized reaction condition, the 
efficiency of our developed catalyst has been tested for 
different aromatic nitro compounds whose results are 
shown in Table 4. It was observed that all the 
nitroarenes were reduced in excellent yields affording a 
single product. From Table 2 and Table 4, we can 
compare the turn over number and turn over frequency 

of the two reactions. Our comparison revealed  
that reduction of carbonyl compounds to their 
corresponding alcohols is comparatively faster than 
that of nitro compounds to the corresponding amines. 
 

Reusability Test  
Reusability is one of the very important factors for 

the effectiveness of a catalyst. The reusability  of  our  
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catalyst has been studied by using nitro reduction 
reaction with nitrobenzene and carbonyl reduction 
with acetophenone upto 4th cycle (Table 5). Since the 
catalyst is magnetic in nature, so it is easily 
recoverable by using an external magnet after 
completion of the reaction and that can be  
reused in new coupling reaction after thoroughly 
washing with water and ethyl acetate and  
drying.  

The ICP-AES analysis studied at the end of 4th 
cycle indicates that there is detection of a very 
negligible amount (below detection limit) of metal in 
the solution suggesting the robust nature as well as 
heterogeneity of the catalyst. However, since there is 
no significant leaching of metal during the catalysis, 
the slight gradual decrease in product yield and 
increase of time after successive reuse may be due to 
physical loss of the amount of the catalyst. The TEM 

image and SAED pattern of the Fe3O4-Cu catalyst 
after 4th cycle is depicted in Fig. 5 which indicates no 
significant change in the surface morphology of the 
catalyst. Again, the SAED pattern indicates that the 
catalyst retains its polycrystalline nature even after 4th 
catalytic cycle. 
 
Mechanism 

Here we have proposed a general pathway for  
the reduction of nitroarenes. In this proposed 
mechanism, nitrosoarene and aryl hydroxylamines 
may be formed as intermediates, and then aryl 
hydroxylamines are rapidly reduced into anilines  
by hydrazine. It is possible that the supported  
electron rich Cu(0) species activates hydrazine 
hydrate as a reducing agent in the transfer 
hydrogenation of nitro compounds into the 
corresponding amines13 (Scheme 1). 

Table 5 — Reusability of the Fe3O4-Cu nanocomposite 

Reduction Reaction No. Cycle Time (h) Yielda (%) 

 

1 0.5 96 
2 0.5 92 
3 1 90 
4 1 88 

 

1 4 87 
2 4 85 
3 4 73 
4 4 70 

aIsolated Yield 

 

 
 

Fig. 5 — (a) TEM image and (b) SAED pattern of Fe3O4-Cu catalyst after 4th cycle 
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Conclusions 
In conclusion, it is observed that Fe3O4-Cu 

nanocomposite catalyst is robust, magnetically 
recoverable and versatile towards reduction of  
both aromatic nitro compound and carbonyl 
compound. We have avoided the use of expensive 
precursors and resources to linkers or ligands 
throughout the preparation of the nanocomposite.  
Due to the heterogeneity and magnetically 
recoverable nature of the catalyst, it banishes the 
necessity for a traditional filtration process for the 
separation of the catalyst. 
 
Supplementary Data 

Supplementary Data associated with this article  
are available in the electronic form at 
http://nopr.niscair.res.in/jinfo/ijca/IJCA_60A(01)10- 
18_SupplData.pdf. 
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