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In this study, we investigated mechanisms of photoinduced electron transfer from a conjugated polymer (poly(2-
methoxy-5-(2-ethylhexyloxy) 1,4-phenylenevinylene (MEH-PPV) to titanium dioxide (TiO2) nanoparticles (acceptor) 
through steady-state photoluminescence (PL) spectroscopy. Since mixed phase TiO2 has better photocatalytic compared to 
single phase, it is an efficient charge separation process during photoexcitation of polymer nanocomposites by incorporating 
the mixed phase TiO2 nanoparticles into the MEH-PPV polymer matrix through in situ polymerization. Structural 
characterization revealed only physical interaction between the polymer matrix and dispersed nanoparticles. The absorbance 

spectra of nanocomposites also indicated the absence of ground state complex formation. Luminescence quenching of 
polymer nanocomposites compared to pristine MEH-PVV signifies the charge transfer taking place at the MEH-PPV/TiO2 
interfaces. Thus, the MEH-PPV/ mixed phase TiO2 nanocomposite serves as an active layer for photovoltaic application. 

Keywords: Charge transfer, Conjugated polymer, Hybrid polymer nanocomposite (HPNC), Photoluminescence quenching,        
Photovoltaics 

Hybrid polymer nanocomposites (HPNCs) are 
prepared by combining organic conjugate polymer 

with inorganic semiconductor nanoparticles. These 

have been an object of great attention in the field of 
optoelectronic devices. This combines the 

processability of organic material with the superior 

electrical conductivity and stability of inorganic 
nanoparticles

1
. The basic requirement of a 

photovoltaic material is to generate free charge 

carriers under photoexcitation. But the major 

drawbacks of using conjugated polymers in 
photovoltaics is short exciton diffusion length  

(5-20 nm)
2
 and the trap limit electron transfer caused 

by single oxygen radical scavenger, water molecules, 
halogens and defects in the polymeric chain due to 

photo oxidation
3
. Hence, the limitations are overcome 

by inclusion of high electron affinity substance, such 
as fullerene derivative phenyl-C61 butyric acid 

methyl ester (PCBM)
4
 or nanoparticle (ZnO, TiO2)

5,6
. 

Among them, nanoparticles are considered to be more 

attractive owing to their large surface-to-bulk ratio, 
giving an extension of interfacial area for electron 

transfer, and higher stability. Nanoparticles contained 

in the polymer layer acts as dopants and increases the 

charge carriers and conductivity, thereby influence the 
optoelectronic properties of final device application

7
 

for different uses
8,9

. 

In the case of photovoltaics, the charge separation 
process must be fast compared to radiative or non-

radiative decays of the singlet exciton
4
. However, 

electron transport in the polymer/nanoparticle 
interface is usually limited by poorly formed 

conduction path. Hence, in bulk heterojunction, the 

morphology and the domain sizes of the polymer 

phase should be comparable to the diffusion length of 
the excitons for effective charge transfer at the 

interface. Both polymer and nanoparticle phases have 

to be continuous for effective charge transport
6
. 

Therefore, the present study proposes the in situ 

polymerization of α,α’–dibromo-2-methoxy-5-(2-

ethylhexyloxy) benzene into poly (2-methoxy,5-(2’-
ethyl-hexyloxy)-p-phenylenevinylene) — MEH-PPV 

in the presence of titanium dioxide (TiO2) 

nanoparticles to form HPNCs. The uniqueness of this 

work lies in the fact of utilizing the mixed phase TiO2 
nanoparticles to prepare HPNCs. Generally, in case of 

formulating a HPNCs using TiO2 nanoparticles, 

anatase phase TiO2 is preferred compared to rutile or 
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brookite
10

 owing to its wider band gap (3.2 eV), lower 

rates of recombination (10 fold higher hole trap 

compared to rutile) and higher surface adsorptive 
capacity

11
. But in the mixed phase TiO2, the migration 

of electrons and holes, because of the difference 

valance band and conduction band, makes it superior 

than the anatase TiO2. The enhanced activity of mixed 
phase TiO2 relative to pure phases was due the 

transfer of electrons from lower energy rutile to 

anatase which acts as electron trapping site leading 
efficient electron-hole separation making it a suitable 

candidate for photovoltaics
12

. 
 

Usually the nanoparticles tend to agglomerate and 
phase separate during the formation of bulk 

heterojunction leading to poor device performance
1
. 

To resolve the agglomeration problem and enhance 

the interaction between MEH-PPV and TiO2, the 
prepared TiO2 nanoparticles were ultrasonicated  

with α,α’–dibromo-2-methoxy-5-(2-ethylhexyloxy) 

benzene (monomer of MEH-PPV) followed by 
polymerization. Thus, incorporation of nanoparticles 

into the polymer matrix introduce new energy states 

which can mediate the electron transport from LUMO 

of MEH-PPV to the conduction band of TiO2 
nanoparticles under photoexcitation. Consequently, 

the two major drawbacks of short exciton diffusion 

length of MEH-PPV (~14 nm) and low electron 
mobility were suppose to overcome by intermixing of 

materials with high electron affinity in MEH-PPV 

using insitu polymerization. (χ of TiO2 – 4eV; χ of 
MEH-PPV – 3eV). 

 

Materials and Methods 
 

Synthesis of TiO2 nanoparticles 

TiO2 nanoparticles were prepared by sol-gel 

method as described. 1.0 mL of titanium tetrachloride 
(TiCl4) was slowly added to the 10% diluted sulfuric 

acid solution at 0ºC under constant stirring for about 

30 min. During this process, white fume of HCl was 

released as a consequence of the reaction between 
TiCl4 and H2SO4 resulting in the formation of a grey 

coloured solution. This grey solution was heated at  

60ºC until a clear solution was obtained which was 
left undisturbed for 12 h for cooling.  Later NaOH 

was added dropwise to the above solution until pH =7 

was attained (neutralization process) where the 
solution transformed to a white colour solution 

followed by gelation period of 12 h. The precipitate 

formed was filtered and washed twice with distilled 

water. Later the filtrate was calcined at 600ºC for two 

hours to acquire TiO2 nanopowder. The product 

obtained was grinded into a fine powder using mortar 

and stored in a desiccators until further usage.  

 

 

 
 

Synthesis of MEH-PPV 

Poly 2-methoxy-5-(2’-ethylhexyloxy-p-phenylene 

vinylene) (MEH-PPV) was prepared by the well know 
glich route process

13
 through solution polymerization 

technique in a course of three stages of reactions. First 

step involves the preparation of 1-methoxy-4-(2-

ethylhexyloxy) benzene (MEHB – labeled as 
Monomer-1) from the base materials P-

methoxyphenol (PMP) and 2-ethylhexyl bromide. 

Then α,α’–dibromo-2-methoxy-5-(2-ethylhexyloxy) 
benzene (MEH-DBMB – labeled as Monomer-2) was 

prepared through bromination of MEHB. Finally, 

polymerization of MEHDBMD yields Poly 2-
methoxy-5-(2’-ethylhexyloxy-p-phenylene vinylene) 

(MEH-PPV). The synthesis procedure was reported 

elsewhere
14

 and the schematic diagram of the reaction 

is given in Scheme 1. 
 

Preparation of MEH-PPV/TiO2 nanocomposite 

The TiO2 incorporated polymer nanocomposites 

were synthesized through in situ polymerization 

represent in flow diagram (Scheme 2). The α,α’–
dibromo-2-methoxy-5-(2-ethylhexyloxy) benzene – 

MEHDBMB (monomer of MEH-PPV) was dissolved 

in Tetra-hydrofuran (THF). The TiO2 nanoparticles 

were dispersed in the MEHDBMB solution with 
different loading concentrations of 1, 3 and 5 wt.% 

with respect to weight of MEHDBMD. 

 

 
 

Scheme 1 — Reaction Scheme of MEH-PPV preparation 
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Polymerization of 300 g MEHDBMB (monomer-2) 
with TiO2 content was carried out in 30 mL THF 

solution with 2 g potassssium tert butoxide (t-BuOK) 

as the catalyst. To this reaction mixture, 60 mg of 

benzyl bromide (chain stopper) was added to prevent 
gelation. The reaction mixture was refluxed in N2 

atmosphere at 68℃ for 3 h. The reaction product was 

precipitated by adding 40 mL methanol and filtered 
after reaching room temperature. The filtrate was 

washed with distilled water until pH 7 was attained, 

followed by 3 times washing with 20 methanol. The 

precipitate was dried in vacuum oven for 12 h. Deep 
red MEH-PPV/TiO2 hybrid nanocomposites were 

obtained and subjected to structural and photophysical 

characterization to analyze the effect of nanoparticle 
interaction with conjugated polymer. 
 

Characterization of hybrid nanocomposite 

Fourier transformed infrared (FTIR) spectra were 

recorded using Nicolet iS5-6700 under ATR 

condition at wavenumber ranging from 4000 cm
−1

 to 

500 cm
−1

. X-ray diffraction (XRD) pattern were 

obtained using Rigaku Mini Flex X-ray diffractometer 

model using a monochromatic copper radiation 

(CuKα) of wavelength λ = 1.54 Ǻ in the range of 20-
80º with the step size of 0.02º. TiO2 nanoparticles 

were dispersed in 5 mL distilled water through 

ultrasonication for 30 min and the particle size 
distribution was measured using MALVERN particle 

size analyzer under ambient condition with a count 

rate of 172 kcps. SEM micrographs were obtained 
from Field Emission Scanning Electron Microscopy 

(FESEM) - FEI Quanta 200 Model SEM. The 

photophysical characterization of all the materials was 

studied through UV-visible absorption spectra 
recorded using Cary 500 Scan model made by 

VARIAN, with wavelength ranging from 200 to  

700 nm and Photoluminescence (PL) emission spectra 
in the wavelength ranging from 200 to 1100 nm 

recorded on a Cary Eclispe mode made by VARIAN 

using xenon pulse lamp as the source in ambient 

condition. 
 

Results and Discussion 
 

Characteristics of TiO2 nanoparticles 
 

Structural characterization  

Fig. 1 displays XRD patterns of synthesized TiO2 

nanoparticles. The prepared TiO2 constitutes of mixed 
phase of tetragonal anatase (represented by A) and 

rutile (represented by R) along with traces of 

orthorhombic brookite (represented by B) which was 
in agreement with the data reported in the databases 

cards JCPDS no. 00-021-1272, JCPDS no.00-021-

1276 and JCPDS no.00-029-1360, respectively. The 

diffraction peaks at 25.3º, 37.9º, 48.2º, 55.1º, 62.7º 
revels the anatase phase of TiO2 nanoparticles. The 

diffraction peaks at 27.5º, 45.5º, 53.9º, 66.3º and 69º 

indicating the rutile phase of TiO2
12

. In the phase 
composition of TiO2, an additional peak at 30.8˚ 

confirms the fraction of brookite phase arises due to 

decrease in pH during synthesis
15

. Addition of NaOH 

had favoured the formation of rutile. Generally, the 
higher surface energy has contributions to non-

equlibirium transition from anatase to rutile which 

was facilitated by calcining at 600℃
16

. But it was 
observed that the incorporation of sulfate ion during 

the synthesis stabilized the anatase phase, inhibiting 

the prominent formation of the rutile phase
15

. The 
proposition of anatase/rutile phase composition can be 

estimated using the Spurr and Myers equation
17

: 
 

 

 

 
 

Scheme 2 — Flow chart for the preparation of HPNCs 
 

 

 
 

Fig. 1 — X-ray diffraction pattern of TiO2 nanoparticles 
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Where, IR and IA are the peak area of diffraction peaks 

of rutile (110) and anatase (101), respectively. From 

the above equation the anatase to rutile proportion 
was estimated as ~83%. The XRD studies revealed 

the formation of mixed phase TiO2 with predominant 

orientation in anatase phase.  
 

Morphological studies: SEM and particle size analysis of TiO2 

nanoparticles 
 

The SEM micrographs of TiO2 nanoparticles at 25 kX 
magnification (Fig. 2A) show that the particles are 

spherical with an average diameter of 140 nm; and 

crystalline in nature with defined grain boundaries. 
The particles are agglomerated owing to the high 

surface energy of TiO2 nanoparticles which is 

observed from the SEM images. Fig. 2B displays the 

size distribution of TiO2 nanoparticle which covers 
the range from 150 to 250 nm with the average size of 

189 nm. A small hump around 280 nm denotes the 

agglomerates. 
 

Characteristics of MEH-PPV/TiO2 hybrid nanocomposite 
 

Structural characterization 

Fig. 3 shows the FTIR spectra of MEH-PPV, TiO2 

and MEH-PPV/TiO2 nanocomposites. The FTIR 

spectrum of MEH-PPV [Fig. 3(i)] denotes the main 
characteristic absorption bands at 2957, 2856 and 

2924 cm
-1

 band of CH3, CH2 asymmetrical and C-H 

stretching vibrations, respectively. Three semicircular 

stretch bands associated with the phenyl ring are 
observed at 1408, 1501 and 1606 cm

-1
. The other 

vibration at 863 and 965 cm
-1

 indicates out of plane 

phenyl CH wag and trans double bond C-H wag. 
Symmetrical and asymmetrical C-O-C stretching 

vibration modes are located at 1032 and 1202 cm
-1

, 

respectively corresponds to alkyl oxygen stretch and 

phenyl oxygen stretch. The small band at 1736 cm
-1

 
could be attributed due to the carbonyl absorption. 

The 1460 and 794 cm
-1 

shows band of CH3 

asymmetrical C-H bending and mono substituted 
aromatic ring C-H bending

14
. The band at 1447 cm

-1
 

corresponds to O-H bending vibration of water.  

Ti-O-Ti vibration bonds were found at 875 cm
-1

. The 
peak observed at 1102 cm

-1
 corresponds to the C-O 

vibration. The band at 609 and 635 cm
-1

 could be 

attributed to the stretching mode of Ti-O bonds, 

 

 
 

Fig. 2 — (A) SEM image at 25 kX magnification and (B) particle 
size analysis graph of TiO2 nanoparticles 
 

 

 
 
Fig. 3 — FTIR spectra of MEH-PPV and MEH-PPV/TiO2 
nanocomposites 
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which are characteristic of titanium oxide. The FTIR 

spectra of hybrid nanocomposite were similar to that 

of MEH-PPV. Since TiO2 was incorporated in a very 
low quantity, there is no significant change in the 

FTIR spectra was observed in the nanocomposites. 

The presence of additional bands at 1650-1700 cm
-1

 

denotes the Ti-OH bond. The band around 856 cm
-1

 
signifies the presence of TiO2 nanoparticles. Thus, the 

presence of the nanoparticles in the composites  

was confirmed.  
 

The XRD studies of the nanocomposite were 

carried out in order to examine the influence of TiO2 
nanoparticles into the MEH-PPV polymer.  

Fig. 4 shows the XRD pattern of MEH-PPV/TiO2 

nanocomposite. It is evident from Fig. 4(i) that the 

pristine MEH-PPV polymer with a broad peak at  
2θ = 22º, is highly amorphous in nature. Similarly, the 

diffraction peak of polymer nanocomposites displayed 

the broad peak at ~22º with a slight peak shift due to 
the internal stress induced by the addition of TiO2 

nanoparticles into the polymer matrix. Due to trace 

amount of TiO2 dispersion the diffraction peaks of the 
nanoparticles were not distinct in XRD of polymer 

nanocomposites. But in Fig. 4(iii), a low intensity 

peak at 26.8º denotes TiO2. This might be due the 

improper dispersion of TiO2 nanoparticles in the 
polymer nanocomposites which tends to agglomerate 

and became visible during analysis. 
 

Photophysical characterization 

HPNC thin films were obtained by dissolving 

HPNCs in toluene at a concentration of 10 mg/mL. 

This solution was spin coated on to a cleaned glass 

substrate at a speed of 1500 rpm for 5 times at 35℃ to 

obtain approximately 1 μm thick film for PL studies.  
 

The absorbance and emission spectra of MEH-PPV 

and MEH-PPV/TiO2 nanocomposites are given in 
Fig. 5 A & B. Both MEH-PPV and the nanocomposite 

exhibit a broad absorbance peak centered at ~490 nm 

is attributed to the π–π* transition of the conjugated 

polymers. No evidence of any additional peak in the 
measured spectral region denotes the absence of 

ground state complex which implies that there is no 

formation of any new complex species with the 
addition of TiO2 in MEH-PPV. When the thin films of 

MEH-PPV and hybrid nanocomposite were excited at 

480 nm, the emission spectra of hybrid 

nanocomposite films were similar to that of the 
pristine MEH-PPV. However, the decrease in PL 

intensity was observed as the TiO2 content increases 

since the film was coated in same condition and at the 
same concentration of solution. The decreased 

intensity could be due to the quantity of TiO2. On 

examining the emission spectra, it can be seen that the 
luminescence primarily results from the excitons 

 

 
 

Fig. 4 — XRD patterns of MEH-PPV and MEH-PPV/TiO2 
nanocomposites 
 

 

 
 

Fig. 5 — (A) Absorbance and (B) emission spectra of MEH-PPV 
and MEH-PPV/TiO2 nanocomposites 
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which radiatively recombine in MEH-PPV. A 

predominant peak at 630 nm is attributed to the 
interchain excitons of MEH-PPV, since the thin films 
were obtained from the solution of higher 

concentration. A small hump at 590 nm in the case of 

1% TiO2, HPNC film signified the presence of 

intrachain excitons of MEH-PPV in a minimal 
quantity. This was owing to the fragmentation of few 

polymer chains through addition of nanoparticles. 

Nevertheless, the intensity of the PL emission  
(630 nm) in the composites decreasing substantially 

with increasing TiO2 nanoparticle content denotes the 

charge separation occurring at the interface of the 

luminescent polymer and nanoparticle which is 
responsible for the photoluminescence quenching

18
. 

The charge separation at the interface is on the basis 

of relative energy levels of MEH-PPV and TiO2 
nanoparticles where the disassociation of the excitons 

is energetically allowed. Due to better PL quenching 

and enhanced charge transfer these hybrid 
nanocomposites are expected to be useful in 

photovoltaic applications
4
.  

 

Charge Transfer Process from MEH-PPV to mixed phase 

TiO2 

An electron and hole that is coulombically bound is 

termed as an exciton. A charge separation can take 
place only when the binding energy is overcome 

which is done by photoexcitation of the conjugated 

polymer. Such a charge separation can be made 

efficient with a material with higher electron affinity 
and only if the LUMO level of polymer is lower than 

Conduction band of the semiconductor metal oxide 

where the polymer acts as donor and metal oxide as 
an electron accepting material. Additionally, there 

should not be much potential difference between both 

donor and acceptor. A short range interaction brings 
about spatial over lap of wavefunction of donor and 

acceptor; as a result disassociation of exciton takes 

place significantly at the polymer/nanoparticle 

interface. Moreover, the interface between the 
polymer and the nanoparticle plays a crucial role in 

determining the performance of the device. Hence 

intermixing with the polymer at the nanometer scale 
for efficient charge transfer is achieved in this case. 

anatase phase has more electron affinity, hence mixed 

phase TiO2 which was predominantly in anatase phase 

had facilitated efficient separation of photogenerated 
electrons from MEH-PPV. In this process, the rutile 

phase has lower conduction band compared to anatase 

supported in initial extraction of electrons from MEH-

PPV. The electron in rutile is transferred to anatase 

phase which facilitates movement of electrons further 

away from MEH-PPV which inhibits the 
recombination process. Hence, the mixed phase TiO2 

acts as an efficient quencher for MEH-PPV and 

therefore, the MEH-PPV/TiO2 can be a suitable active 

layer in photovoltaics. The process of charge transfer 
from MEH-PPV to mixed phase TiO2 is represented 

in the Fig. 6. 
 

Conclusions 
The results of the analysis of photoinduced charge 

transfer from MEH-PPV to the mixed phase TiO2, 

particularly the steady state PL measurements, reveal 
remarkable quenching of luminescence with increased 

TiO2 content. The luminescence quenching was due to 

the transfer of photogenerated electrons from the 
polymer to TiO2. Structural analysis indicates that the 

chemical structure of the polymer remains unaffected 

by the incorporation of TiO2 nanoparticles. In 

summary, the new approach of incorporation of 
mixed phase TiO2 nanoparticles through in situ 

polymerization in the conjugated polymer matrix has 

resulted in efficient charge separation. Hence, this 
type of polymer nanocomposites is a suitable 

candidate for photovoltaic applications as active layer.  
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Fig. 6 — Charge Transfer prccess between MEH-PPV and mixed 
Phase TiO2 
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