Supporting Information

Enantioselective bioreduction of heptan-2-one and octan-2-one catalyzed by Daucus carota cells

Aliya R Chanysheva* & Vladimir V Zorin Department of Biochemistry and Technology of Microbiological Industries, Ufa State Petroleum Technological University, Ufa, Russia E-mail: aliyach@mail.ru

Received 20 September 2019; accepted (revised) 22 January 2020

 $R = C_5 H_{11}, C_6 H_{13}$

Figure S1.¹H NMR (300 MHz) spectra of (2S)-(+)-heptan-2-ol in CDCl₃.

Figure S2.¹³C NMR spectra of (2S)-(+)-heptan-2-ol in CDCl₃.

Figure S3.¹H NMR (300 MHz) spectra of (2S)-(+)-octan-2-ol in CDCl₃.

Figure S4.¹³C NMR spectra of (2S)-(+)-octan-2-ol in CDCl₃.

Figure S5.GC-MS Spectra of (2S)-(+)-heptan-2-ol (Retention Time 3.982).

Figure S6.GC-MS Spectra of (2S)-(+)-octan-2-ol (Retention Time 4.693).

Figure S7.GC chromatogram of products of reduction of heptan-2-one catalyzed byNaBH₄ (1- heptan-2-one, 2 - (R, S)-heptan-2-ol).

Figure S8.GC chromatogram of racemic acetylated (R)-(-)- and (S)-(+)-heptan-2-ol.

Figure S9.GC chromatogram of products obtained in bioreduction of heptan-2-one catalyzed by

D. carota cells in the presence of glucose (acetylated (R)-(-)- and (S)-(+)-heptan-2-ol).

Figure S10.GC chromatogram of racemic acetylated (R)-(-)- and (S)-(+)-octan-2-ol.

Figure S11.GC chromatogram of products obtained in bioreduction of octan-2-one catalyzed by *D. carota* cells in the presenceof2-propanol (3%)(acetylated (R)-(-)- and (S)-(+)-heptan-2-ol).