Supplementary Information

Synthesis, crystal structure and fluorescence spectrum of some new 1,2,3-triazol-xanthen-3-one derivatives
Hong-Ru Dong*, Chi-Qiong Jin \& Zi-Bao Chen
School of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, Gansu 730000, P. R. China
E-mail: 1000467@luas.edu.cn; donghr12@lzu.edu.cn

Received 28 April 2021; accepted (revised) 14 October 2021

Contents

I. Experimental details

The preparation of 9-(1-aryl-5-methyl-1 H -1,2,3-triazol-4-yl)-6-hydroxy-3H-xanthen-3-one 7a-j

II. H NMR of 7a-j

III. The crystal structure and conformation of compound 7c
IV. The fluorescence excitation and emission spectrum determinations of the title compounds 7a-j
V. The ultraviolet-visible spectra determinations of the title compounds 7a-j

I Experimental Section

Melting points were determined on an $\mathrm{XT}_{4}-100 \mathrm{X}$ microscopic melting point apparatus (The melting point of this series compounds are more than $300{ }^{\circ} \mathrm{C}$, melting point was measured by domestic $\mathrm{XT}_{4}-100 \mathrm{X}$ microscopic melting point instrument.). IR spectra were obtained in KBr pellets on a Nicolet 170SX FTIR spectrometer. The high resolution mass spectrometry was measured with MICRO-TOF Q II (ESI). ${ }^{1} \mathrm{H}$ NMR spectroscopy was recorded at Varian Mercury Plus-300NMR instrument with TMS as an internal standard.

2. 2 Synthetic procedure of the target compound

Preparation of 1-aryl-5-methyl-1,2,3-triazol-4-carboxylic acid (4a-j) was following methods in the literature.

Preparation of 1-aryl-5-methyl-1,2,3-triazol-4-carbonyl chloride 5a-j was following methods in the literature.

General procedure of preparation of (2,4-dihydroxy- phenyl)-(1-aryl-5-methyl-1H-1,2,3-triazol-4$\mathbf{y l})$-methanone 6a $\sim \mathbf{j}$ following methods in the literature.

General preparation procedure of 9-(1-aryl-5-methyl-1 H - 1,2,3-triazol-4-yl)-6-hydroxy-3H-xanthen-3-one derivatives $7 \mathrm{a} \sim \mathrm{j}$ following the procedure method.

A solution of (1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)-(2,4- dihydroxy-phenyl)-methanone 6a~j (0.0015 mol) and resorcinol $(0.0018 \mathrm{~mol})$ and 4-methylbenzenesulfonic acid (0.011 mol) with stirring in 25 mL round bottomed flask at $110{ }^{\circ} \mathrm{C}$ under argon for $6-8$ hours. Then reaction mixture was cooled to room temperature, a solution of 2 g NaOH in 25 mL water was added under acutely stirred. The reaction mixture was heated to solution of solid and was poured into 25 mL water. The pH of the reaction mixture was regulated to $\mathrm{pH}=5$ by glacial acetic acid. The red precipitation was separation, filtered, washed with water and recrystallized from ethanol to give 7a-j.
II. ${ }^{1} \mathbf{H}$ NMR spectroscopy of 7a-j

7c

ఇ
969.9
782.9
$29 L^{\circ} 9$
$125^{\circ} L$
$255^{\circ} L$
$522^{\circ} L$
$608^{\circ} L$
608°
-928°
928.2
$506^{\circ} 2$

585'2——
$975^{\circ} L$
$208^{\circ} t$
$328^{\circ} L$
688° 2

852%
882%

282^{\prime}
s08.

050.2-
$\operatorname{ses} 2-$

52T.
$9 \mathrm{tI} \cdot \mathrm{b}$
$97 T \cdot$
$0 \angle T \cdot$
$\varepsilon 6 I \cdot$
ع6I*

699.9
512.9
562
$802^{\circ} 2$
882°
ssz.
SZE'
tS6.
TSE
912.2
928°
829°
$829^{\circ}<$
$859^{\circ} 2$
$\angle 29^{\circ} \angle$
$20 \mathrm{C}^{\circ} L^{\circ}$

* $-$
\qquad

\circ
$L^{\circ} 9$

```
*
```


$2-$
$\sqrt{\sqrt{7}}$
$0 く^{\circ} L^{2}$
ppm
f

J ¢
2.56
(

$876^{\circ} \varepsilon$
$0 \angle 0^{\circ} \varepsilon$
$160^{\circ} E$
698. ${ }^{\prime}$

III. The crystal structure and conformation of compound 7c

The colorless transparent crystal of compound 7c (Fig. 1) with a size of $0.40 \mathrm{~mm} \times 0.35 \mathrm{~mm} \times 0.30 \mathrm{~mm}$ was selected for X-ray diffraction analysis. APEX2 was applied for data collection [1]. SAINT was applied for cell refinement and data reduction. The SHELXS-97 program was applied for the structure analysis according to reported methods [2]. All measurements were made on a Bruker D_{8} Smart Apex II diffractometer with graphite-monochromatic MoK α radiation ($\lambda=0.71073 \AA$) at $567(2) \mathrm{K}$. A total of 7072 integrated reflections in the range of $1.77 \leq \theta \leq 25.50^{\circ}$ (index ranges: $-10 \leq h \leq 9,-11 \leq k \leq 11,-12$ $\leq l \leq 14)$ were collected with 2160 unique ones (R int $=0.0255$). All of the non-hydrogen atoms were located with successive difference Fourier syntheses by full-matrix least-squares and the final refinement gave $R=0.0597, w R=0.1481\left(w=1 /\left[\sigma^{2}\left(F o^{2}\right)+(0.0748 P)^{2}+0.3408 P\right]\right.$, where $P=\left(F o^{2}+2 F c^{2}\right) / 3, F c^{*}=$ $\mathrm{k} F c\left[1+0.001 \mathrm{x} F c^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$ (Extinction-coef $\left.0.006(3)\right)$ and $S=1.046$ by using the SHELXL program [3], and the hydrogen atoms were added from difference Fourier map and refined freely.

The structure of the title compound 7c is shown in Fig. 1.

Fig. 1 Mercury view of the molecular structure for the title compound 7c showing the atom numbering scheme

Fig. 2 The title compound 7c showing tri-ring plane

Fig. 3 The H-bond structure of the compound 7c (PWT drawing for the Platon)

Table I-Crystal data and summary of data collection and structure refinement

Compound	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{3}$
CCDC deposit No	2034640
Color	Reddish brown
Formula weight	403.81
Temperature, ${ }^{\circ} \mathrm{C}$	21(294K)
Crystal system	Triclinic
Space group	P-1
Unit-Cell dimensions	
	$\mathrm{a}=8.296(4) \AA$
	$\mathrm{b}=9.726(5) \AA$
	$\mathrm{c}=11.976(6) \AA$
	$\alpha=90.953(7)^{\circ}$
	$\beta=105.081(7)^{\circ}$
	$\gamma=100.693(8)^{\circ}$
Volume(\AA^{3})	914.7(8)
Z	2
$\mathrm{D}_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.466
F(000)	416
Absorption coefficient, $\mathrm{mm}^{-1} 0.240$	
Diffractometer/Scan CCD area detector, $\omega / 2 \theta$	
Radiation/ λ Mok α (graphite monochromator)/ $0.71073 \AA$	
$\theta \mathrm{min}, \theta \mathrm{max},{ }^{\circ}{ }^{\text {a }}$)	1.77-25.50
Reflections measured 3333	
Independent/observedreflections 2160	
Data/restraints/parame	eters 7072/0/265
Refinement method Full-matrix least-squares on F^{2}	
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.046$	
shift/su_max 0.000	
Final R indices	$\mathrm{R}_{1}=0.0597, w \mathrm{R} 2=0.1481$
R indices[$I>2 \sigma(I)$]	$\mathrm{R}_{1}=0.0947, w \mathrm{R} 2=0.1738$
Extinction coefficient	0.006(3)
Largest diff. Peak and hole 0.314and-0.384 e \AA^{-3}	

Table II — Selected Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for the Target Compound 7c

Bond	Dist. (£̊)	Bond	Dist. (̊)	Bond	Dist. (Å)
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.361(3)$	$\mathrm{N}(1)-\mathrm{C}(15)$	$1.365(3)$	$\mathrm{N}(1)-\mathrm{C}(17)$	$1.429(4)$
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.301(3)$	$\mathrm{N}(3)-\mathrm{C}(14)$	$1.373(3)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.372(4)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.490(4)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.479(4)$	$\mathrm{C}(6)-\mathrm{O}(1)$	$1.366(3)$
$\mathrm{C}(7)-\mathrm{O}(1)$	$1.368(3)$	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.295(3)$	$\mathrm{O}(3)-\mathrm{C}(9)$	$1.298(4)$
$\mathrm{Cl}(1)-\mathrm{C}(21)$	$1.725(4)$				
Bond	Angle $\left(^{\circ}\right)$	Bond	$\mathrm{Angle}\left({ }^{\circ}\right)$	Bond	Angle $\left({ }^{\circ}\right)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{N}(2)$	$111.2(2)$	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(17)$	$131.4(3)$	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(17)$	$117.2(2)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$	$107.3(2)$	$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(14)$	$108.7(2)$	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	$103.3(2)$
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	$123.4(3)$	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	$119.3(2)$	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	$109.5(2)$
$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	$119.2(3)$	$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(22)$	$119.1(3)$	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(1)$	$116.2(2)$
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.4(2)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	$120.2(2)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$116.5(2)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$123.3(3)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.9(3)$	$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(8)$	$120.8(3)$
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.2(3)$	$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(7)$	$121.0(2)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$131.1(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$133.0(3)$	$\mathrm{Cl}(1)-\mathrm{C}(21)-\mathrm{C}(20)$	$119.1(3)$	$\mathrm{Cl}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$119.6(3)$

Table III — Selected Dihedral Bond Torsion Angles (${ }^{\circ}$)						
Bond	Angle $\left({ }^{\circ}\right)$	Bond	Angle $\left({ }^{\circ}\right)$	Bond	Angle $\left({ }^{\circ}\right)$	
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{N}(2)$	$58.3(4)$	$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{N}(2)$	$116.4(3)$	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(15)$	$128.0(4)$	
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(15)$	$-57.3(5)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$124.8(3)$	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$55.4(4)$	
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{N}(3)$	$53.3(4)$	$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{N}(3)$	$-126.4(3)$			

[1] APEX2 (Version 2.1), SAINT Plus, Data Reduction and Correction Program (Version 7.31A, Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, USA, 2006.
[2] Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. SIR97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, 32, 115-119.
[3] Sheldrick, G. M. SHELXL-97. Program for the Solution of Crystal Structures. University of Gottingen, Germany 1997.
IV. The fluorescence excitation and emission spectrum determinations of the title compounds 7a-j

No.	Fluorescence intensity	Emission $\lambda_{\text {max }}(\mathrm{nm})$	Fluorescence intensity	Excitation $\lambda_{\text {max }}(\mathrm{nm})$
7a	202.089096	544	204.261061	527.5
7b	197.824126	544	197.336660	526.5
7c	187.988638	547.5	187.078361	529.5
7d	207.042994	546	202.841994	526
7e	206.218207	546	204.472257	526.5
7 f	213.492686	544.5	213.820350	529
7 g	212.742000	543.5	210.885213	527
7h	214.532625	543.5	209.740502	526.5
7 i	204.040523	545.5	204.688328	529
7 j	203.679487	544.5	203.728328	527
fluorescein	102.307932	522.5	101.145666	503.5

Table V — The fluorescence spectrum of compounds $7 \mathrm{a}-\mathrm{j}$ in 0.1 NaOH solution $(\mathrm{pH}=13.0)$

No.	Fluorescence	Emission	Fluorescence	Excitation
	intensity	$\lambda_{\max }(\mathrm{nm})$	intensity	$\lambda_{\max }(\mathrm{nm})$
7a	341.245994	536.5	$163.636216 ; 341.356010 ; 258.480255$	$335.5 ; 479 ; 524$
7b	342.614096	537	$183.759000 ; 344.961000 ; 255.575000$	$336 ; 479.5 ; 524.5$
7c	330.418445	536.5	$160.465428 ; 331.299432 ; 254.266458$	$334 ; 479 ; 522.5$
7d	332.156990	537	$162.015311 ; 329.752474 ; 249.788458$	$338 ; 481 ; 523.5$
7e	343.254649	536	$148.772855 ; 338.102153 ; 273.699055$	$338 ; 480 ; 519.5$
7f	358.930936	536.5	$152.005473 ; 354.039621 ; 268.619979$	$340.5 ; 479.5 ; 522$
7g	353.395549	536	$157.066499 ; 353.844773 ; 267.528411$	$338 ; 480 ; 523.5$
7h	366.804857	535	$161.705018 ; 361.834896 ; 278.048805$	$341 ; 480.5 ; 521$
7i	346.120200	536.5	$164.754001 ; 341.011580 ; 262.653589$	$334 ; 480 ; 523$
7j	345.875883	536	$161.240417 ; 344.046410 ; 266.851265$	$335 ; 478.5 ; 521$
fluorescein	486.752493	523.5	$289.388562 ; 487.113303 ; 369.071597$	$328.5 ; 461 ; 509$

V. The ultraviolet-visible spectra determinations of the title compounds 7a-j

Table VI - The ultraviolet-visible spectra of compounds 7a-j

No.	Absorbance	Emission	Absorbance	Excitation
	Intensity(EtOH)	$\lambda_{\max }(\mathrm{nm})$	intensity $(\mathrm{pH}=13.0)$	$\lambda_{\max }(\mathrm{nm})$
$\mathbf{7 a}$	1.103335	522	2.345344	508
7b	0.822615	521	2.657693	508
7c	1.660779	522	2.275287	509
7d	0.851299	523	2.265751	509
7e	1.150787	523	1.850194	509
7f	1.368708	521	2.23231	509
7g	0.910134	522	2.196458	508
7h	0.765416	522	2.126223	508
7i	1.01219	523	2.042579	510
7j	0.767363	522	2.104516	509
fluorescein	0.245803	497	2.855093	488

