

Indian Journal of Chemical Technology Vol. 28, May 2021, pp. 343-350

An efficient synthesis, invitro and insilco evaluation of new pyrazole and isoxazole derivatives as anti-inflammatory agents

Kumaraswamy Gullapelli*,1, Ravichandar Maroju1 & Ramchander Merugu2

Dept.of Chemistry, Mahatma Gandhi Institute of Technology, Hyderabad 500 075, India

²Dept.of Biochemistry, Mahatma Gandhi University, Nalgonda 508 254, India

E-mail: kumargullapelli001@gmail.com

Received 12 August 2020; accepted 5 April 2021

The present study is the synthesis of new heterocyclic moieties like pyrazole, isoxazole and thiazole containing benzimidazole nucleus. The title compounds were synthesized from 4-(1H-benzo[d]imidazol-2-yl) oxazol-2-amine. The newly synthesised compounds were screened for their in vitro anti-inflammatory activity and demonstrated excellent to moderate activity and molecular docking study reports are supporting anti-inflammatory activity showed high inhibition constant and binding energy. The structures of synthesised compounds were characterized by IR, ¹HNMR, Mass spectroscopic methods.

Keywords: Benzimidazole, Docking study, Isoxazole, Pyrazole, Synthesis

Chemistry of heterocycles is highly essential for the present pathogenic environment to address the realdemands^{1,2}. world Synthesis of heterocyclic compounds is a great challenge for higher efficiency and eco-friendly point of view^{3,4}. As the quest for synthesis of new heterocycles for controlling and curing the emerging diseases continues, Scientists have paid attention to design and development of novel heterocyclic compounds from natural products and synthetic methods^{5,6}, Especially nitrogencontaining heterocyclic compounds are occupying unique position in the area of modern drugs and pharmaceuticals^{7,8}. Majority of the pharmaceutical products are heterocycles which meet the expectations of the current industrial and biological requirements.

In recent days, benzimidazole and its derivatives have received great attention in the field of medicinal chemistry⁹⁻¹¹. The current study involves the synthesis of most biodynamic compound benzimidazole containing oxazole, thiazole, pyrazole and isoxazole which exhibit various biological properties like gesic¹⁴. antitumor¹², anthelmintic¹³, anal $antimic robial^{15} \\$ antibacterial¹⁶ and and antiinflammatory activity¹⁷. Hence, in this direction efforts have been undertaken to introduce most versatile and biologically active molecules containing nitrogen, oxygen and sulphur heterocyclic compounds like 6-(4-(1*H*-Benzo[*d*]imidazole-2-yl) oxazole-2-yl)-

3,3a,5,6-tetrahydrothiazolo[4,5-c]isoxazole and 4-(1*H*-benzo[*d*]imidazol-2-yl)-2-(3,5-diphenyl-3,3a-dihydro-2*H*-pyrazolo[3,4-*d*] thiazol-6(5*H*)-yl)oxazole derivatives which were synthesized from 4-(1H-Benzo[*d*]imidazol-2-yl)oxazol-2-amine

Experimental Section

Materials and Methods

The reaction progress was monitored by TLC. IR Spectrum of compounds were recorded by KBr pellet method using Perkin Elmer BX series and HNMR spectrum was recorded by Brucker 400 MHz using DMSO used as solvent and TMS used as internal standard. Chemical shifts (δ) were expressed in ppm. Mass spectrum of compounds were measured on GC/MS-QP1000 EX (EI,70 Ev) mass spectrometer. Elemental analysis was recorded by using Perkin Elmer 240 CHN analyser (Table 1).

General reaction procedure for Compound 4

Equimolar mixture of Benzaldehyde (0.004 mol) and $4-(1H-\text{benzo}[d]\text{imidazol-2-yl})\text{thiazol-2-amine}^{18}$ (3) (0.004 mol) were refluxed in ethanol for about 4h with few drops of glacial acetic acid added. Progress of the reaction was monitored by TLC. After the completion of the reaction, it was cooled and the product was filtered and recrystallized with methanol to afford the compound Schiff base (2) (Scheme 1).

~ 1	-	-1	_		-
Compounds	5a	5b	5c	5d	5e
Ar	Ph	4-CH ₃ - Ph	4-OCH ₃ - Ph	4-OH- Ph	4-NO ₂ - Ph
M.P (°C)	250-52	255-57	256-58-26	251-53	258-60
Yield (%)	78	82	79	80	75
Compounds	6a	6b	6c	6d	6e
Ar	Ph	4-CH ₃ - Ph	4-OCH ₃ - Ph	4-OH- Ph	4-NO ₂ - Ph
M.P (°C)	255-57	258-60	260-62	259-61	263-65
Yield (%)	82	78	76	81	74
Compounds	7a	7b	7c	7d	7e
Ar	Ph	4-CH ₃ - Ph	4-OCH ₃ - Ph	4-OH- Ph	4-NO ₂ - Ph
M.P (°C)	258-60	261-63	264-66	261-63	265-67
Yield (%)	80	81	76	73	74

General reaction procedure for Compound 5

Equimolar mixture of compound 4 (0.01mol), thioglycolic acid (0.01mol), Benzaldehyde (0.01mol) in 1,4 dioxane (30 mL), with a pinch of zinc chloride was refluxed for about 6.5 hours. After refluxing the solution was filtered and cooled in ice bath. Solid product was filtered, washed with 10% NaHCO₃ solution and it was recrystallized from alcohol. The compounds 3(b-h) were prepared by similar procedure with minor changes in reaction conditions (Scheme 1).

(Z)-3-(4-(1H-Benzo[d]imidazol-2-yl) thiazol-2-yl)-5-benzylidene-2-phenyl thiazolidin-4-one (5a)

IR (KBr,cm⁻¹): 3325(NH), 1543 (C=N), 1662 (C=O), 1230 (C=S); ¹H NMR (DMSO-*d*₆, 400MHz,

δ in ppm): 5.92(s,1H,N-CH-Ar), 6.54(s,1H,CH,Ar), 7.13-7.23(m,4H,Ar-H), 7.25-7.46(m,5H,Ar-H),7.56-7.76(m,5H, Ar-H), 9.85(bs, 1H,NH). MS, m/z (%), 466 (M+); Anal.Calcd for C₂₆H₁₇N₃OS: C,66.93; H,3.89; N,12.01%. Found: C,66.23; H,3.72; N, 11.68%.

(Z)-3-(4-(1H-Benzo[d]imidazole-2-yl)thiazol-2-yl)-5-(4methylbenzylidine)-2-phenyl thiazolidine -4-one (5b)

IR(KBr,cm-1): 3337(NH), 2690(C-H), 1560(C=N), 1672(C=O),1249 (C=S); ¹H NMR (DMSO- d_6 ,400 MHz, δ in ppm) : 2.85(s,3H,CH₃), 5.66 (s, 1H,N-CH-Ar), 6.54 (s,1H,CH,Ar), 7.15-7.24 (m, 4H,Ar-H); 7.28-7.38(m, 4H,Ar-H), 7.42-7.64 (m, 4H,Ar-H), 9.95(bs,1H,NH): MS, m/z(%), 480 (M+); Anal.Calcd for C₂₇H₂₀N₄OS₂: C,67.48; H,4.19; N,11.66% Found : C,67.08; H,3.90; N,11.05%.

(Z)-3-(4-(1H-Benzo[d]imidazol-2-yl)thiazol-2-yl)-5-(4methoxybenzylidene)-2-phenyl thiazolidin-4-one (5c)

IR (KBr,cm-1): 33340 (NH), 3045(C-H), 1560 (C=N), 1684(C=O), 1236 (C=S); ¹H NMR (DMSO- d_6 ,400 MHz, δ in ppm); 3.45 (s, 3H, OCH₃), 5.72 (s,1H,N-CH-Ar), 6.58 (s,1H,CH,Ar),7.26-7.50 (m,5H,Ar-H), 7.65-7.84 (m, 4H,Ar-H), 10.05(bs, 1H,NH); MS, m/z(%), 469 (M⁺); Anal .Calcd for C₂₇H₂₀N₄0₂S₂: C, 65.30; H, 4.06; N,11.28 %.Found : C, 65.04; H,3.86; N, 10.85%.

(Z)-3-(4-(1H-Benzo[d]imidazol-2-yl)thiazol-2-yl)-5-(4hydroxybenzylidene)-2-phenyl thiazolidin4one(5d)

IR(KBr,cm¹):3513(OH),3345(NH),1568(C=N),168 3(C=O),1238(C=S); ¹H NMR (DMSO- d_6 , 400 MHz, δ in ppm): 5.88(s,1H, N-CH-Ar), 6.56(s,1H,CH Ar); 7.14-7.27(m,4H,Ar-H),7.30-7.49(m,5H,Ar-H),7.55-7.72(m, 4H, Ar-H),10.14 (bs,1H,NH),11.25 (s, 1H,OH), ;MS, m/z (%), 482 (M⁺); Anal. Calcd for C₂₆H₁₈N₄O₂S₂: C, 64.71; H, 3.76; N, 11.61%. Found: C, 64.42; H, 3.42; N, 11.38%.

(Z)-3-(4-(1H-Benzo[d]imidazol-2-yl)thiazol-2-yl)-5-(4nitrobenzylidene)-2-phenyl thiazolidin-4-one (5e)

IR(KBr,cm⁻¹): 3340(NH),1572(C=N),1525 (NO₂),1683(C=O), 1234 (C=S); ¹H NMR (DMSO d_6 ,400MHz, δ in ppm): 5.84 (s,1H, N-CH-Ar),6.58 (s,1H, CH Ar); 7.13-7.26 (m,4H, Ar-H),7.25-7.48(m,5H, Ar-H), 8.16-8.35 (m,4H, Ar-H),10.20 (bs,1H,NH), MS, m/z (%), 511 (M⁺); Anal.Cacld for C₂₆H₁₇N₅O₃S₂;C, 61.04; H, 3.35; N, 13.69%. Found: C, 60.82; H, 3.06; N, 13.22%.

General reaction procedure for compound 6

Equimolar mixture of compound 5a (0.03 moL), hydrazine hydrate (0.03 moL) and anhydrous sodium acetate (0.001 moL) in glacial acetic acid (30 mL) was heated under reflux for about 6.5 h, cooled at r.t and poured into crushed ice. The solid product was filtered, washed with water and recrystallized from Ethyl alcohol to afford the pure compound. The remaining compounds 4(b-h) were prepared by similar procedure with minor changes as per the reaction conditions (Scheme 1).

6-(4-(1H-Benzo/d/imidazol-2-yl)thiazol-2-yl)-3,5-diphenyl-3,3a, 5, 6- tetrahydro-2H-pyrazolo/3,4-d/thiazole(6a)

IR (KBr, cm⁻¹): 3348 (NH), 3078 (C-H ring), 1546(C=N), 1238 (C=S), 1042(N-N); ¹H NMR (DMSO- d_6 , 400MHz, δ in ppm):4.85 (d, 1H, CH-N),

4.62 (d, 1H, CH-S), 5.90 (s,1H,N-CH-Ar),6.56 (s,1H, CH Ar); 7.10-7.22(m,4H, Ar-H), 7.26-7.45(m,5H,Ar-H),7.55-7.78 (m,5H, Ar-H), 9.75 (bs, 1H,NH). MS, m/z(%),480 (M⁺); Anal. Calcd for $C_{26}H_{20}N_6S_2$: C, 64.98; H, 4.19; N, 17.49%. Found: C, 64.58; H, 4.02; N, 17.18%.

6-(4-(1H-Benzo[d]imidazol-2-yl)thiazol-2-yl)-5-phenyl- 3-(p-tolyl)-3,3a,5,6-tetra hydro-2H-pyrazolo[3,4-d]thiazole(6b)

IR (KBr, cm⁻¹): 3342 (NH),3084(C-H ring), 2963 (C-H), 1565 (C=N), 1249 (C=S), 1052(N-N); ¹H NMR (DMSO- d_6 , 400MHz, δ in ppm): 2.82 (s,3H,CH₃),4.82 (d, 1H, CH-N), 4.60 (d, 1H, CH-S), 5.81 (s,1H, N-CH-Ar),6.51(s,1H, CH Ar); 7.18-7.26 (m,4H, Ar-H), 7.28-7.38(m,4H, Ar-H), 7.45-7.68 (m,4H, Ar-H), 9.98 (bs, 1H,NH).MS, m/z (%), 494 (M⁺); Anal. Calcd for C₂₇H₂₂N₆S₂: C, 65.56; H, 4.48; N, 16.99%. Found: C, 65.34; H, 4.28; N, 16.55%.

6-(4-(1H-Benzo[d]imidazol-2-yl)thiazol-2-yl)-3-(4-methoxyphenyl) -5-phenyl-3,3a, 5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazole(6c)

IR (KBr, cm⁻¹) : 3343(NH),3039(C-H),1559(C=N), 1241 (C=S)1063(NN); ¹H NMR (DMSO- d_6 , 400MHz, δ inppm):3.48(s,3H,OCH₃),4.82(d,1H,CH-N),4.60(d,1H, CH-S),5.74(s,1H,N-CH-Ar),6.58(s,1H, CH Ar); 7.21-7.28 (m,4H,Ar-H), 7.31-7.58 (m,5H,Ar-H), 7.68-7.87(m,4H,Ar-H),10.04(bs,1H,NH), MS, m/z (%), 510 (M⁺); Anal. Calcd for C₂₇H₂₂N₆OS₂:C, 63.51; H, 4.34; N, 16.46%. Found: C, 63.31; H, 4.18; N, 16.16 %.

4-(6-(4-(1H-Benzo[d]imidazol-2-yl) thiazol-2-yl)-5-phenyl-3,3a,5,6-tetra hydro-2H-pyrazolo[3,4-d]thiazol-3-yl) phenol (6d) IR (KBr, cm⁻¹): 3516(OH), 3352 (NH),1571 (C=N), 1242 (C=S) 1043 (N-N); ¹H NMR (DMSO- d_6 ,

(C=N), 1242 (C=S) 1043 (N-N); ¹H NMR (DMSO- d_6 , 400 MHz, δ in ppm): 4.72(d,1H,CH-N), 4.61 (d,1H, CH-S),5.92(s,1H,N-CH-Ar),6.53(s,1H,CH Ar); 7.18-7.31(m,4H,Ar-H),7.28-7.52 (m,5H, Ar-H), 7.61-7.74 (m,4H,Ar-H), 10.15 (bs,1H,NH), 11.35(s, 1H,OH) ;MS, m/z (%),413(M⁺);Anal.Calcd for C₂₆H₂₀N₆OS₂: C, 62.88; H, 4.06; N, 16.92%. Found: C, 62.62; H, 3.86; N, 16.52 %.

6-(4-(1H-Benzo[d]imidazol-2-yl)thiazol-2-yl)-3-(4-nitrophenyl)-5-phenyl-3,3a,5,6 tetrahydro-2H-pyrazolo[3,4-d] thiazole(6e)

IR (KBr, cm⁻¹): 3346 (NH), 1575 (C=N), 1528 (NO₂), 1236 (C=S), 1052(N-N); ¹H NMR (DMSO- d_6 , 400MHz, δ in ppm): 4.91(d,1H,CH-N), 4.75 (d,1H, CH-S), 5.88 (s,1H, N-CH-Ar), 6.62(s,1H, CH Ar); 7.16-7.29 (m,4H, Ar-H), 7.28-7.52 (m,5H, Ar-H), 8.18-8.41 (m,4H, Ar-H),10.22 (bs,1H,NH),MS, m/z (%), 525 (M⁺); Anal. Calcd for C₂₆H₁₉N₇O₂S₂: C,

59.41; H, 3.64; N, 18.65 %. Found: C, 59.12; H, 3.35; N, 18.34%.

General reaction procedure for compound 7

Equimolar mixture of compound 3a (0.03 mol), hydroxylamine hydrochloride (0.03 mol) and anhydrous sodium acetate (0.001 mol) in glacial acetic acid (30 mL) was heated under reflux for about 7h , cooled at r.t and poured in to crushed ice. The solid product was filtered, washed with water and recrystallized from ethyl alcohol to afford the pure compound. The remaining compounds 4(b-h) were prepared by similar procedure with minor changes as per reaction conditions (Scheme 1).

6-(4-(1H-Benzo[d]imidazol-2-yl)thiazol-2-yl)-3,5-diphenyl-3,3a, 5,6tetrahydro thiazolo[4,5-c]isoxazole(7a)

IR (KBr, cm⁻¹): 3348 (NH), 3078 (C-H ring), 1546(C=N), 1238 (C=S); ¹H NMR (DMSO- d_6 , 400MHz, δ in ppm):4.95 (d, 1H, CH-O), 4.72 (d, 1H, CH-S), 5.90 (s,1H,N-CH-Ar),6.58 (s,1H, CH Ar); 7.10-7.22(m,4H, Ar-H), 7.26-7.45(m,5H,Ar-H),7.55-7.78 (m,5H, Ar-H), 9.75 (bs, 1H,NH). MS, m/z (%), 481 (M⁺); Anal. Calcd for C₂₆H₁₉N₅OS₂: C, 64.84; H, 3.98; N, 14.54%. Found: C, 64.25; H, 3.45; N, 14.24%.

6-(4-(1H-Benzo/d/imidazol-2-yl)thiazol-2-yl)-5-phenyl-3-(p-tolyl) -3,3a,5,6-tetra hydrothiazolo[4,5-c]isoxazole(7b)

IR (KBr, cm⁻¹): 3342 (NH),3084(C-H ring), 2963 (C-H), 1565 (C=N), 1249 (C=S) ; ¹H NMR (DMSO- d_6 , 400MHz, δ in ppm): 2.82 (s,3H,CH₃), 4.98 (d, 1H, CH-O), 4.75 (d, 1H, CH-S), 5.81 (s,1H, N-CH-Ar),6.61 (s,1H, CH Ar); 7.18-7.26 (m,4H, Ar-H), 7.28-7.38(m,4H, Ar-H), 7.45-7.68 (m,4H, Ar-H), 9.98 (bs, 1H,NH).MS, m/z (%), 495 (M⁺); Anal. Calcd for C₂₇H₂₁N₅S₂: C, 65.43; H, 4.27; N, 14.13%. Found: C, 65.12; H, 4.04; N, 13.89%.

6-(4-(1H-Benzo[d]imidazol-2-yl)thiazol-2-yl)-3-(4-methoxyphenyl) -5-phenyl-3,3a, 5,6-tetrahydrothiazolo[4,5-c] isoxazole(7c)

IR (KBr,cm⁻¹):3343 (NH), 3039 (C-H),1559(C=N), 1241 (C=S); ¹H NMR (DMSO- d_6 , 400MHz, δ in ppm): 3.48 (s,3H,OCH₃), 5.12(d,1H,CH-O), 4.74 (d,1H, CH-S), 5.74(s,1H,N-CH-Ar),6.64 (s,1H, CH Ar); 7.21-7.28 (m,4H,Ar-H), 7.31-7.58(m,5H,Ar-H), 7.68-7.87(m,4H, Ar-H), 10.04 (bs,1H, NH), MS, m/z (%), 511 (M⁺); Anal. Calcd for C₂₇H₂₁N₅O₂S₂: C, 63.38; H, 4.14; N, 13.69%. Found: C, 63.05; H, 4.05; N, 13.21%.

4-(6-(4-(1H-Benzo[d]imidazol-2-yl) thiazol-2-yl)-5-phenyl-3,3a,5,6-tetra hydrothiazolo[4,5-c]isoxazol-3-yl) phenol (7d)

IR (KBr, cm⁻¹): 3516(OH), 3352 (NH), 1571 (C=N), 1242 (C=S); ¹H NMR (DMSO- d_6 , 400 MHz, δ in ppm): 5.08 (d,1H,CH-O), 4.72 (d,1H, CH-S), 5.92 (s,1H, N-CH-Ar), 6.63 (s,1H, CH Ar); 7.18-7.31 (m,4H,Ar-H), 7.28-7.52 (m,5H, Ar-H), 7.61-7.74 (m,4H,Ar-H), 10.15 (bs,1H,NH), 11.35 (s, 1H,OH) ;MS, m/z (%), 497 (M⁺); Anal. Calcd for C₂₆H₂₀N₆OS₂: C, 62.76; H, 3.85; N, 14.07%. Found: C, 62.76; H, 3.85; N, 14.07%.

6-(4-(1H-Benzo/d/imidazol-2-yl)thiazol-2-yl)-3-(4-nitrophenyl) -5-phenyl-3,3a,5,6-tetra hydrothiazolo [4,5-c]isoxazole(7e)

IR (KBr, cm⁻¹): 3346 (NH), 1575 (C=N), 1528 (NO₂), 1236 (C=S); ¹H NMR (DMSO- d_6 ,400MHz, δ in ppm):5.14 (d,1H,CH-O), 4.85 (d,1H, CH-S), 5.88 (s,1H, N-CH-Ar),6.65 (s,1H, CH Ar); 7.16-7.29 (m, 4H, Ar-H), 7.28-7.52 (m,5H, Ar-H), 8.18-8.40 (m,4H, Ar-H),10.22 (bs,1H,NH),MS, m/z (%), 526 (M⁺); Anal. Calcd for C₂₆H₁₈N₆O₃S₂: C, 59.30; H, 3.45; N, 15.96%. Found: C, 58.90; H, 3.15; N, 15.56%.

In vitro Anti-inflammatory activity

About 5 mL of reaction mixture which contains 0.2 mL of egg albumin, 2.8 mL of phosphate buffered saline (PBS, *p*H 6.4) was added with 2 mL of synthesized compounds at 50 and 100 μ g/ml and double-distilled water with equal volume was used as control. The prepared mixtures were incubated at about (37±2)°C in BOD incubator for about 15 min and followed by heating at 70°C for about 5 min. After attaining the r.t, absorbance was measured at 660 nm using vehicle as blank and viscosity was determined by Ostwald viscometer. Diclofenac sodium was used as standard drug¹⁹ and its concentrations were maintained at 50 and 100 μ g/mL (Table 2).

The inhibition (%) of protein denaturation was measured by using the following formulae

% of inhibition = $100 \times (Vt/Vc-1)$

Where Vt = Test sample absorbance Vc= Absorbance of control

The concentration of drug for 50% inhibition (IC₅₀) was determined by plotting % of inhibition with respect to control against treatment concentration.

Each value in the table is represented as mean \pm SD (n = 3). Values in the same column followed by a different letter (a-e) are significantly different (p < 0.05).

Inhibitions of protein denaturation of the compounds are shown in the descending order: 7e>6e>7c>7d>6c>7b>6d>7a>6b>6a>

In Silico anti-inflammatory studies

The docking studies was done by using the molecular docking server^{20,21}. The cyclooxygenase enzyme was downloaded from the PDB(Protein data bank) and was docked to the title compound and the results are tabulated given below.

Docking studies of 6-(4-(1H-benzo[d]imidazol-2-yl) thiazol-2-yl)-3,5-diphenyl-3,3a,5,6-tetrahydro-2H-pyrazolo [3, 4-d] thiazole (6a):

Docking studies of6-(4-(1H-benzo[d]imidazol-2-yl) thiazol-2-yl)-3, 5-diphenyl-3, 3a, 5, 6-tetrahydrothiazolo [4, 5-c] Isoxazole (7a):

Results and Discussion

The present investigation is the synthesis of new biheterocyclic rings that are thiazole-pyrazole and thiazole-isoxazole derivatives are linked at 2nd position of benzimidazole in an appreciable yield. The compound 4 (Schiff's base) was synthesized by using 2-aminobenzimidazole with benzaldehyde under simple procedure. The compound 5 (Chalcone derivatives of thiazolidinone) was synthesized by cyclization of one pot three -component method using compound 4, thioglycolic acid and substituted aromatic aldehydes using anhydrous zinc chloride²². Later, the intermediate compound 5 undergoes cyclization with hydrazine hydrate affords the compound 6 with pyrazole ring. Whereas, intermediate compound 5 undergoes cyclization with hydroxyl amine hydrochloride in the presence of anhydrous acetic acid to afford the compound 7 with isoxazole ring.

The structures of newly synthesized compound were confirmed based on spectral and analytical data.

The compounds showed IR absorption bands at 3348 cm⁻¹ (NH), 1564 cm⁻¹ (C=N), 1238 cm⁻¹(C=S), 1042 cm⁻¹ (N=N), 1680 cm⁻¹ (C=O) respectively. ¹H NMR Spectra of title compounds showed singlet signals at 5.58 for N-CH-S, singlet thiazole protein signals at 6.56, doublet signals at 4.62 CH-S, 4.82 CH-N and 9.82 singlet proton for NH and also phenylic protons as multiplet in the range of 7.10-8.41 ppm respectively. Mass spectra of synthesized compounds showed a molecular ion peak at m/z corresponding molecular weights.

In vitro anti-inflammatory activity

The synthesized derivatives were tested for their efficacy to inhibit the protein denaturation. The process is carried out by using egg albumin. All the compounds showed concentration dependent inhibition property. Compounds (7e and 6e) are found to exhibit significant inhibition percentage compared other synthesized compounds. Nevertheless, to Compounds (7c, 6c, 6e and 7e) are competed in exhibiting a notable activity with good inhibition percentage shown in Table 2. On the other hand, the compounds 6d and 7d showed moderate activity. The variations in the activity might be due to different functional groups present in derivatives. By these studies, it is concluded that benzimidazole derivatives showed preliminary anti-inflammatory activity.

The IC₅₀ values represented in Table 3 are shown as mean \pm SD. According to the data, the IC₅₀ 24 \pm 0.1, 21 \pm 0.5 of compounds 7c and 6d are significant and are comparable with standard Diclofenac sodium standard.

In silico anti-inflammatory activity

Molecular docking studies have shown that the ligand 1 has shown a binding energy of 6.06 kcal/mol (Table 4). Figure 1 shows the docking pose between

1	able 2 –	– In vitro anti-inf	lamma	itory ac	ctivity	of com	pound	s (6a-e) and (/a-e)]	bercent	age of 1	nnibition (%)		
Compounds				6a	6b	6c	6d	6e	7a	7b	7c	7d	7e	Standard	
Conc. (µg/mL)			50	40	41	44	43	45	42	43	44	43	46	48	
			100	74	75	78	76	85	75	77	84	83	88	90	
Table	: 3 — Ir	ı vitro anti-inflam	mator	activi	ity of c	ompou	nds (6	a-e) an	d (7a-0	e) perc	entage	of inhil	oition in IC 50	· (%)	
Compounds	6a		6b			6c		6d			6e		Standard		
IC 50	5.1±2.4		6.5±2.3 7.9±0.5		5	21±0.5			17 ± 1.0		28 ± 0	28 ± 0.5			
Compounds	7a		7b	7b 7c			7d			7e		Stand	ard		
IC 50	$10.\pm 1.5$		09±0	09±0.7 24±0.1			15.±2.3			14.5	±2.1	32±0.5			
		Table 4 -	– Free	energ	y of bi	nding b	etwee	n the e	nzyme	and th	e ligan	id 1			
Est. Free Energy of Est.		Est. Inhibition	vdW + Hbond + desolv		v l	Electrostatic		То	Total Intermolec.		Frequence	y Interact.			
Binding		Constant, Ki		Energy			Energy			Energy			Surface		
-6.06 kcal/mol		36.07 uM	-7.15 kcal/mol			-(-0.04 kcal/mol		-^	-7.19 kcal/mol		50%	689.87		

Fig. 1 — Docking pose showing the interaction between the enzyme and the ligand 1

Table 5 — Interac	tion table the various types	of interaction	ns between the amin	noacids of the enzy	me	and the ligand 1
Polar	Hydrophobic	pi-pi		other		
N5 (20) GLU67	C23 (<i>31</i>) CYS57	C18 (26)	TYR55	C19 (27) [3.79]		GLN54 (<i>CB</i>)
[2.88] - (OE1, OE2)	[3.89] - (CB)	[3.24]	- (CD1, CE1)	NIA (15) 52 (2)	_	
N6 (21) GLU67 [3.22] – (<i>OE1</i> , <i>OE2</i>)		C19 (27) [3.88]	TYR55 – (<i>CD1</i>)	N4 (15) [3.63]		GLU67 (<i>CB</i> , <i>CG</i>)
H9 (43) = (021, 022) H9 (43) GLU67		[5.00]	= (CD1)	C11 (16) [3.23]	_	GLU67 (CB, CD, CG,
[2.69] - (OE1, OE2)				011 (10) [0.20]		<i>OE1, OE2</i>)
				C9 (12) [3.69]	_	GLU67 (CB)
				N3 (11) [2.93]	-	GLU67 (CB)
				N2 (9) [3.69]	_	GLU67 (CB)
				C12 (17) [3.38]	-	GLU67 (CD, CG, OE2)
				N5 (20) [3.11]	_	GLU67 (CD, CG)
				C22 (30) [3.77]	_	GLU67 (CG)
				N6 (21) [3.41]	-	GLU67 (CD)
				H9 (43) [3.08]	_	GLU67 (CD)
						GLU67 (OE2)
				C14 (22) [3.48]	-	GLU67 (OE2)
				C15 (23) [3.32]	_	GLU67 (OE2)
				C17 (25) [3.28]	_	GLU67 (OE2)
				C3 (3) [3.42]	_	THR71 (CG2)
				C2 (2) [3.19]	_	THR71 (CG2)
				C1 (1) [3.69]	_	THR71 (CG2)

the enzyme and the ligand 1where different amino acids bind to the active site of the ligand. Interaction table the various types of interactions between the amino acids of the enzyme and the ligand 1 are shown in Table 5 where the major amino acids involved in binding are gluatamic acid, cysteine, tyrosine, glutamine and threonine at the active site. Docking studies between the ligand 2 has shown a binding energy of -6.40 kcal/mol (Table 6). Figure 2 shows the docking pose between the enzyme and the ligand 2 where various amino acids bound to the active site of the ligand. Interaction table the various types of interactions between the amino acids of the enzyme and the ligand 1 are shown in Table 7 where the major amino acids involved in binding are tyrosine, glutamic acid, glutamine, cysteine and lysine.

Fig. 2 — Docking pose showing the interaction between the enzyme and the ligand 2

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Table 6	— Free energy of bindin	g between the enzyme	and the ligand 2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Binding	Constant, Ki	Energy	Energy	Energy	1 5	Surface
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-6.40 kcal/mol	20.35 uM	-6.93 kcal/mol	-0.51 kcal/mol	-/.43 kcal/mol	50%	568.269
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Table 7 —	- Interaction table th	e various types of interac	tions between the ami	noacids of the enzyn	ne and the liga	and 2
$ \begin{bmatrix} 3.12 \end{bmatrix} (CD2, CE1, CE2, [3.86] (OE2) \\ CZ, O, OH \end{bmatrix} $ $ \begin{bmatrix} 3.25 \end{bmatrix} (CB) \begin{bmatrix} 3.61 \end{bmatrix} (CD1, CE1) \\ \begin{bmatrix} 3.88 \end{bmatrix} \\ CD1, CE1 \end{bmatrix} = \\ \begin{bmatrix} 3.24 \end{bmatrix} (CD, OE2) \\ \begin{bmatrix} 3.63 \end{bmatrix} \\ (CD, OE2) \\ \begin{bmatrix} 3.63 \end{bmatrix} \\ (CB) \\ \begin{bmatrix} 3.35 \end{bmatrix} \\ (CD1, CE1) \\ \begin{bmatrix} 3.80 \end{bmatrix} \\ CD1, CE1 \end{bmatrix} \\ \begin{bmatrix} 3.80 \end{bmatrix} \\ C19 \\ (26) \\ - CYS59 \\ C17 \\ (24) \\ \begin{bmatrix} 3.81 \end{bmatrix} \\ - LYS56 \\ (NZ) \\ C13 \\ (17) \\ [3.88] \\ - CYS57 \\ (SG) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CE2) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CE2) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CE) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CE) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CE) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CG) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CG) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CG) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CG) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CG) \\ C13 \\ (17) \\ [3.45] \\ - GLU67 \\ (CG) \\ C23 \\ (30) \\ [3.39] \\ - GLU67 \\ (CD) \\ - CP \\ (21) \\ [3.20] \\ - GLU67 \\ (OE1) \\ CP \\ (12) \\ (12)$		Polar	Hydrophobic	pi-pi	(other	
$ \begin{bmatrix} 3.24 \end{bmatrix} (CD, OE2) \\ N5 (20) - GLU67 \\ [3.35] (CD, CG, OE2) \\ [3.35] (CD, CG, OE2) \\ [3.68] \end{bmatrix} $ $ \begin{bmatrix} 3.63 \end{bmatrix} (CB) \begin{bmatrix} 3.35 \end{bmatrix} (CDI, CEI) \begin{bmatrix} 3.80 \end{bmatrix} \\ O1 (2I) - TYR55 (CE2) \\ [3.45] \\ C17 (24) \begin{bmatrix} 3.81 \end{bmatrix} - LYS56 (NZ) \\ O1 (2I) \begin{bmatrix} 3.88 \end{bmatrix} - CYS57 (SG) \\ C12 (I6) \begin{bmatrix} 3.28 \end{bmatrix} - CYS57 (SG) \\ C12 (I6) \begin{bmatrix} 3.28 \end{bmatrix} - GLU67 (CD, CG, OE2) \\ CG, OE2 \\ C13 (I7) \begin{bmatrix} 3.45 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CD) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O1 (2I) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (OEI) \\ O$	[3.12] (CD2,	CE1, CE2, [3.86]		()		()	GLN54 (<i>CB</i>)
$ \begin{bmatrix} 3.35 \end{bmatrix} (CD, CG, OE2) \\ N3 (11) &- GLU67 (OE2) \\ \begin{bmatrix} 3.08 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 3.56 \end{bmatrix} (SG) \\ \begin{bmatrix} 3.45 \end{bmatrix} \\ C17 (24) \begin{bmatrix} 3.81 \end{bmatrix} - LYS56 (NZ) \\ O1 (21) \begin{bmatrix} 3.88 \end{bmatrix} - CYS57 (SG) \\ C12 (16) \begin{bmatrix} 3.28 \end{bmatrix} - GLU67 (CD) \\ CG, OE2 \\ C13 (17) \begin{bmatrix} 3.45 \end{bmatrix} - GLU67 (CG) \\ O1 (21) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (21) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CG) \\ O1 (21) \begin{bmatrix} 3.29 \end{bmatrix} - GLU67 (CD) \\ OE1, OE2 \\ C24 (31) \begin{bmatrix} 3.68 \end{bmatrix} - GLU67 (OE1) \\ OE1 (OE2) \\ C9 (12) \begin{bmatrix} 3.20 \end{bmatrix} - GLU67 (OE2) \\ C9 (12) \begin{bmatrix} 3$	[3.24] (CI	D, OE2)	[3.63]	(CB) [3.35]			GLN54 (<i>CB</i>)
$\begin{bmatrix} 3.08 \end{bmatrix}$ $C22 (29)[3.48] - LYS56 (NZ)$ $O1 (21) [3.88] - CYS57 (SG)$ $C12 (16) [3.28] - GLU67 (CD, CG, OE2)$ $C13 (17) [3.45] - GLU67 (CG)$ $O1 (21) [3.29] - GLU67 (CG)$ $C23 (30) [3.39] - GLU67 (CD, OE1, OE2)$ $C24 (31) [3.68] - GLU67 (OE1)$ $C9 (12) [3.20] - GLU67 (OE2)$	[3.35] (CD,	CG, OE2)				()	TYR55 (CE2)
$\begin{array}{rcl} O1\ (2I)\ [3.88]\ - & CYS57\ (SG)\\ C12\ (I6)\ [3.28]\ - & GLU67\ (CD,\\ & CG,\ OE2)\\ \\ C13\ (I7)\ [3.45]\ - & GLU67\ (CG)\\ O1\ (2I)\ [3.29]\ - & GLU67\ (CG)\\ C23\ (30)\ [3.39]\ - & GLU67\ (CD,\\ & OE1,\ OE2)\\ \\ C24\ (3I)\ [3.68]\ - & GLU67\ (OEI)\\ C9\ (I2)\ [3.20]\ - & GLU67\ (OE2)\\ \end{array}$		67 (<i>OE2</i>)			C17 (24) [3.81] –	LYS56 (NZ)
$\begin{array}{rcl} \text{C12} (16) [3.28] &-& \text{GLU67} (CD, \\ & & CG, OE2 \end{array} \\ \text{C13} (17) [3.45] &-& \text{GLU67} (CG) \\ \text{O1} (21) [3.29] &-& \text{GLU67} (CG) \\ \text{C23} (30) [3.39] &-& \text{GLU67} (CD, \\ & & OE1, OE2 \end{array} \\ \text{C24} (31) [3.68] &-& \text{GLU67} (OE1) \\ \text{C9} (12) [3.20] &-& \text{GLU67} (OE2) \end{array}$							
$\begin{array}{rcl} CG, OE2 \\ C13 (17) [3.45] &- & GLU67 (CG) \\ O1 (21) [3.29] &- & GLU67 (CG) \\ C23 (30) [3.39] &- & GLU67 (CD, \\ & & OE1, OE2) \\ C24 (31) [3.68] &- & GLU67 (OE1) \\ C9 (12) [3.20] &- & GLU67 (OE2) \\ \end{array}$, E	. ,
$\begin{array}{rcl} \text{O1} \ (21) \ [3.29] \ - & \text{GLU67} \ (CG) \\ \text{C23} \ (30) \ [3.39] \ - & \text{GLU67} \ (CD, \\ & OE1, \ OE2) \\ \text{C24} \ (31) \ [3.68] \ - & \text{GLU67} \ (OE1) \\ \text{C9} \ (12) \ [3.20] \ - & \text{GLU67} \ (OE2) \end{array}$					C12 (16) [3.28] –	
$\begin{array}{rcl} \text{C23} & (30) [3.39] - & \text{GLU67} & (CD, \\ & & OE1, & OE2) \\ \text{C24} & (31) [3.68] - & \text{GLU67} & (OE1) \\ \text{C9} & (12) [3.20] - & \text{GLU67} & (OE2) \\ \end{array}$					C13 (17) [3.45] –	GLU67 (CG)
$\begin{array}{r} OE1, OE2 \\ C24 (31) [3.68] - & GLU67 (OE1) \\ C9 (12) [3.20] - & GLU67 (OE2) \end{array}$					O1 (2	21) [3.29] –	GLU67 (CG)
C9(12)[3.20] - GLU67(OE2)					C23 (30) [3.39] –	
					C24 (31) [3.68] –	GLU67 (<i>OE1</i>)
C8 (10) [3.89] – GLU67 (OE2)					C9 (1	12) [3.20] –	GLU67 (<i>OE2</i>)
					C8 ()	10) [3.89] –	GLU67 (<i>OE2</i>)

Compared with ligand 1, ligand 2 has higher free energy of binding and could act as a better antiinflammatory compound.

Conclusion

It has been concluded that new analogues of pyrazolo-thiazoles and isoxazole-thiazoles linked with benzimidazole nucleus is a novel method. In the present work that the title compounds are exhibiting excellent in vitro and in silico anti-inflammatory activity.

Acknowledgement

The authors are grateful to the Principal, Management of MGIT–Hyderabad and IICT-Hyderabad for their constant support and also thankful to the Department of Bio-Chemistry, Mahatma Gandhi University-Nalgonda, India.

References

- 1 Valery A C & Fokin V, Chem Rev, 109 (2009) 725.
- 2 Jiang B, Rajale T, Wever W & Jiang S, *Chem An Asian J*, 5 (2010) 2318.
- 3 Gullapelli K, Brahmeshwari G & Ravichandar M, *Bull Chem* Soc Ethiop, 33 (2019) 143.
- 4 Ziarati A, Badiei A , Ziarani G M & Eskandarloo H, *Catal Commun*, 95 (2017) 77.
- 5 Hassan S & Thamson Müller J J, Adv Syn Catal, 357 (2015) 617.
- 6 Sherif Rostam A F, Ashmawy E I, A Heba Abd EI Razik, Mona M A Badr H & Hayam Ashour, *Bioorg Med Chem*, 17 (2009) 882.
- 7 Mukhtyar Saini S, Kumar A, Dwivedi J & Singh R, Int J Pharm Sci Rev Res, 4 (2013) 66.
- 8 Desai N C, Amit Dodiya M & Niraj Shihory R, Med Chem Res, 21 (2012) 2579.
- 9 Gullapelli K , Murali Krishna T & Brahmeshwari G, Int J Pharm Bio Sci, 5 (2014) 682.
- 10 Gullapelli K & Brahmeshwari G, Int J Chem Sci, 12 (2014) 885.

- 11 Madawali I M, Das K K, Gaviraj E N, Kalyane N V & Shivakumar B, *J Chem Pharm Res*, 10 (2018) 76.
- 12 Galal S A, Abdelsamie A S, Rodriguez M L, Kerwin S M & H I Diwani, Europ J Chem, 1 (2010) 67.
- 13 Lingala S, Nerella R & Sambasivarao K R S, *Int J Pharm Sci Rev Res*, 10 (2011) 100.
- 14 Dixit S, Kumar Sharma P & Kaushik N, Med Chem Res, 22 (2013) 900.
- 15 Ngono Bikob D S, Vodnar D C, Stana A, Tiperciuc B, Nastasa C, Douchet M & Oniga O, J Saudi Chem Soc, 21 (2017) 861.
- 16 Gang Yu L, Feng Ni T, Gao W, Yuan He, Wang Y Y, Weicui H, Yang C G & Wei Qiu W, Eur Jour Med Chem, 90 (2015) 10.
- 17 Pradeep K, Shashikant G, Tukaram L, Abdul S K, Babasaheb S, Choudhari P & Madhusudhan P B, *Rasayan J Chem*, 11 (2018) 1441.
- 18 Gullapelli K, Brahmeshwari G, Ravichander M & Uma K, Egypt Basic Appl Sci, 4 (2017) 303.
- 19 Sangita Ch, Priyanka Ch, Protapaditya D & Bhattacharya S, *Pharmacogn J*, 4 (2012) 47.
- 20 Bikadi Z , Demko L & Hazai E , Arch Biochem Biophys, 461 (2007) 225.
- 21 Bikadi Z & Hazai E, J Chem Inf, 1 (2009) 15.
- 22 Gullapelli K, Dhanaja K, Ravichandar M, Ramchander M & Brahmeshwari G, *Rasayan J Chem*, 13 (2020) 585.