Optimization of microbial hydrogen production using statistical experimental design from maize stalk by isolated strain

Sonia K Samson*, Manikkandan T R & Dhanasekar R

Bio Process Research Laboratory, Department of Chemical Engineering, Annamalai University, Annamalainagar 608 002, India. E-mail: soniaksamson@gmail.com

Received 14 May 2014; accepted 17 October 2014

Experimental designs have been applied for optimizing the process parameters for hydrogen production from maize stalk hydrolyzate by a newly isolated facultative strain. Using Plackett-Burman design glucose, yeast extract, malt extract, peptone, and NaCl have been identified as significant variables influencing hydrogen production and these variables are subsequently optimized using a central composite design (CCD). Box-Behnken design has been adopted for optimizing the process parameters for maximum hydrogen production. Using this statistical optimization method a maximum hydrogen yield of 0.91 mol H₂/mol glucose has been achieved.

Keywords: Hydrogen production, Facultative strain, Hydrolysate, Maize stalk, Statistical experimental design

Hydrogen energy is now considered as the most promising alternative to fossil fuels, as it has fewer side effects and has less environmental damage¹. It is preferred to biogas or methane because hydrogen is not chemically bound to carbon and combustion provides only water². Besides, hydrogen has a high energy yield of 122 KJ/g which is 2.75 times greater than the hydrocarbon fuel 3,4 . It has been reported that 50 million tons of hydrogen are traded annually worldwide with a growth rate of nearly 10% per year⁵. Currently, 90% of commercially usable hydrogen is obtained by steam reformation of natural gas apart from coal gasification and water electrolysis which are not eco friendly^{6,7}. Other methods of hydrogen production are photocatalytic biological routes. Biological hydrogen and production can be achieved either via photo fermentation^{8,9} or dark fermentation¹⁰. Though hydrogen production through photo fermentation is high, it is not applicable, as it needs continuous supply of light energy and the difficulties associated with the design of the reactor¹¹. Hence, the production of hydrogen via dark fermentation seems to gain more prominence. Biomass, one of the renewable energy sources can be utilized for hydrogen production through biological means, which is a less carbon emission $process^{12,13}$. In this context, we had isolated a facultative bacterial strain from the soil sample of maize stalk storage yard, which produces hydrogen. Maize stalk hydrolyzate

was used as the sole carbon sources for the production of hydrogen. An attempt was made to improve the hydrogen production by optimization of media components and process parameter using statistical experimental design.

Experimental Section

Isolation and preservation of hydrogen producing strain

The strain used in this study was isolated from the soil samples of maize stalk storage yard. The media consisting of glucose, 1% (w/v); malt extract 0.1% (w/v); yeast extract, 0.2% (w/v); peptone, 0.5% (w/v); and NaCl, 0.5% (w/v)) at *p*H 7 and temperature 30°C was used for the growth and agar slants with 1.5% (w/v) of agar was used for the maintenance of the organism. Sub culturing was carried out once in 2 weeks and the culture was stored at 4°C.

Acid hydrolysis

Powdered maize 5g stalk is hydrolyzed with one hundred milliliters of 1% sulfuric acid for 75 min at 121°C and 15 psi in an autoclave (Hi-tech equipment, India). After hydrolysis, the hydrolysate was filtered through ordinary filter paper followed by filtration through Whattman No.1 filter paper. The filtrate was mixed thoroughly with the media and was neutralized with concentrated NaOH solution to attain a neutral *p*H. Unless otherwise stated the concentration of maize stalk hydrolysate used in all the fermentation studies was 42.8% (v/v) equivalent to 1% (w/v) glucose.

Batch experiments

One hundred milliliters of sterile medium with pH7 was taken in 250 mL Erlenmeyer flask. The medium was cooled and inoculated with one day pre grown culture 5% (v/v). The fermentation was allowed to take place in a fermentation jar, which is kept in a constant temperature water bath in order to maintain constant fermentation temperatures. The released gas during the fermentation was collected in a separate jar by water displacement method. The gas sample was taken in a syringe and was loaded into gas chromatography for the qualitative assay of hydrogen. All the experimental runs were carried out in triplicate and the average value was taken.

Analytical methods

The gas produced during the fermentation was collected in a graduated aspirator bottle by water displacement method at regular time intervals. The percentage of hydrogen constituted in the total gas was analyzed by a gas chromatograph (AIMIL-NUCON 5765, Mumbai, India) equipped with a thermal conductivity detector (TCD) and 2.0 m (1/4 in. inside diameter) steel column filled with Porapak Q (50/80 mesh) using nitrogen as carrier gas at a flow rate of 20 mL/min. Injector, oven and column temperature was set at 150, 80 and 200°C respectively.

Experimental design and optimization

Plackett Burman design

Plackett–Burman experimental design¹⁴ is based on the first order model:

$$Y = \beta o + \Sigma \beta i + X i \qquad \dots (1)$$

where, Y is the response, β_o is the model intercept and β_i is the linear coefficient, and X_i is the level of the independent variable. The purpose of the first optimization step was to identify which ingredients of the medium have a significant effect on hydrogen production. Based on the Plackett–Burman experimental design each factor was prepared in two levels: -1 for low level and +1 for high level. Fifteen variables were screened in 20 experimental runs. The statistical software package Minitab version 15.0 was used to analyze the experimental data.

Central composite design

The screened medium components affecting hydrogen production were optimized using CCD^{15,16}. According to this design:

$$N = 2^{n} + 2n + n_{o} \dots$$
 ... (2)

where n, the number of independent variable; n_o , the number of repetitions of the experiment at the center point. For statistical analysis the variables X_i are coded as x_i according to the equation:

$$Xi = \frac{Xi - Xo}{\delta X} \qquad \dots (3)$$

where x_i is the dimensionless coded value of the variable X_i , X_0 the value of the X_i at the center point, and δX is the step change.

Box-Behnken design

In order to optimize the critical factors for enhanced hydrogen production, a three-variable Box–Behnken design¹⁷ with three replicates at the center point was applied. For statistical calculations, the relation between coded values and actual values are described using the following equation:

$$X_i = (A_i - A_o)/\Delta A \qquad \dots (4)$$

where, X_i is a coded value of the variable, Ai the actual value of the variable, A_0 the actual value of the Ai at the center point, and ΔA the step change of variable. For predicting the optimal point, a second-order polynomial function was fitted to correlate the relationship between variables and response. The quadratic equation for the variables was as follows:

$$Y = \beta o + \Sigma \beta i X i + \Sigma \beta i i X i^{2} + \Sigma \beta i j X i X j \qquad \dots (5)$$

where, Y is the predicted response; β_0 a constant; β_i the linear coefficients; β_{ii} the squared coefficients; and β_{ij} the cross-product coefficients. The software Minitab 15.0 was used for the regression and graphical analysis of the experimental data obtained.

Results and Discussion

Isolation of microorganism

Soil samples obtained from maize stalk storage yard were serially diluted and plated on nutrient agar, which resulted in eight morphologically distinct colonies. Individual colonies were screened based on high hydrogen yielding capacity and the strain with high hydrogen production rate was selected for further studies.

Identification of important medium constituents using Plackett Burman design

A total of 15 medium components including carbon, nitrogen and mineral sources were screened using Plackett Burman design through 20 experimental runs. The experimental design matrix for screening of important variables for hydrogen production is shown in Table 1. The resulting effects of the variables on the responses, the associated t-value and significant levels are shown in Table 2. A p-value less than 0.05 for the four variables: glucose, peptone, yeast extract, malt extract and NaCl indicate that they were significant. These variables had a confidence level above 95% in comparison to other variables and thus

	Table 1	— Тм	enty ru	un Plac	kett-B	urman	desigr	n matri	x for fi	fteen va	riables	with the	e experii	nental a	and pre	dicted H ₂ yi	elds
Runs	\mathbf{X}_1	X_2	X ₃	X_4	X ₅	X_6	X_7	X ₈	X9	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	Hydro (mol H ₂ /n	gen yield 101)glucose)
																Exp.	Pred.
1	-1	-1	1	-1	1	-1	1	1	1	1	-1	-1	1	1	-1	0.670	0.7229
2	1	-1	1	1	1	1	-1	-1	1	1	-1	1	1	-1	-1	0.023	0.0170
3	1	-1	1	-1	1	1	1	1	-1	-1	1	1	-1	1	1	0.262	0.2919
4	-1	1	1	-1	-1	-1	-1	1	-1	1	-1	1	1	1	1	0.719	0.6671
5	1	-1	-1	-1	-1	1	-1	1	-1	1	1	1	1	-1	-1	0.232	0.2720
6	-1	1	1	-1	1	1	-1	-1	-1	-1	1	-1	1	-1	1	0.673	0.6560
7	-1	1	-1	1	1	1	1	-1	-1	1	1	-1	1	1	-1	0.638	0.6550
8	-1	-1	-1	1	-1	1	-1	1	1	1	1	-1	-1	1	1	0.432	0.4069
9	1	1	1	1	-1	-1	1	1	-1	1	1	-1	-1	-1	-1	0.673	0.6411
10	1	-1	-1	1	1	-1	1	1	-1	-1	-1	-1	1	-1	1	0.021	0.0150
11	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0.564	0.5939
12	-1	-1	-1	-1	1	-1	1	-1	1	1	1	1	-1	-1	1	0.696	0.6512
13	1	-1	1	1	-1	-1	-1	-1	1	-1	1	-1	1	1	1	0.139	0.1641
14	1	1	-1	-1	-1	-1	1	-1	1	-1	1	1	1	1	-1	0.720	0.6949
15	-1	1	1	1	1	-1	-1	1	1	-1	1	1	-1	-1	-1	0.531	0.5629
16	1	1	-1	-1	1	1	-1	1	1	-1	-1	-1	-1	1	-1	0.464	0.4192
17	1	1	-1	1	1	-1	-1	-1	-1	1	-1	1	-1	1	1	0.022	0.0759
18	-1	-1	1	1	-1	1	1	-1	-1	-1	-1	1	-1	1	-1	0.494	0.4641
19	1	1	1	-1	-1	1	1	-1	1	1	-1	-1	-1	-1	1	0.696	0.7279
20	-1	1	-1	1	-1	1	1	1	1	-1	-1	1	1	-1	1	0.464	0.5020

 $\begin{array}{l} Glucose(X_1); \ Peptone(X_2); \ Beef \ extract(X_3); \ Malt \ extract(X_4); \ Yeast \ extract(X_5); \ KCl(X_6); \ NaCl(X_7); \ NH_4Cl(X_8); \ ZnCl_2(X_9); \\ KH_2PO_4(X_{10}); \ K_2HPO_4(X_{11}); \ MnSO4.7H_2O(X_{12}); \\ MgSO_4.7H_2O(X_{13}); \ ZnSO_4.7H_2O(X_{14}); \ and \ FeSO_4.7H_2O(X_{15}) \end{array}$

Table 2 — Estimated effects and coefficients of the Plackett–Burman design

Terms	Variable	Low level-1(g/l)	High level+1(g/l)	Effect	t	Р
Constant					25.01	0.000
\mathbf{X}_1	Glucose	20	40	-0.2627	-7.19	0.002
X_2	Peptone	1	5	0.2067	5.66	0.005
X_3	Beef Extract	0.5	2.5	0.0625	1.71	0.162
X_4	Malt extract	1	3	-0.2257	-6.18	0.003
X_5	Yeast extract	2	10	-0.1131	-3.10	0.036
X_6	KCl	1	9	-0.0381	-1.04	0.356
X_7	NaCl	1	5	0.1535	4.20	0.014
X_8	NH ₄ Cl	1	9	-0.0195	-0.53	0.622
X_9	$ZnCl_2$	0.5	5	0.0533	1.46	0.218
X_{10}	KH ₂ PO4	0.05	0.5	0.0469	1.28	0.269
X_{11}	K ₂ HPO4	.5	2.5	0.0855	2.34	0.079
X ₁₂	MnSO ₄ .7H ₂ O	0.5	5	-0.807	-2.21	0.092
X ₁₃	MgSO ₄ .7H ₂ O	0.1	1	-0.0533	-1.46	0.218
X_{14}	ZnSO ₄ .7H ₂ O	0.1	5	-0.0013	-0.04	0.973
X15	FeSO ₄ .7H ₂ O	0.1	1	-0.0881	-2.41	0.073

were considered to be significant for hydrogen production. These significant variables were further optimized by central composite design involving RSM.

Optimization of the selected medium constituents using Central Composite Design

The nutrient components glucose, peptone, malt extract, yeast extract and NaCl were selected for further optimization by RSM. A CCD was used for studying the interaction of these variables within the range of -2 to +2 in relation to hydrogen production shown in Table 3. CCD experimental design with 52 experimental runs was employed for the optimization of the parameters.

The results obtained from the CCD experiments were fitted to the following second order polynomial equation to represent the hydrogen production adequately.

where (Y) is the predicted response, (X_1) concentration of glucose, (X_2) peptone, (X_3) malt extract, (X_4) yeast extract and (X_5) NaCl. The analysis of variance of the quadratic regression model calculated are listed in Table 4, which contain one constant, five linear, five quadratic and ten interaction terms. The significance of each coefficient was determined by p-values and is also listed in Table 4. The analysis of variance of the regression model demonstrates that the model is highly significant. The goodness of the fit of the model was confirmed by the determination coefficient (\mathbb{R}^2). The correlation coefficient, \mathbb{R}^2 , was 0.987, revealing that 98.7% of experimental data of the hydrogen production were compatible with the data predicted by the model. The predicted optimum values obtained for the maximum production of hydrogen as determined from the second degree polynomial equation were: glucose, 19.25g/L; peptone, 5.64g/L; malt extract, 1.64g/L; yeast extract, 3.16g/L and NaCl, 4.312g/L. At the optimum medium concentration maximum hydrogen production of 0.791mol H₂/mol substrate was obtained.

Optimization of process parameter using Box-Behnken design

The Box-Behnken design was applied to optimize the important process parameters, namely, initial pH of the medium, temperature and fermentation time. The design matrix which consists of 15 experimental runs was constructed, in order to arrive at a second order polynomial equation to predict the hydrogen fermentation system shown in Table 5. Multiple regression analysis was used to analyze the data and the polynomial equation derived from regression analysis is as follows:

Table 3 — Coded and uncoded value of medium components used for central composite design								
Independent variables	Symbols	Coded levels						
		-2	-1	0	+1	+2		
Glucose, (g/L)	\mathbf{X}_1	10	15	20	25	30		
Peptone, (g/L)	X_2	1	3	5	7	9		
Malt extract, (g/L)	X_3	0.5	1.0	1.5	2.0	2.5		
Yeast extract, (g/L)	X_4	1	2	3	4	5		
NaCl (g/L)	X_5	1	3	5	7	9		

Table 4 — Results of the regression analysis of second order polynomial model for the optimization of hydrogen production obtained in the screening experiment

Term	Regression	Std.	t-statistics	p-value
constant	coefficient	deviation		
Intercept	0.788605	0.002844	277.299	< 0.001
X ₁	-0.003651	0.001375	-2.655	0.012
X_2	0.001536	0.001375	1.117	0.272
X_3	0.015171	0.001375	11.035	< 0.001
X_4	0.003857	0.001375	2.805	0.009
X_5	-0.009275	0.001375	-6.746	< 0.001
$\mathbf{X}_1 \mathbf{X}_1$	-0.027689	0.001182	-23.433	< 0.001
$X_2 X_2$	-0.018950	0.001182	-16.038	< 0.001
X_3X_3	-0.033250	0.001182	-28.140	< 0.001
X_4X_4	-0.019656	0.001182	-16.635	< 0.001
X_5X_5	-0.021863	0.001182	-18.503	< 0.001
X_1X_2	-0.018875	0.001600	-11.799	< 0.001
X_1X_3	0.006250	0.001600	3.907	0.001
X_1X_4	0.012125	0.001600	7.579	< 0.001
X_1X_5	0.005250	0.001600	3.282	0.003
X_2X_3	0.014438	0.001600	9.025	< 0.001
X_2X_4	0.014938	0.001600	9.337	< 0.001
X_2X_5	-0.005437	0.001600	-3.399	0.002
X_3X_4	-0.008313	0.001600	-5.196	< 0.001
X_3X_5	-0.006188	0.001600	-3.868	< 0.001
X_4X_5	0.006812	0.001600	4.258	< 0.001

Table	5 —	Three	level	Box-Beh	nken	design	matrix	for	the
optimi	zation	of signi	ficant	process pa	arame	eters			

Dun				Hydrog	en yield
No	pH	Temperature	Time	(mol H ₂ /m	ol glucose)
INO.				Exp.	Pred.
1	0.00	0.00	0.00	0.889	0.888
2	-1.00	0.00	-1.00	0.700	0.701
3	-1.00	0.00	1.00	0.685	0.683
4	0.00	0.00	0.00	0.886	0.888
5	1.00	0.00	1.00	0.812	0.812
6	0.00	1.00	1.00	0.747	0.748
7	1.00	1.00	0.00	0.785	0.785
8	0.00	1.00	-1.00	0.715	0.713
9	0.00	0.00	0.00	0.888	0.888
10	-1.00	1.00	0.00	0.680	0.681
11	-1.00	-1.00	0.00	0.660	0.660
12	1.00	0.00	-1.00	0.764	0.766
13	1.00	-1.00	0.00	0.752	0.751
14	0.00	-1.00	1.00	0.698	0.700
15	0.00	-1.00	-1.00	0.707	0.706

$$Y=0.887+0.049A+0.0137B+0.007C+3.25AB+0.015A C+0.01BC-0.07A^2-0.09B^2-0.07C^2 \dots (7)$$

where, Y, predicted hydrogen potential: A, pH; B, time and C, temperature respectively.

The goodness of fit of the model depends on the multiple correlation coefficients, R^2 . The R^2 value obtained from the ANOVA was 0.9998, which implies that the variation of 99.98% hydrogen production is attributed to the independent variables. The parameter estimate and the corresponding p-value (p<0.5) (Table 6) suggest that all the linear, square and interactive terms of pH, time and temperature have a significant effect on hydrogen production. R^2 value closes to 1 denotes better correlation between the observed and predicted value. Three dimensional surface plots are drawn to determine the optimum values and the interactive effect of the three process parameters. Figure 1(a) represents the interaction between time and pH. The shape of the response surface curves showed a maximum hydrogen production obtained when both the factors lies between -0.5 and 1 level. Figure 1(b) represents the interaction between temperature and pH. Maximum hydrogen production was recorded at pH 7 and temperature of 34.5°C. The optimal values of pH and temperature obtained here are in accordance with that obtained for Souparno et al for a defined microbial consortium producing hydrogen from molasses¹⁸. Further increase or decrease of pH or temperature negatively affects the yield of hydrogen. Figure 1(c) represents the interaction between temperature and time and it follows the same trend obtained previously. The experimental results suggest that the maximum values of hydrogen yield (0.89 mol H₂/mol

Fig. 1 (a-c) — 3D plots showing the interactive effects between the significant process parameters on hydrogen yield in batch fermentation

Source	Sum of squares	Degrees of freedom (DF)	Mean square	F value	P-value Prob $>$ F
Model	0.12	9	0.013	3331.77	< 0.0001
<i>p</i> H (A)	0.019	1	0.019	4878.74	< 0.0001
Temperature (B)	1.513×10^{-3}	1	1.513×10^{-3}	392.13	< 0.0001
Time (C)	3.920×10 ⁻⁴	1	3.920×10 ⁻⁴	101.63	< 0.0001
AB	4.225×10^{-5}	1	4.225×10^{-5}	10.95	0.0129
AC	9.923×10 ⁻⁴	1	9.923×10 ⁻⁴	257.25	< 0.0001
В	4.202×10^{-4}	1	4.202×10^{-4}	108.95	< 0.0001
С					
AA	0.022	1	0.022	5678.61	< 0.0001
BB	0.039	1	0.039	9981.91	< 0.0001
CC	0.023	1	0.023	6079.10	< 0.0001
Residual	2.700×10 ⁻⁵	7	3.857×10 ⁻⁶		
Lack of fit	1.900×10^{-5}	3	6.333×10 ⁻⁶	3.17	0.1473
Pure error	8.000×10 ⁻⁶	4	2.000×10 ⁻⁶		
Total	0.12	16			

Table 6 — Results of the ANOVA for the quadratic model

glucose) were obtained for the runs with the central points. The optimum values obtained by solving the second degree polynomial equation are as follows: pH, 7.0; temperature, 34.5°C and fermentation time, 42.5 h.

Conclusion

The present study optimized the media components and process parameters for the production of hydrogen using the newly isolated facultative strain. A suitable maize stalk hydrolysate in the fermentation medium is essential to get higher hydrogen yields; however, an excessively high or low concentration of maize stalk hydrolysate affects the growth of the organism which reduce the yield. The results also show the use of cheaper lignocellulosic substrate for fermentation, thus contributing to the reduction in the cost of production medium. Five variables have been identified by Plackett Burman design on significant for hydrogen production. These variables are further optimized using CCD. The optimum medium constituents of the fermentation medium are as follows: glucose, 19.25 g/L; yeast extract, 3.046 g/L; malt extract, 1.64 g/L; peptone, 5.640 and NaCl, 4.312 g/L. Box-Behnken design is adopted to identify optimum values of process parameters that bring maximum hydrogen production. The optimized values of process parameters for hydrogen production are as follows: pH, 7.0; temperature, 34.5°C and fermentation

time, 42.5 h. At these conditions highest hydrogen yield of 0.91 mol H_2 /mol glucose has been achieved, when maize stalk hydrolysate (equivalent to 1.5% (w/v)) is used as the carbon source. This shows that the microorganism used in this study possess a high hydrogen producing capacity under optimal conditions.

References

- 1 Shao-Yi H & Yu-Tuan C, J Nanomaterials, (2014) 1.
- 2 Nath K & Das D, Appl Microbial Biotechnol, 65 (2004) 520.
- 3 Kapdan I K & Kargi F, Enzy Microbial Biotechnol, 38 (2006) 569.
- 4 Wang J & Wan W, Int J Hydrogen Energ, 34 (2009) 235.
- 5 Winter C J, Int J Hydrogen Energ, 30 (2005) 681.
- 6 Nath K & Das D, Curr Sci, 85 (2003) 265.
- 7 Balat H & Kirtay E, Int J Hydrogen Energ, 35 (2010), 7416.
- 8 Harai E, Kapas A, Lanyi S, Abraham B,Nagy I & Muntean O, *Sci Bull*, 72 (2) (2010) 151.
- 9 Gadhamshetty V, Sukumaran A, Nirmalakhandan N & Myint M T, *Int J Hydrogen Energ*, 33 (2008) 2138.
- 10 Afsar N, Ozgur E, Gurgan M, Vrije T de, Yucel M, Gunduz U & Eroglu I, *Chem Eng Trans*, 18 (2009) 385.
- 11 Chong M L, Sabaratnam V, Shirai Y & Hassan M A, Int J Hydrogen Energ, 34 (2009) 3277.
- 12 Saxena R C, Adhikari D K & Goyal H B, Renew Sustain Energ Rev, 13 (2009) 167.
- 13 Patrick C H, Int J Hydrogen Energ, 34 (2009) 7379.
- 14 Plackett R L & Burman J P, Biometrika, 33 (1946) 305.
- 15 Box G E P & Hunter J S, Ann Math Stat, 28 (1957) 195.
- 16 Box G E P & Hunter J S, Ann Math Stat, 13 (1951) 1.
- 17 Box GEP & Behnken DW, Technometrics, 2 (1960) 455.
- 18 Ghosh S, Joy S & das D, Indian J Biotech, 10 (2011) 196.