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The flow characteristics of orifice-centerline liquid induced by bubble chain rising in carboxymethylcellulose (CMC) 

aqueous solution have been investigated using nonlinear analysis of the velocity measured by Laser Doppler Anemometry. 

Both axial and radial velocities are determined under various gas flow rates (Qg), measurement heights (z) and mass 
concentrations. The results show that for low Qg, z and dilute solution, the characteristic frequency of the power spectrum is 
consistent with bubbling frequency, with uniform elliptical shape of reconstructed phase space. Largest Lyapunov exponents 
λ1 in radial direction is approximately 10 times that in the axial direction. Whereas for high Qg, z and concentrated solution, 
power spectrums are of broad coverage within low frequency range, with the compressed phase portrait and the raised λ1. 
Especially, the liquid motion has a special feature of binary fraction in the present experiment. 
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Bubbly flows in non-Newtonian fluids have been paid 

considerable attention owing to its inherent scientific 
interest and importance in industrial application

1,2
. In 

these typical equipments which employ bubbly flow, 

the behaviors of bubble formation and rising are 
frequently encountered and will cause marked change 

in the flow fields as well as bubble shape, velocity 

and track, consequently, leading to significant effect 
on the contact efficiency between gas liquid two-

phase. Thus, adequate understanding of the flow 

characteristics of the fluids surrounding a generating 
and rising bubble is therefore essential in optimizing 

the design of the gas-liquid contact equipments as 

well as taking overall insight into the interaction 
mechanism of bubble chain. 

Unlike lots of researches in Newtonian fluids
3
, the 

reports about this topic in non-Newtonian fluids are 
still much less. The earlier investigations were mostly 

focused on the experimental measurement and 

correlation of the volume of the bubble
4
. Miyahara et 

al.
5 

proposed a simple spherical model for bubble 

formation by analysis of the difference between two 

bubbling stages. Terasaka and Tsuge
6,7

 investigated 
experimentally the various influences on bubble 

volume respectively. Li
8 

and Li et al.
9
 advanced a 

novel model to predict the instantaneous size, shape 
and frequency of generating bubble by considering 

the influence of in-line interactions between two 

consecutive bubbles. Favelukis and Albalak
10

 put 
forward a dynamic-control spherical model for bubble 

growth. Martín et al.
11,12

 studied the two stages  

of bubble formation in both Newtonian and  
non-Newtonian fluids. Fan et al.

13 
applied laser image 

technique to disclose the impact of the solution 

properties, orifice diameter and gas flow rate on the 
bubble detachment volume. Recently, Vélez-Cordero 

and Zenit
14

 devoted to the bubble cluster formation in 

power-law shear-thinning fluids.  
Besides, the previous reports were always addressed 

to bubble wake formed behind the leading bubble and 

its effect on trailing bubble, as well as its difference 
from that in Newtonian fluids. A negative wake in non-

Newtonian fluids was firstly observed by Hassager
15

. 

Subsequently, by means of LDA, Bisgaard and 
Hassager

16 
concluded that a negative wake was induced 

by elasticity. This peculiar phenomenon has also been 

observed for spheres falling in viscoelastic liquids
17

.
 

Furthermore, Frank and Li
18,19

 found the coexistence  

of three distinct zones around bubbles rising in 

polyacrylamide (PAM) solutions: a central downward 
flow behind the bubble, a conical upward flow 

surrounding the negative wake zone, and an upward 

flow zone in front of the bubble. Sousa et al.
20

 
conducted experimentally the interaction between 
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consecutive Taylor bubbles rising in non-Newtonian 

solutions via sets of laser diodes/photocells and Particle 

Image Velocimetry (PIV). According to Sousa, for  
the less concentrated CMC solutions, the interaction 

between Taylor bubbles was similar to that found in 

Newtonian fluids, and for the most concentrated  
CMC solution, a negative wake forms behind the 

Taylor bubbles. Lin and Lin
21

 have investigated 

experimentally coalescence mechanism of in-line  
two-unequal bubbles rising in PAM solution using 

Particle Image Analyzer (PIA), and proposed that the 

acceleration of the trailing bubble to the leading one 
owes to the pushing force caused by the viscoelastic 

effect and the dragging force caused by the negative 

pressure as well as the shear-thinning effect.  
Fan et al.

22
 focused on the interaction between two 

parallel rising bubbles by analyzing the velocity field 

around bubbles using PIV. Li et al.
23

 studied the 
viscosity distribution of the liquid around a rising 

bubble in CMC aqueous solutions by PIV. Vélez-

Cordero et al.
24

 conducted different experimental 
setups to study the rise of single bubble, two parallel 

bubble chains and bubble swarms in an elastic fluid 
with nearly constant viscosity. From a viewpoint of 

turbulent kinetic energy (TKE), Li et al.
25

 investigated 

the turbulent characteristic of fluid induced by a chain 
of bubbles rising in non-Newtonian fluids by using 

PIV. Most recently, Amirnia et al.
26

 focused the 

difference of bubble velocity, shape and path between 
small bubble and larger bubble rising in xanthan gum 

and CMC fluids. 

Nevertheless, a detailed liquid flow dynamics 

around a rising bubble is crucial to determine the 

mechanism of bubble-bubble interaction as well  
as coalescence during bubble ascension. Further, 

owing to several advantages
27

, LDA has been one  

of the most favored tools for investigating the 
multiphase flow application. In this work, the 

dynamics of the flow field in front of the bubble 

rising in shear-thinning fluids will be investigated 
quantitatively by using both chaos and fractal  

theory. 

 

Experimental Section 
The experimental facility consisted of two parts: 

the bubble generation system and LDA measurement 
system as shown in Fig. 1. Bubble generation system 

included a Plexiglas square tank with dimensions of 

15×15×50 cm (length×width×height), which was 
considered to be large enough and allow neglecting 

the effect of the wall on the shape and size of bubbles. 

A Plexiglas plate with dimension of 15.0×5.0×1.0 cm, 
having a polished orifice (inside diameter 2.0 mm) in 

its centre, was placed inside the tank 10 cm above the 
bottom for generating bubble. Stainless tubing with 

the inside diameter 2.0 mm linked the nitrogen 

cylinder, rotameter and orifices. Nitrogen pressure 
was maintained at little more than 0.1 MPa through 

adjusting a regulation valve, thus nitrogen bubbles are 

always generated synchronously at a stable frequency 
from the submerged orifice by adjusting the gas flow 

rate properly. 

 
 

Fig. 1 — Schematic diagram of experimental system 
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LDA equipment (DANTEC, Fiber flow series 60X, 

Denmark) was applied and a PC using the Burst 

Spectrum Analyzer (BSA) Flow Software 2.1 for data 
acquisition. The backscattering mode in a cell-free 

system was used, and the vertical component was 

determined with green (λ= 514.5 nm) beams and  
the horizontal one with blue (λ= 488 nm) beams.  

The distilled water was used as a working solvent to 

avoid disturbance of the LDA system, and spherical 
glass particles of 10µm in diameter (density: 1.5×10

3
 

kg/m
3
) were seeded and homogeneously distributed 

over the solution. These seeding particles carried  
by the liquid, reflected laser light toward the  

photo-detector probe and therefore, the liquid velocity 

was evaluated. Moreover, a pre-shift frequency of  
40 kHz was utilized, and the time series obtained 

were 3 minutes long. 
 

Experimental condition 

The experimental conditions as follows: Gas flow 
rate (Qg): 0.3, 0.5, 0.9×10

-6 
m

3
·s

-1
; measured height 

(z): 38.5, 48.5, 58.5, 68.5, 78.5×10
-3 

m. Two kinds of 

solutions were employed in this work: 0.15% CMC in 
water (wt%), marked as CMC(1), and 0.15% CMC in 

a mixture of 76.9-23.1% water-glycerol, marked as 

CMC(2). The physical properties of rheological 
characteristics of CMC aqueous solutions were 

measured by Rheometer of StressTech (REOLOGICA 

Instruments AB, Sweden), and the results show that 
the behavior of shear-thinning of the fluid can be 

described very well by Carreau model (Eq. (1)) within 

shear rate range from 2.0 to 60 s
-1

. The results were 
summarized in Table 1. 
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2
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nη η
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∞

 =  &   …(1) 

 

where, 
0η , η∞

, λ and n are zero-shear viscosity, 

infinite shear viscosity, time constant and flow index 

respectively. 
 

Results and Discussion 
The instantaneous velocities are stochastic signals 

with time interval because LDA measurement is 

random in time and has a signal only when  
seeding particle passes through the measured point. 

Accordingly, linear interpolation of the data is 

necessary before time-frequency analysis of velocity. 

The interpolated time series of axial velocity 
fluctuates around a certain value of average-velocity. 
 

Power spectrum 

Information of bubble motion can be obtained 

through analysis of liquid flow feature using time-
frequency technology. Here, as one of the qualitative 

methods, Fourier analysis method is adopted by 

calculating turbulent power spectrum of the liquid 
velocity signal w(t). Discrete Fourier Transform 

(DFT) of the signal w(t) can be expressed as 

following: 
 

( ) ( )
1

2 /

0

e
N

i tf N

t

W f w t π
−

−

=

=∑   … (2) 

 

The power spectrum of the signal can then be 
calculated by 
 

( ) ( )
2

P f W f=   … (3) 

 

In present experiments, the single bubble rose up 

straightly without any obvious swinging, and also its 

shape became symmetric with the axis of the vertical 
line passing through orifice centre, so the measured 

domain was defined along the center line of bubble 

rising channel ( i.e. y=0). Figure 2 presents the power 
spectrum derived from both axial and radial velocity 

time series for various conditions respectively. It is 

demonstrated that for z = 53.5×10
-3 

m, the both power 
spectrums corresponding to the radial velocities 

exhibits only one major peak, which is consistent with 

the bubble periodic injection frequency (2.2 Hz), as 
shown in Fig. 2a. While for z = 78.5×10

-3 
m, bubble 

accelerated velocity results in a strong bubble-bubble 

interaction. Accordingly, characteristic frequency of 
velocity drops slightly to 2.1 and meanwhile several 

small peaks appear due to the accelerated liquid 
turbulence, which is caused by the decrease of fluid 

viscosity owing to its shear-thinning effect, as shown 

in Fig. 2b. By contrast, the power spectrum in 
CMC(2) solution has been covered by broad peaks in 

low frequency, implying its involvement of large 

energy. Generally, the low-frequency region 
corresponds to the large-scale vortex, produced 

gradually by the enhancement of the liquid viscosity. 

But for z = 78.5×10
-3 

m, the characteristic peak at 
frequency (3.2 Hz) disappears gradually, while a 

spacious   large-area   peak  with  a  larger  magnitude 

Table 1—Rheological parameters of non-Newtonian CMC solutions 

Fluids 
0η /Pa·s η∞ /Pa·s λ /s n  

0.15%CMC(1) 0.03762 0.001 0.068962 0.80767 

0.15%CMC(2) 0.08282 0.001 0.101070 0.73567 
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Fig. 2 — Power spectrums of velocities under various conditions 
 

occurs. It reveals that large-scale fluctuation in both 

axial and radial velocities is reinforced. Moreover, a 
low-frequency characteristic peak (0.19 Hz) in radial 

velocity arises, which can be attributed to the liquid 
vibration in the region studied, as shown in Fig. 2 (c) 

and (d).  

As the gas flow rate adds up to Qg = 0.9 ×10
-6  

m
3
·s

-1
, 

the magnitudes of axial characteristic peaks for  

z = 53.5×10
-3 

m and z = 78.5×10
-3 

m increase to  

4.3 Hz and 4.5 Hz respectively, which is  
consistent with the continuous bubble forming and 

rising frequency. Similarly, there exist numerous 

irregular broad peaks in the low-frequency region. 
However, the large-scale turbulent intensity 

surrounding the rising bubble is enhanced by 

increasing bubble velocity, and consequently,  
the magnitudes of radial characteristic peaks in  

power spectrum start to decline, as shown in  

Fig. 2 (e) and (f). 

Phase space reconstruction 

Nearly all methods of nonlinear analysis of signals 

are based on the reconstruction of an attractor of the 
dynamic evolution of the system in phase space. Here, 

Takens’ embedding theorem is employed to 

reconstruct attractors
28

. A set of time series data of 
velocity fluctuations is utilized to generate a m-

dimensional state vector. For a measured scalar time 

series signal { 1 2 1, , ,n nx x x x−, …, … }, X(i) is a m-

dimensional reconstructive vector given by 
 

( ) ( ) ( ) ( ) ( )( ), , 2 , 1 , 1,2,X i x i x i x i x i m iτ τ τ = + + …, + − = …   

… (4) 
 

where τ is the delay time, m is embedding dimension. 
Figure 3 presents two typical examples of  

2-dimensional phase portraits of reconstructed phase 

space of axial-velocity time series. It is found that the 
velocity  signals  is  always  limited  to  a certain area, 
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Fig. 3 — Phase portrait of reconstructed phase space 
 

and for low z and Qg, the phase portrait take on 

uniform elliptical shape due to periodic liquid motion 
induced by periodic bubble rising in the position 

involved, as shown in Fig. 3a. However for  

z = 78.5 × 10
-3 

m and Qg = 0.9 × 10
-6 

m
3
·s

-1
, the bubble 

rising velocity increases obviously, hence the liquid 

turbulence is intensified and large-scale turbulent 

intensity around bubble increases, consequently, 
leading to significant compression of phase portrait, 

as shown in Fig. 3b. Especially, all the trajectories in 

both phase portraits, corresponding to certain 
independent frequencies, are never repeated with their 

own complex shape. It reveals that the system 

instability compels state trajectories to extend 
infinitely, with their dense but ergodic tracks in phase 

space. On the other hand, the system stable factors, 

however, confines the trajectories to a definite space, 
forming a hierarchical chaotic attractor with the 

obvious features of the extension. 
 

Hurst exponent 

As a classic calculated method in fractal theory, the 

rescale-range (R/S) analysis with the determination of 
the Hurst exponent H has successfully been applied 

for pressure fluctuation signals in fluidization
29

 and 

for optical transmittance probe signals
30

. When a 
positive correlation exists in the time-series data,  

H can vary from 0.5 to 1.0. Highest values of  

H indicate that the studied signal is persistent, which 
means that the process exhibits long-term tendencies. 

When the value of H is from zero to 0.5, the signal is 

negatively correlated and for the lowest values of H, 

the signal becomes anti-persistent. When for H≈0.5, 

the system is stochastic. 
For any delay n (n≤N) in time series 

{ } , 1, 2, ,
i

x i N= … , the accumulative departure Xi,n is 

calculated: 
 

( ),

1

i

i n k

k

X x x
=

= −∑   … (5) 

 

where 
1

1 n

i

i

x x
n =

= ∑ . 

 

Then, the sample rescale range, Rn, and the mean 

square-root deviation of time series, Sn, are defined by 
 

, ,
11

max min
n i n i n

i ni n
R X X

≤ ≤≤ ≤
= −   … (6) 

( )

1

22

1

1 n

n i

i

S x x
n =

 
= − 
 
∑   … (7) 

 

Hurst exponent (H) can be empirically determined by 
 

( )/ / 2
H

n n
R S n=   … (8) 

 

Finally, Hurst exponent is obtained by linear fitting 

the curve ln(Rn/Sn) vs. ln(n/2). 
In this paper, there always exist two linear 

relationships in all the curves of ln(R/S)~ln(n), 

indicating that the liquids motion in the rising channel 
center during bubble rise in non-Newtonian fluids  

has two different dynamic characteristics. Typical 

calculated results of the Hurst exponent for both axial 
and  radial  velocity  time  series  are  shown in Fig. 4. 
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Fig. 4 — Hurst exponent versus measured height in 0.15%CMC (1) and 0.15%CMC (2). A and R denote axial and radial directions; 3,  
5 and 9 denote respectively 0.3, 0.5 and 0.9×10-6 m3·s-1 

 
It can be seen that all signals at the measured  

points take on binary fractal features: For a minor 

time delay, the values of Hurst exponent H1,  
larger than 0.85, exhibit positive persistence.  

This persistence implies that a given positive 

increment of liquid pulse signal in the past will lead 
to an average positive increment of the signal in a 

certain period of in the future. However, this 

persistence works only within a certain range.  
With the increase of the delay n, the values of  

Hurst exponents H2 derived from the most signals 
begin to reduce to a small range(0.50~0.74), which 

suggests that positive persistence in the system  

starts to weaken steadily. Furthermore, some values 
of H2 are less than 0.5, revealing the anti-persistence 

feature. This signifies the complex nature of the 

liquid motion induced by bubble rising in  
non-Newtonian fluids under the experimental gas 

flow rate. 

 
Largest Lyapunov exponents 

Largest Lyapunov exponent, the average rates  

of divergence or convergence of nearby orbits in 
independent phase space, has been employed  

to describe the local instability of chaotic orbits and 

has been the quantitative criterion of chaotic orbits 
for the sensitive dependence on initial conditions. 

Once the optimal delay time τ and the minimum 

embedding dimension m were determined, the 
Lyapunov exponent could be calculated by using 

Wolf method
31

 after pretreatment of noise reduction 

of time series.  

For the measured data in the form of time series: 
 

( ) ( )1 , , ,
i i i i m

X m x x xτ τ+ ++ = …   … (9) 
 

In the attractor immersed in D dimensional space, 

two closest points situating at a distance of at least 
one orbiting period one from another, are selected. 

The distance between the points as well as the 

distance after the passage of some evolution time are 
represented by L(tj) and L(tj+1). The largest Lyapunov 

exponent is calculated according to the formula: 
 

1
1

0

( )1
ln

( )

m
i

i i

L t

t L t
λ +

=

= ∑   … (10) 

 

where m is the number of point pairs examined, t the 

time of evolution. 

Figure 5 indicates that largest Lyapunov exponents 
λ1 in axial and radial directions vary with the 

measured height under various gas flow rates and 

CMC solutions concentration. The computed values 
of λ1(0~1.0) imply chaotic motion nature of the liquid 

within the centre of bubble rising channel. For  

z = 38.5×10
-3 

m, Qg = 0.3×10
-6 

m
3
·s

-1
 and 0.15% CMC 

(1), the λ1 in axial direction becomes close to zero, 

corresponding to the periodic motion of fluids with 

low viscosity. However, the λ1 in radial direction is 
approximately 10 times that in the axial direction 

under the same conditions, illustrating that radial 

motion of channel center fluid begins to deviate 
heavily from periodic pattern. Further, by comparing 

the λ1 for Qg = 0.3×10
-6 

m
3
·s

-1
 with that for  

Qg = 0.5×10
-6 

m
3
·s

-1
, it  is  shown  that the λ1 rises with 
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Fig. 5 — Largest Lyapunov exponent versus measured height.  
1 and 2 denote CMC(1) and CMC(2); A and R denote axial  
and radial directions; 3, 5 and 9 denote respectively 0.3, 0.5 and 
0.9×10-6 m3·s-1 

 

the gas flow rate, which suggests that under high  
gas flow rate, the dynamics of liquid radial 

movement become more complex, i. e. system 

chaotic degree increases gradually. Furthermore,  
for Qg = 0.9 × 10

-6 
m

3
· s

-1
 and 0.15% CMC (2), the λ1 

in radial direction increases with the measured 

height. This can be explained as follows: The deduce 
of solution viscosity leads to the slight in-line 

interaction between two successive bubbles in the 

measured position, and the weak interplay at low 
position keeps bubble a quasi-periodic ascending 

state, consequently, resulting in small λ1. Whereas 

for the high position, the in-line interaction between 
bubbles will enhance due to the intensification  

of compression movement of bubbles coupled  

with the shear-thinning effect of CMC solution. 
Hence, for large height condition, the motion of 

CMC solution in the channel center deviates heavily 

from periodic pattern, causing large λ1. 
 

Conclusion 

The Laser Doppler anemometry has been applied 

to measure the liquid instant velocities induced by a 
bubble chain rising in non-Newtonian CMC fluids 

under various experimental conditions. The bubble 

dynamics in rising channel center are investigated by 
analysis the liquid velocity using chaos theory. 

For low z, Qg and dilute solution, the characteristic 

frequency of the power spectrum in axial and radial 
velocities is found to be consistent with bubble 

periodic shear frequency. Phase portrait takes on a 

uniform elliptical shape due to the results of liquid 
periodic motion caused by bubble periodic rising in 

the channel center. The λ1 range from zero to 1.0, 

implies chaotic motion nature of the liquid within the 

center of the rising channel. Nonetheless, the λ1 in 
radial direction is about 10 times that in the axial 

direction which indicates that radial motion of 

channel center fluid begins to deviate heavily from 
periodic pattern. 

For high z, Qg and concentrated solution, the  

in-line interaction between bubbles will enhance  
due to the intensification of compression movement 

of bubbles coupled with the shear-thinning effect  

of CMC solution. Therefore, both axial and radial 
power spectrums are of broad coverage within low 

frequency range, phase portrait is significantly 

compressed, and the λ1 increases with the rise of 
system chaotic degree. 

The results of fractal analysis show that the liquid 

motion has a unique feature of the binary fraction,  
and shows strong positive persistence characteristics 

for a small delay, but this positive persistence 

characteristic begins to decrease obviously with the 
delay increase. 
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Nomenclature 

D  = phase space dimension 

f  = frequency, Hz 

H  = Hurst exponent 

i  = the ith measured point 

( )
i

L t  = 
the distance of the ith couple nearest position after 

t time steps 

m  = embedded dimension; number of point pairs 

n  = 
time delay, s; number of signals in time series; 

parameter in Carreau model 

N  = 
sample number of data points in the time series; 
length of reconstructive vector Xi 

,i n
N  = 

cumulative deviation from the mean of a time series 
xi in time delay n, m·s-1 

P  = power spectrum function 

g
Q  = gas flow rate, m3·s-1 

n
R  = range function 

n
S  = rescale range function 
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t  = time, time of evolution, s 

w  = liquid velocity signal, m·s-1 

W  = function of discrete Fourier transform 

x  = measured liquid velocity time series, m·s-1 

X  = reconstructive vector 

,y z  = y and z coordinates, m 

Greek Symbols 

0η  = zero-shear viscosity, Pa·s 

η∞  = infinite-shear viscosity, Pa·s 

λ  = Carreau model parameter, s; wavelength, m 

1λ  = largest Lyapunov exponents, bits·s-1 

τ  = time delay, s 
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