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Pyridine is a heterocyclic aromatic compound present in pyridine raffinate, an organic discharge of the pyridine 

manufacturing industry. Besides pyridine, raffinate also contains formaldehyde, picolines and phenolics. Earlier, we 

isolated Gamma proteobacterium from timber soil for laccase production and optimized the involved process parameters. 

Here, we studied the optimization of process parameters for biodegradation of pyridine raffinate with the help of 

mathematical modeling [central composite design with response surface methodology (CCD-RSM) and artificial neural 

network (ANN)]. The results predicted ANN to be a better tool for optimization of pyridine raffinate degradation. CCD 

was used to develop the best fit second-order polynomial quadratic regression equation. Prediction of degradation 

percentage for pyridine raffinate was done using the equation which was found to be 71.60% at temperature 36.76°C, pH 

7.45 and inoculum concentration 1.96 mL/10mL. The predicted response was experimentally validated in the wet lab to 

verify the degradation efficiency. The outcome was 65.76±2%, further confirmed by Gas Chromatography-Flame 

Ionization Detector (GC-FID). The result of GC-FID () data showed no trace of pyridine (Area 0%) which was reduced 
from initial area of 1.38% pyridine in raffinate sample.  

Keywords: Backpropagation, Biodegradation, Central composite design (CCD), Industrial pollution, Laccase production, 

Organic pollutant, RSM 

The increased industrialization without proper 

monitoring of effluents comprising toxic chemicals has 

led to serious environmental pollution. One such 

chemical is pyridine and its derivatives which are 

frequently found in the industrial and agricultural 

effluents. Due to its recalcitrant nature, the United States 

Environment Protection Agency (USEPA) has listed 

pyridine as a priority organic pollutant1. Utilization as a 

raw material in paint, dyes and pharmaceuticals along 

with its use in the alcohol denaturation process and to 

formulate products, such as medicine, vitamins, 

adhesives and in waterproofing of fabrics are some of 

the applications of pyridine2,3. Pyridine has carcinogenic 

properties, and hence an exposure limit of 5 ppm 

averaged over a 10 h work-shift has been recommended 

by Occupational Safety and Health Administration 

(OSHA), American Conference of Governmental 

Industrial Hygienists (ACGIH). 

Pyridine raffinate is a pale, toxic, obnoxious odour 

organic effluent released from different manufacturing 

industries, such as pharmaceuticals agrochemicals, food, 

latexes and others4. The raffinate consists of various 

heterocyclic aromatic hydrocarbon compounds, such as 

formaldehyde, phenolics and picolines along with 

pyridine and is highly alkaline (pH 12.0) and water 

soluble5. Among the various treatment methods 

investigated viz. sorption, zeolites and biodegradation6, 

the biological treatment approach has been found to be 

most cost-effective. In this work, we opted for ex-situ 

bioremediation approach for degrading pyridine 

raffinate using bacterial extracellular enzyme laccase. 

The extensive applications of laccase have enhanced its 

industrial importance in areas like delignification of 

lignocellulosic material, waste detoxification and textile 

dye decolourization. The large amount of wastewater 

requiring treatment creates hindrance in the industrial 

application of enzyme assisted treatment technologies. 

High costs, limited operating stability, intolerance to 

unfavourable environmental conditions, and challenging 

recovery and recyclability are among the many other 
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drawbacks encountered while using soluble native 

enzymes for treatment7. Although laccase can be 

obtained from both bacteria and fungi, bacterial laccases 

are comparatively better for industrial use which could 

be attributed to their ability to perform in a broader 

range of temperature and pH and greater stability against 

different physical and chemical inhibitions.  

In this study, we explored degradation of pyridine 

raffinate using laccase and to enhance the degradation 

process by optimizing the involved process parameters. 

Pyridine raffinate degradation was used as a model in 

this study for optimization of industrial degradation of 

pyridine and validation of the hypothesis was 

performed with central composite design (CCD). CCD 

is beneficial and efficient in providing information on 

the effects of variables involved in the experiment and 

overall experimental error in a minimum number of 

required runs (CCD-RSM). Box & Wilson developed 

response surface methodology (RSM) with the 

objective of improving yield from various industries8. 

The optimization of multiple parameters is performed 

in a stepwise manner by conducting a statistically 

designed experiment followed by determination of 

coefficient estimate, analysis of the response and 

finally checking the adequacy of the model.  

In this study, we focused on optimizing the process 

parameter for degradation of pyridine raffinate using 

the diversity of isolated bacterial laccase to enhance the 

removal of pyridine on which only limited information 

is available. Furthermore, in order to screen the 

optimum process parameters, we used simulation tools 

like CCD-RSM9-11 and ANN which is well known for 

optimization in biotechnology, life science, process 

industries12. We intend to select and screen the 

degradation parameters and further validate the 

parameters to apply in the industrial trial. 

 

Materials and Methods 

All chemicals used in this study were of analytical 

grade procured from Sigma Aldrich, Hi-media, BDH 

(British Drug House). The media and their ingredients 

were purchased from Hi-Media. Pure pyridine was 

used as a control sample and was procured from 

Thomas Baker. 
 

Microorganism 

Laccase producing bacteria was isolated from a soil 

sample in our previous study13. The bacteria were 

morphologically and biochemically characterized  

and identified as Pseudomonas fluorescens (Gamma 

proteobacterium). 

Collection of pyridine raffinate sample 
Plastic containers (Capacity 250 mL) were used to 

aseptically collect pyridine raffinate from M/S 

Jubilant Organosys Ltd, Gajraula (UP), India. The 

freshly collected pyridine raffinate samples were 

transparent, pale with pungent smell of formaldehyde, 

phenol, picoline, and pyridine. 
 

Growth media 

Solvents viz. Tris-Base, Phosphate buffer, EDTA 

and Propyl alcohol were obtained from Thomas Baker 
Chemicals Private Limited, New Delhi, India. Salts 
viz. Na2HPO4, CaSO4, NaCl, ZnSO4, C6H5FeO7, 
MnSO4.H2O, K2Cr2O7, NaHCO3, NaH2PO4 and 
CH3COONa were obtained from Central Drug House, 
New Delhi, India and media components viz. agar, 

yeast extract, sucrose, glucose, tryptone, peptone were 
obtained from Sisco Research Laboratories Pvt. Ltd. 
(SRL), New Delhi, India. Guaiacol was procured 
from Thermo Fisher Scientific India Pvt. Ltd., 
Mumbai, India. All reagents were of analytical grade 
and extra pure quality. 

 

Laccase production media 

The production of laccase was done in 250 mL 
Erlenmeyer flask, containing 50 mL of modified 
production media (g/l): 0.4 CaSO4.2H2O, 2.0 

MgCl2.6H2O, 1.0 glucose, 5.0 Ferric citrate solution 
0.01M, 0.5 Na2HPO4, 0.5 NaH2PO4, 0.5 NH4NO3, 0.5 
K2HPO4, 3.0 yeast extract, 3.0 tryptone. pH was adjusted 
to 8.0 using 5N NaOH prior to sterilization (121℃, 15 
lbs, 15 min). About 1% v/v inoculum (1×104 cells/mL)14 
was used for media inoculation and incubation was done 

at 30℃ at 120 rpm for 5 days. After incubation was 
over, the culture broth was centrifuged at 10000 ×g for 
10 min at 4℃ and the supernatant was used as crude 
enzyme to measure laccase activity. 

 

Process optimization 

Experimental design and modeling 
In this study, our aim was to obtain the optimum 

values of process parameters (temperature, pH and 
inoculum concentration) for efficient and optimized 
degradation of pyridine raffinate using CCD-RSM 
and ANN as statistical tools. RSM had been used as a 
prediction tool for process optimization15. As much as 
20 experiments were conducted employing a three-
level-three factor CCD taking into consideration the 
temperature (C), pH and inoculum concentration 
(g/L) (Table. 1).  

The influence of independent experimental factors 
and their interaction on pyridine raffinate degradation 
was predicted using a 23 rotatable CCD followed by 
RSM. Many researchers have successfully used CCD-
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RSM for optimization and improved the degradation 
of PAHs16. 

 

The best fit second-order polynomial quadratic 

regression equation (Eq.1) was generated with the 

help of the response obtained through a CCD, 
 

Y= β0 + β1A+ β2B+ β3C+ β11A2+ β22B2+ β33C2+ β12AB+ β13AC+ 

β23BC                                                                                  (Eq. 1) 
 

where, Y is the dependent variable (percentage of 

pyridine raffinate degradation); β0 represents the offset 

value whereas β1, β2, β3 are coefficients of linear terms; 

β11, β22, β33 are quadratic coefficients and β12, β13, β23 

denote interaction coefficients. A, B, C represent the 

independent variables, viz., Temperature (℃), pH and 

inoculum concentration (g/L), respectively. Significance 

tests and analysis of variance (ANOVA) on each 

response were conducted to analyze the effect of the 

parameters and their interaction on the response in 

order to check the adequacy of the model. Design 

Expert 9.0 (State-Ease Inc., USA) was employed for 

the plotting three-dimensional surface plots. The value 

of α was calculated as 1.5 where α= 2k/4 (k=3, the 

number of variables). Table 2 represents the coded 

values of all independent variables and the 

experimental value of the only response variable Y 

(percentage of pyridine raffinate degradation) along 

with predicted values. The coefficients were calculated 

by Design-Expert 9.0.6.2.  
 

Artificial neural network (ANN) modeling 

A multilayered feed-forward ANN with error 

backpropagation (BP) was employed using MATLAB 

R2016a (MathWorks Inc., USA). Constant improvement 

of the network with proper mapping between input and 

output layers and error reduction is desired which is 

achieved by a strict learning scheme for proper training 

of the network17,18. The network was trained with 

Levenberg-Marquardt back-propagation algorithm 

(trainlm) in order to obtain the weights and biases. This   

algorithm typically requires more memory but less time. 

Minimization of error at each iteration during process 

optimization is most commonly done by a feed forward 

network with backpropagation19. The developed ANN 

architecture was used to optimize pyridine raffinate 

degradation using input neurons network topology. The 

number of hidden layer neurons was recognized by the 

training of several ANN topologies. The optimal one 

was selected on the basis of minimization of mean 

square error (MSE) and overall correlation coefficient 

(R) to improve the generalization ability of ANN 

topology. Overall, 20 experimental data points were 

used to construct and train the neural network model. 

About 70% of the overall data set was used for training 

the network model while 30% (15% + 15%) for testing 

and validation of the model. Training automatically 

stops as soon as improvement in generalization stops. 

This was indicated by an increase in the mean square 

error of the validation samples. The training of the 

neural network was performed until the MSE reaches a 

constant low value with accompanying overall 

correlation coefficient (R value) close to 1. 

 

Results and Discussion 
 

Pyridine raffinate degradation: 

Laccase was initially characterized by standard 

substrate guaiacol after which the best conditions 

were chosen to perform assay with pyridine raffinate. 

The bioremediation capability of the extracted 

enzyme was tested by analyzing the reduction in 

Table 1 — Range of parameters (independent variables) chosen for CCD 

Factor Name Units Type Minimum Maximum Coded Low Coded High Mean Std. Dev. 

A Temp. °C Numeric 19.89 45.11 1 ↔ 25.00 +1 ↔ 40.00 32.50 6.36 

B pH  Numeric 4.64 11.36 1 ↔ 6.00 +1 ↔ 10.00 8.00 1.70 

C Inoculum conc. g/l Numeric 0.4887 3.01 1 ↔ 1.00 +1 ↔ 2.50 1.75 0.6359 

 

Table 2 — Experimental plan, range and levels of  

independent variables (A), (B) and (C) 

Run Temp. 

(C) 

pH Inoculum 

(mL/ 

10 mL) 

Exp. 

removal 

(%) 

RSM ANN 

1 25 6 1 25.63 20.99 25.74597 

2 40 6 1 46.97 48.5 47.54515 

3 25 10 1 42.97 43.72 40.81833 

4 40 10 1 74.93 70.98 74.68941 

5 25 6 2.5 30.92 35.13 31.58764 

6 40 6 2.5 93.23 92.73 90.35077 

7 25 10 2.5 36.36 35.08 38.33328 

8 40 10 2.5 87.54 92.43 88.00668 

9 20 8 1.75 16.36 17.06 14.15993 

10 45 8 1.75 89.47 88.42 89.45637 

11 32.5 4.5 1.75 47.05 46.81 47.22412 

12 32.5 11.5 1.75 65.79 65.67 67.66411 

13 32.5 8 0.5 37.46 41.34 37.69763 

14 32.5 8 3.0 75.5 71.27 75.84445 

15 32.5 8 1.75 61.55 57.55 58.06888 

16 32.5 8 1.75 63.36 57.55 58.06888 

17 32.5 8 1.75 48.11 57.55 58.06888 

18 32.5 8 1.75 56.06 57.55 58.06888 

19 32.5 8 1.75 58.73 57.55 58.06888 
20 32.5 8 1.75 57.41 57.55 58.06888 
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optical density. Conical flasks (250 mL) each with 

100 mL pyridine raffinate were inoculated with crude 

laccase enzyme and incubated according to CCD for 

evaluating degradation performance. Then, 5 mL of 

sample was taken aseptically at optimized time; 140 min 

and centrifuged (Elektrocraft Pvt. Ltd., MP400R, 

Mumbai, India) at 5000 rpm for 10 min13. The analysis 

of pyridine bioremediation was performed in terms of 

optical density reduction in the supernatant, observed 

at 501nm by a UV spectrophotometer (G Biosciences 

Pvt. Ltd., Noida, India) (Table 2). 
 

The response expressed as percentage of pyridine 

raffinate degradation was calculated from Eq.2, 
 

 % Degradation =  
(C0−Ct)

C0
 × 100  (Eq. 2) 

 

where C0 is the initial optical density (OD) and Ct is 

the OD after time t (min). 
 

Optimization of pyridine raffinate degradation 
Central composite design (CCD) was employed for 

the experimental optimization of pyridine raffinate 

degradation. CCD model was used for experimental 

run, using temperature (A), pH (B), and inoculum 

concentration (C) as a variable parameter. The 

experimental run and the respective responses  

(i.e. degradation of pyridine raffinate in g/L) have 

been shown in Table 2. Error produced during the 

experiment was estimated before applying the RSM, 

ANN model for optimization. 
 

Optimization by RSM modeling 

The degradation of pyridine raffinate ranged 

between 16.36 and 93.23% removal. The experimental 

data was simulated using RSM for interaction analysis 

and response plot. The ANOVA model for pyridine 

raffinate degradation is shown in Table 3.  

The model F-value of 35.86 implied model to be 

significant with only a 0.01% chance that an F-value 

this large could occur due to noise. P-values less than 

0.0500 indicated the significant model terms which 

was A, B, C, AC, BC in this case. Model terms with 

values greater than 0.10 indicated insignificancy and 

if insignificant model terms are many (not counting 

those required to support hierarchy), model reduction 

may improve the model. The Lack of Fit F-value of 

0.8295 implied an insignificant lack of fit relative to 

the pure error. There was 57.88% chance that a Lack 

of Fit F-value this large could occur due to noise. 

Non-significant lack of fit is good as it implies the 

model to fit. The predicted R² of 0.8621 was in 

reasonable agreement with the adjusted R² of 0.9429; 

the difference was less than 0.2. Adeq precision 

measures the signal to noise ratio. A ratio greater than 

4 is desirable and in this case a ratio of 20.961 

indicated an adequate signal. Hence, the model was 

suitable to be used to navigate the design space.  
 

Final equation regarding code factors 
 

Pyridine raffinate degradation (%) = 97.46393 +2.48722Temperature 

+11.42961 pH+1.49961Inoculum0.004250Temperature*pH + 

1.33756Temperature*Inoculum 3.79583pH*Inoculum-0.030233 

Temperature² 0.115346pH² 0.782526Inoculum² ………...(Eq. 3) 
 

Predictions regarding the response for given levels 
of each factor can be made by using Eq. 3 in terms of 
actual factors where the levels should be specified in 

the original units for each factor. Fig. 1 depicts the 
interaction between the actual and predicted response. 
Further, the interaction graph and contour plot showing 
the relationship between two parameters keeping the 
remaining as constant is also presented.The interaction 
between inoculum concentration and pH is shown in 

Table 3 — Analysis of variance (ANOVA) for  

pyridine raffinate degradation 

Source Sum of 

Squares 

df Mean 

Square 

F-value p-value 

Model 8413.99 9 934.89 35.86 <0.0001* 

A-temperature 6147.29 1 6147.29 235.80 <0.0001 

B-pH 429.27 1 429.27 16.47 0.0023 

C-inoculum 1081.39 1 1081.39 41.48 <0.0001 

AB 0.0325 1 0.0325 0.0012 0.9725 

AC 452.85 1 452.85 17.37 0.0019 

BC 259.35 1 259.35 9.95 0.0103 

A² 41.68 1 41.68 1.60 0.2348 

B² 3.07 1 3.07 0.1177 0.7387 

C² 2.79 1 2.79 0.1071 0.7502 

Residual 260.70 10 26.07   

Lack of fit 118.20 5 23.64 0.8295 0.5788** 

Pure error 142.50 5 28.50   

Cor total 8674.69 19    

[*significant; **not significant] 

 

 
 

Fig. 1 —Relation between actual response and predicted response 
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Fig. 2A at a constant temperature 32.5 ℃. Similarly,the 
interaction between pH and temperature at a constant 
inoculum concentration of 1.75% is represented in  
Fig. 2B and interaction between inoculum concentration 
and temperature at constant pH 8 is represented in  

Fig. 2C. The optimum degradation of pyridine raffinate 
through RSM was evaluated at pH 7.45, temp 36.76°C  

and inoculum 1.96%. Fig. 3 depicts the optimum levels 
of the different parameters with the corresponding 
outcome for pyridine raffinate degradation.  

 

Optimization by Artificial Neural Network (ANN) 

Initially, for the ANN model, the input data  

was divided as training (70%), validation (15%)  

and testing (15%)  and  the  performance of training is 

 

 
 

Fig. 2 — Contour graph interaction between (A) inoculum concentration and pH; (B) pH and temperature;  

and (C) inoculum concentration and temperature 
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depicted in Fig. 4A. The ANN model with suitable R2 

values of training (0.9848), validation (0.9981) and 

testing (0.9977) is represented in Fig. 4B. The overall 

model was best fit to a linear equation with R2 value 

0.99013 which was not close to R2 value of RSM data 

set which was 0.9699. This indicates that accurate 

simulation for pyridine raffinate degradation (target) 

was provided by the developed ANN model and the 

experimental results were reproduced with greater 

precision. The quality of the data used to develop the 

ANN model was further estimated by error histogram 

plot which indicated most of the errors to range 

between -0.4276 to 0.3349 (Fig. 4C). The collection 

of more data points was necessitated in order to 

improve the model due to the presence of a large 

number of outliers in this model. 
 

External validation by GC analysis 

The GC-Flame ionization detector (GC-FID) was 

used to analyze the presence of pyridine along with 

other volatile and semi-volatile compounds in the 

raffinate and to validate the data regarding pyridine 

removal after microbial laccase treatment. Analysis of 

sample was performed by Agilent GC7890B with 

headspace 7697B (Agilent Technologies) to detect  

the  compounds  present  using  a  GsBP-624 capillary  

 

 
 

Fig. 3 — Optimum outcome of parameters 
 

 

 
 

 

 

Fig. 4 — (A) Performance plot 

during the ANN training;  

(B) Regression model data of 

experimental and predicted values 

using ANN; and (C) Error 

histogram plot for the ANN 

model for pyridine raffinate 

degradation 
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column (30 m X 0.32 mm X 1.80 µm film thickness) 

(Agilent Technologies). Hydrogen was used as a 

carrier gas at a flow rate of 36 mL/min and the sample 

volume loaded was 1.0 µL. The column temperature 

was set at 100℃ for 15 min. The volatile compounds 

present were detected by comparing their retention 

times depicted in the gas chromatogram to that of 

pure standard compound. The detection of the 

elements was done using a flame ionization detector.  

The chromatograms are shown in Fig. 5A-C. Fig. 5A 

indicates chromatogram for pure pyridine to be used 

as control with base material which depicts the peak 

with retention time and percentage (%) area for 

pyridine as 0.957 min and 65.10%, respectively; the 

retention time for base material was 0.699 min. 

(34.42%). The chromatogram in Fig. 5B depicts the 

different compounds present in the pyridine raffinate 

sample. The peak with retention time at 0.967 min. was 

confirmed as pyridine (1.38%) since the retention time  

corresponded to that of pure pyridine peak in control. 

Another prominent peak was obtained at 6.697 min. 

(98.5%). The identification of the compounds 

associated with the other peaks is to be done in our 

future studies. The analysis of the pyridine raffinate 

sample after treatment with microbial laccase validated 

the removal of pyridine by the enzyme. The chro-

matogram in Fig. 5C showed two peaks at 0.631 min. 

(21.00%) and 1.10 min. (77.93%), respectively, none 

of which corresponded to the peak for pyridine in the 

chromatogram mentioned in Fig. 5B. This indicates the 

potential degradation of the pyridine in the raffinate 

sample after treatment by microbial laccase since  

0% area was observed. 
 

Comparing CCD-RSM and ANN data 

The comparison of RSM and ANN data for 

validation has also been done in previous studies15,20. 

Fig. 6 depicts the comparison between CCD-RSM and 

ANN response where the data points of ANN response 

showed no overfitting. Also, the model was found to be 

statistically more suitable when compared to the RSM 

response. The experimental and predicted values of 

pyridine raffinate degradation by RSM and ANN are 

illustrated in Table 2. R2 and mean square error (MSE) 

was employed as the basis for comparison of predictive 

capabilities of RSM and ANN models. R2 values for 

the predicted model of RSM were found to be 0.9699 

and that for the ANN model was 0.9901 whereas the 

MSE values for RSM and ANN models were 28.50 

and 1.9077, respectively. One of the limitations with 

the RSM model is its ability to generalize data by only 

quadratic equations while ANN models demonstrate 

 

 
 

Fig 6 — Comparative analysis of experimental vs. CCD-RSM vs. 

ANN data 
 

 

 
 

Fig. 5 — GC chromatogram of (A) pure pyridine analysis; (B) 

pyridine raffinate analysis; and (C) Analysis of pyridine raffinate 

after treatment by microbial laccase 
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higher predictive capability attributed to the non- linear 

polynomials of the system. The comparative predictive 

supremacy of ANN over experimental response has 

also been reported21. The selection of model type 

(RSM or ANN) mainly depends upon the type of data 

set to be used. RSM models are more appropriate in 

case of the limited number of components for obtaining 

the relation between input and output components and 

for sensitivity analysis22. However, on the other hand, 

ANN possesses the ability to learn and generalize the 

behaviour of any complex process and represents non-

linearities in a much-rectified way23. 
 

Conclusion 

In this study, we demonstrated degradation of the 

environmental pollutant pyridine raffinate by 

microbial laccase. We estimated the optimum 

process parameters required for adequate 

degradation of pyridine raffinate using central 

composite design with further analysis of the 

experimental outcome by coupling RSM and ANN 

model. ANN was found to be a better and improved 

tool for optimization of pyridine raffinate 

degradation. The predicted degradation of pyridine 

raffinate through the model was found to be 71.60% 

at temperature 36.76°C, pH 7.45 and inoculum 

concentration 1.96 mL/10 mL. The actual run had 

limitation of incubation temperature, therefore 

instead of 36.76°C, temperature was approximated at 

37°C. At this condition, the actual degradation was 

determined by UV spectroscopy in terms of OD 

reduction and further validated by GC-FID. The 

optimum result was 65.76% which was further 

validated by GC-FID analysis to confirm the 

depicted area percentage (1.38%) of pyridine in the 

pyridine raffinate sample. After treatment by 

microbial laccase, the chromatogram showed no 

trace of pyridine (0% area) in the treated sample. 

Hence, microbial laccase could show potential in 

remediation of pyridine raffinate discharged into 

terrestrial and aquatic environment. Also, 

mathematically designed experiments (CCD- 

RSM/ANN) have great potential in the field of 

process optimization. 
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