
Indian Journal of Engineering & Materials Sciences 
Vol. 27, February 2020, pp. 33-46 
 
 
 
 
 
 

 

Heat transfer and magneto-hydrodynamic nanofluids flow behaviors past a 
nonlinear stretching surface considering viscous dissipation and joule heating 

Santosh Chaudharya*, KM Kanikab & Susheela Chaudharyc 
a,bDepartment of Mathematics, Malaviya National Institute of Technology, Jaipur 302017, India 

cDepartment of Mathematics, Government Science College, Sikar 332001, India 

Received: 9 July 2019; Accepted: 26 November 2019 

Mathematical investigation has been presented to examine the magnetohydrodynamic boundary layer flow of viscous 
nanofluids bygone a nonlinear stretched plate among cumulative impact of viscous dissipation and joule heating. Physical 
formulation produced a system of partial differential equations which has been converted into a set of ordinary differential 
equations through employing suitable similarity variables. For numerical solutions of resulting governing equations of flow, 
a Keller-box method has been addressed. Results of dimensionless velocity and dimensionless temperature for impacts of 
various types of nanoparticle along with water base fluid and effects of physical parameters, namely solid volume fraction, 
nonlinear stretching parameter, magnetic parameter and Brinkmann number have been deliberated via graphs. Additionally, 
surface shear stress and surface heat flux for selected suitable values of pertinent parameters have been computed and 
explicated via table. 
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1 Introduction 

Heat transfer is a thermal energy action, which 
corporate with the generation, conversion, and 
replacement of heat and thermal energy between 
physical structures. In nature, heat transfer is a 
boundless circumstance, it occurs along to the 
temperature difference between medium or within a 
similar frame. Heat transfer can be classified in 
different ways like thermal radiation, conduction and 
convection. There are a lot of applications such as 
fuel cells, recovery of waste heat, microelectronics, 
metal metallurgy, nuclear power plant, heat pump in 
energy, heat employment in solar energy and storage 
of chemical energy in the area of engineering and 
industry. A study of unsteady heat transfer flow over 
convection by the ambient in the turbulent channel is 
pioneered by Yan1. Further, Datta2 inspected the 
non-Newtonian fluid flow with heat transfer access 
tubes. Numerous elaborate and comprehensive 
explorations such as Khanafer et al.3, Wang and 
Yang4, Hong and Asako5, Yan and Gu6, 
Turkyilmazoglu7 and Chaudhary and Choudhary8 are 
addressed the heat transfer properties. Recently, 
Zhang et al.9 and Afridi and Qasim10 have conducted 

the numerical studies of heat transfer flow with 
various conditions.  

Along with a magnetic influence, an analysis of 
electrically conducting fluids namely liquid metals, 
salt water and plasmas is known as magneto-
hydrodynamic. Magnetic field intensity controls the 
nature of liquid and can change the heat transfer 
properties via rearranging fluid concentration. In a 
fluid, magnetic field consumed current flows that 
build forces on the fluid. MHD relations developed by 
the combination of electromagnetism equations of 
Maxwell and Navier-stokes equations of fluid-
mechanics. In the last some decades, the MHD 
analysis in fluid flow achieved extensive attention in 
many fields like as physics, chemistry, polymer 
industry and engineering. MHD is frequently applied 
in the applications such as walls cooling an inside 
nuclear reactor, separation of sink-float, metal  
casting, disease diagnostic processes, fusing metals  
in an electric furnace, blood pump machines and 
loudspeakers construction as sealing materials.  
Hayat et al.11 initiated the analysis of MHD boundary 
layer flow of an Oldroyd-B fluid. After that, 
Siddheshwar and Mahabaleswar12, Abdelkhalek13, 
Turkyilmazoglu14 and Chaudhary and Kumar15 are 
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excellently illustrated the research information extent 
in the field of MHD flow. In recent years, several 
researchers like Imtiaz et al.16 and Chaudhary et al.17 
explored the MHD flow problems. 

Ordinary fluids, specifically water, mineral oils, 
ethylene glycol and air with suspended nanoparticles 
mainly made by metals, non-metals, oxides, nitrides 
and carbides are certified as nanofluids, which have 
high capabilities for heat transfer and more thermal 
conductivity than basic fluids. Nanoparticles are taken 
with a size smaller than 100 nm. The study of 
nanofluids provides applications in the field of the 
power plant, manufacturing biomedical and 
engineering namely solar energy, cancer therapy, 
systems of energy storage, lubrication technologies, 
food processing and heat exchangers. Choi18 is the 
first one who created the term nanofluid to enlarge the 
fluid thermal conductivity. Whereas, Eastman et al.19 
depicted a study of copper-ethylene glycol nanofluid 
with increment in effective thermal conductivity. 
Moreover, Koo and Kleinstreuer20, Akbarinia21, Rana 
et al.22, Moghari et al.23, Sheikholeslami and Rokni24, 
and Sheikholeslami and Zeeshan25 created global 
literature on fluid flow analysis with the suspended 
nano-sized solid particles. 

The study of fluid flow towards a stretchable sheet 
is extrusive in crowded industrial and engineering 
applications. Some cases of applications are drawing 
of wire, rubber sheet, manufacturing of glass fiber, 
polymer extrusion via dye, paper cooling and drying, 
increment in paint efficiency and lubrication, a wind-
up roll, copper wires annealing, liquid crystals and 
filaments. These applications have a considerable 
contract of research interest along with its  
bearing. The exploration of boundary layer flow by 
providing an exact solution for governing equations 
due to the stretching plate is initiated through  
Nazar et al.26. Latterly, Cortell27 discussed the 
radiation and heat generation/absorption impact on 
magnetohydrodynamic flow past a stretching surface. 
Also, Jat and Chaudhary28, Cortell29, Hayat et al.30, 
Chaudhary and Choudhary31, and Saadatmandi and 
Sanatkar32 presented some articles along with these 
aspects in fluid flow. 

Energy viscous dissipation simplified as an effort 
executed through velocity across viscous stresses. 
Until, a substance is known as Joule heating or ohmic 
heating, if conduction electrons transfer energy to 
atoms of the conductor by the collision procedure. 
Eckert number and multiplication of magnetic 

parameter and Eckert number characterize the viscous 
dissipation and Joule heating respectively. Viscous 
dissipation and Joule heating are additional influential 
for heating or cooling of the plate. Effect of viscous 
dissipation and Joule heating have vital importance 
because of their relevance to nuclear engineering and 
geophysical flow with associated applications such as 
a drawing of glass fiber and wire, designs of the heat 
exchanger, a system of power generation, nuclear 
reactors cooling and liquid metal fluids. 
Magnetohydrodynamic forced convection in a fluid-
brimming permeable surface over a horizontal 
cylinder along with the influence of viscous 
dissipation and Joule heating is addressed by El-
Amin33. Few articles via this direction are established 
by Abo-Eldahab and El Aziz34, Jat and Chaudhary35 
and Reddy et al.36. In the latest, Hussain et al.37 and 
Chaudhary and Choudhary38 considered the impacts 
of viscous dissipation and Joule heating. 

An attentive literature survey reveals that there is 
no investigation available yet which studies the 
boundary layer flow of nanofluids past the nonlinear 
stretching surface in the existence of a magnetic field. 
To fill up this disparity, the main aim of current 
exploration is to extend the study of Hamad and 
Ferdows39. MHD flow of different types of 
nanoparticles namely silver ( Ag ), copper ( Cu ), 

titanium dioxide ( 2TiO ) and aluminum oxide ( 32OAl ) 

with the base fluid water over to the effects of viscous 
dissipation and Joule heating are also assumed into 
consideration. The numerical solution of the problem 
is attained by using a Keller-box method. Based on 
the practical application of equipment cooling like 
telecommunication enclosures, computers and 
compact power supplies, effort to increase the heat 
transfer are needed. So the metallic nanoparticles are 
added into the water because metallic nanoparticles 
have higher thermal conductivity and rate of heat 
transfer. This study is illustrated to highlight the 
impacts of particular values of physical parameters on 
the nanofluid flow. 
 
2 Mathematical Analysis 

Let assume the steady-state, two-dimensional 
viscous nanofluids flow towards a stretching plate 
along to the viscous dissipation and Joule heating 
impact. The coordinate system ( yx, ) identifies in 

Fig. 1 that x direction is taken parallel to the wall 
and y direction is taken normal to the wall. The 
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plate is considered at x axis and it is stretched with 

the non-linear velocity n
w cxu   at the temperature 

n
w bxTT 2  , where cb,  are positive constants, n  

is the nonlinear stretching parameter and T  is the 
ambient fluid temperature. Keeping in the view of 
thermal equilibrium, there is no slip occurs between 
the ordinary fluid and the suspended nanoparticles. It 
is also surmised that fluid is electrically conducting, 

thus the Lorentz force BJ


  condition included in 

the momentum equation, where J


 is the electrical 

current density, )0,,0( 0BB 


 is the transverse 

magnetic field and 0B  is the magnetic field applied 

perpendicular to the plate. A small value of magnetic 
Reynolds number is enough to show that the influence 
of the induced magnetic field can be neglected. 
Following governing equation are obtained by using 
the above assumptions as (Bansal40) : 
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along to the associated boundary conditions, 
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where subscript nf  denotes the nanofluid properties, 

u  and v  are the velocity components corresponding 

to the x  and y axes respectively, 

   is the 

kinematic viscosity,   is the coefficient of viscosity, 

  is the density, e  is the electrical conductivity,  

T  is the temperature of nanofluid, 
pC

   is the 

thermal diffusivity,   is the thermal conductivity and 

pC  is the specific heat at constant pressure. 

Further, physical characteristics of nanofluid 
namely coefficient of viscosity, density, electrical 
conductivity, thermal conductivity and heat 
capacitance for spherical shaped nanoparticles 
continued from Mohyud-Din et al.41 are given as 
follows 
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where subscripts f  and s  indicate the physical 
properties for base fluid and nano solid particles, 
respectively and   is the solid volume fraction. 
Moreover, values of thermophysical properties of 
nanoparticles and base fluid are introduced in Table 1 
(Su and Zheng42). 
 
3 Similarity Transformation 

To solve the governing Eqs. (1) to (3), a stream 

 
 

Fig. 1 — Flow configuration and coordinate system. 
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function  yx,  is defined in the usual way that 

y
u







 and 
x

v


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

, which symmetrically 

satisfies the continuity Eq. (1), similarity variable   

and the non-dimensional temperature )(  are taken 
to followed as Hamad and Ferdows39 in the following 
structure 
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where )(f  is the dimensionless stream function. 
After imposing the similarity transformations  

Eq. (10), the governing boundary layer Eqs. (2) and 
(3) corresponding to the boundary conditions Eq. (4) 
are modified as follows 
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subjected to the relevant boundary conditions in the 
dimensionless form are 
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4 Quantities of Interest  
Physical quantities in the vicinity of surface are the 

local skin friction coefficient fC  and the local 

Nusselt number xNu , which are expressed as 
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are the wall shear stress and the wall heat flux, 
respectively. 

By using the dimensionless variables Eq. (10), the 
physical quantities Eq. (14) can be defined in the 
dimensional form as 
 

 

Table 1 — Thermophysical properties of used materials in present study. 

Properties Ag  Cu  2TiO  32OAl  Water 

)KWm( 11   429 400 8.9538 40 0.613 

)Kgm( 3  10500 8933 4250 3970 997.1 

)KJKg(Cp
11   235 385 686.2 765 4179 

)Sm(e
1  

7106.3   
7105.96   

7100.24   
7103.69   

0.05 
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5 Computational Algorithm 

Nonlinear ordinary differential Eqs. (11) and (12) 
along with the corresponding boundary conditions Eq. 
(13) are solved numerically by applying the Keller-
Box method. For the computational process, the far-
field boundary condition is considered a finite value 
as 6 . 

 
5.1 Scheme of implicit finite difference 

To reduce the Eqs. (11) and (12) into the first-order 
form, introducing the new dependent variables 
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with the corresponding boundary conditions  

Eq. (13) become 
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The rectangular grid X plane and the net points 
are represented in Fig. 2 such as 
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Fig. 2 — Net rectangle for difference approximation. 
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The above expressions are substituting into the 
Eqs. (23) to (27) and then neglect the quadratic and 

successive order terms in )(i
jf , )(i

jp , )(i
jq , 

)(i
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js . So above expressions yields a 
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For all iterates, it is assumed as 
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5.3 Block elimination method 

Equations (30) to (34) are writing in the block 
tridiagonal matrix form. 
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Forward sweep: Matrix A  is surmised as a 
nonsingular matrix to found the solution of the  
Eq. (36) then the matrix A  can be taken as: 
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Where, I  is the identity matrix of order 55 , and 

][ j  and ][ j  are the matrix of order 55 . 

Elements of these matrices are found by the following 
relations: 
 

][][ 11 A   ... (38) 
 

][]][[ 111 CA    ... (39) 
 

],][[][][ 1 jjjj BA   Jj ,....3,2   ... (40) 

 

Backward sweep: 
In view of, 
 

][]][][[ jj rUL    ... (41) 

 
with the consideration as: 

 
][]][[ jj WU    ... (42) 

 
][]][[ jj rWL    ... (43) 

 
where ][ jW  are the column matrix of order 15   

and elements of ][ jW  can be determined from  

Eq. (43) as: 
 

][]][[ 111 rW    ... (44) 
 

],][[][]][[ 1 jjjjj WBrW  Jj 2   ... (45) 

 
A step in which ][ j , ][ j  and ][ jW  are found 

in commonly known as the forward sweep. While 
once the elements of ][ jW  are predicted, the Eq. (42) 

commits the solution known as backward sweep, 
whose elements can be obtained by the given relations 
 

],][[][][ 1 jjjj W   11  Jj   ... (46) 

 

][][ JJ W   ... (47) 
 

These iterative procedures are repeated until 
convergence rule is satisfied with maintaining 

accuracy of 710  and process are stopped when 

 )(
0
iq , where   is a small prescribed value. 

 
6 Results Validation 

The accuracy of the results is necessary to  
check the validation of the proposed method. So 
current data are compared with the previously 
published data as Hamad and Ferdows39 for the 
impacts of the various types of nanofluids, the solid 
volume fraction   and the Eckert number Ec . An 
outstanding correspondence can be seen between the 
present data and the earlier published data as revealed 
in Table 2. 
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7 Graphical Results and Discussion 
The natures of the velocity and the temperature 

profiles for different kinds of nanofluids and involved 
controlling parameters such as the solid volume 
fraction  , the nonlinear stretching parameter n , the 
magnetic parameter M  and the Brinkmann number 
Br  along to Cu water nanofluid are addressed  
via graphically. Further, the behaviors of the wall 
shear stress and the wall heat flux for various types  
of nanofluids and for several values of considering 
parameters with Cu water nanofluid are presented 
in tabular form and discussed in an extensive  
way. Due to find the effect of anyone specified 
parameter on the velocity field, the temperature field, 
the local skin friction coefficient and the local Nusselt 
number, all remaining parameters are taken as 
constant. 

Figures 3 and 4 portray to indicate the reaction of 
the several types of nanoparticles, namely 

2TiO,Cu,Ag  and 32OAl  along to the base fluid 

water on the velocity  f   and the temperature    
distributions respectively. From these figures, it can 
be observed that the momentum boundary layer 
enhances for the increasing manner of nanoparticles 
sequence such as 2TiO,Cu,Ag and 32OAl  with the 
water base fluid, while opposite effect is found in  
the thermal boundary layer for the sequence of  
the nanoparticles as 32OAl,Cu,Ag  and 2TiO  along to 
the base fluid water. This happens because different 

 

Table 2 — Comparison of numerical values of  0f   and  0   for different types of nanofluids and several values of   and Ec   

with 010.n  , 00.M   and 010.Pr  .

Nanofluids   Ec   0f    0  

Hamad and Ferdows39 Present results Hamad and Ferdows39 
Present results

Cu water 0.05 0.0 1.40049 1.3695799 5.62189 5.6327626 

  0.1   5.36853 5.3965271 
 0.10 0.0 1.47769 1.4508113 5.17237 5.1824429 
  0.1   4.88417 4.9110821 
 0.15 0.0 1.51794 1.4929180 4.77257 4.7825143 
  0.1   4.45581 4.4831142 
 0.20 0.0 1.52880 1.5042506 4.41306 4.4233088 
  0.1   4.07241 4.1012914 

Ag water 0.05 0.0 1.43646 1.4075115 5.57754 5.5878689 

  0.1   5.31281 5.3396891 
 0.10 0.0 1.53712 1.5129208 5.09104 5.1003678 
  0.1   4.78234 4.8076156 
 0.15 0.0 1.59300 1.5710410 4.65991 4.6690030 
  0.1   4.31513 4.3404715 
 0.20 0.0 1.61399 1.5928105 4.27371 4.2830432 
  0.1   3.89874 3.9253718 

 

 
 

Fig. 3 — Plots of velocity fields for various types of nanofluids 
with 070. , 50.n   and 010.M  . 
 

 
 

Fig. 4 — Plots of temperature fields for various types of nanofluids 
with 070. , 50.n  , 010.M  , 86.Pr   and 10.Br  . 
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types of materials have distinct mechanical and 
physical characteristics. So the velocity and the 
temperature fields change along to the change of type 
of solid nanoparticles in the water-based fluid. 

Behaviors of the dimensionless velocity  f   and 

the dimensionless temperature    for the effect of 

  are given through Figs (5 and 6), respectively. It 

can be noted from these figures that enlargement in   
leads to decline the fluid flow and fluid temperature 
grows-up. This may attribute to the reason that 
suspended nanoparticles have increasing nature 
resistance flow, which reduces the velocity field. 

Moreover, for the rising values of the solid volume 
fraction, the thermal conductivity of nanofluid 
develops which leads the enhancement in the thermal 
boundary layer. 

Figures 7 and 8 show the impact of n  on the fluid 
flow  f   and the temperature    respectively. It 
can be seen that the momentum boundary layer as 
well as the fluid temperature step-down when n  rises. 
Physically it occurs because the ratio of the stretching 
velocity to the external stream velocity is known as 
the stretching parameter. Therefore, for an increment 
in the stretching parameter, stretching velocity 
controls the external stream velocity, which leads to 

 

Fig. 5 — Plots of velocity fields for various values of   with 

50.n   and 010.M   over Cu water nanofluid. 
 

 
 

Fig. 6 — Plots of temperature fields for various values of   with 

50.n  , 010.M  , 86.Pr   and 10.Br   over Cu water 
nanofluid. 
 

 

Fig. 7 — Plots of velocity fields for various values of n  with 
070.  and 010.M   over Cu water nanofluid. 

 

 

Fig. 8 — Plots of temperature fields for various values of n  with 
070. , 010.M  , 86.Pr   and 10.Br   over Cu water 

nanofluid. 
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decline the thickness of the momentum boundary 
layer and the thermal boundary layer. 

Impacts of M  on the velocity  f   and the 

temperature    fields are plotted in Figs 9 and 10, 
respectively. It is interesting to note that the  
velocity of fluid reduces with development in M , 
although the reverse effect can be seen in the 
temperature. From a physical point of view, a drag 
like force as Lorentz force yields for the greater value 
of the magnetic parameter. Lorentz force leads the 
development to the motion of fluid resistive and 
creates more resulting heat in enlargement of the 
thermal boundary layer. 

Figure 11 displays the nature of the temperature    
for changing values of Br . From this figure, it is 
observed that the temperature distribution increases 
smoothly with the rising values of Br . This happens 
with the critical fact that the influence of viscous 
dissipation on the area of flow is to develop the 
energy, which creates buoyancy force and the higher 
temperature field. Along with the rising dissipation 
parameter, an increment in the buoyancy force leads 
the fluid temperature to rise. 

Table 3 indicates the impacts of the various types 
of nanofluids and the influences of  , n , M  and Br
along to Cu water nanofluid on the surface shear 
stress  0f   and the surface heat flux  0 . It can be 

seen from Eq. (15) that the surface shear stress  0f   

and the rate of heat transfer  0  are proportional to 

the local skin friction coefficient fC  and the local 

Nusselt number xNu  respectively. This table exhibits 

that the local skin friction coefficient develops by the 
increasing sequence of nanoparticles such as 

2TiO,Cu,Ag  and 32OAl  along to the conventional 
fluid water, while the local Nusselt number 
depreciates via the rising order of solid nanoparticles 
namely 32OAl,Cu,Ag  and 2TiO  with the base fluid 
water. Subsequently, it is noted that the wall heat flux 
as well as the heat transfer rate decline with the 
development in  , n  and M , although the reverse 
effect is found in rate of heat transfer for the 

 
 

Fig. 9 — Plots of velocity fields for various values of M  with 
070.  and 50.n   over Cu water nanofluid. 

 

 
 

Fig. 10 — Plots of temperature fields for various values of M
with 070. , 50.n  , 86.Pr   and 10.Br   over Cu water 
nanofluid. 
 

 

Fig. 11 — Plots of temperature fields for various values of Br
with 070. , 50.n  , 010.M   and 86.Pr   over Cu
water nanofluid. 
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enhancing value of   and M . It is also observed 
from this table that increasing nature of Br  tends  
to the increment in the local Nusselt number.  
Further, for all values of the considering parameters, 
the negative value of shear stress denotes that fluid 
exerts a drag force by the wall and negative value  
of heat flux indicates that there is a heat flow  
on the wall. 
 

8 Conclusions 
In the present article, the viscous dissipation and 

Joule heating influences on MHD boundary layer 
flow of nanofluids due to a nonlinear stretchable 
surface are discussed. Convenient similarity variables 
are introduced to convert the set of partial differential 
equations into the system of ordinary differential 
equations. Keller-box method is applied to find the 
solutions of transformed equations. An investigation 
is made via the graphical and tabulated data for the 
effects of physical parameters. This analysis reveals 
the following main findings 
(i) The momentum boundary layer and the surface 

shear stress are lower for Ag  nanoparticles 

along to the base fluid water, while 32OAl  
nanoparticles with the base fluid water have 
greater momentum boundary layer and the 
surface shear stress as compared to the other 
solid nanoparticles Cu  and 2TiO  along to the 

conventional fluid water. Moreover, mixture  
of Ag  nanoparticles and the ordinary fluid  
water has higher development in the temperature 
of the fluid and the heat flux than remaining 
nanofluids. 

(ii) Enhancing values of the solid volume fraction, 
the nonlinear stretching parameter and the 
magnetic parameter lead to the decreasing nature 
of the dimensionless velocity, the dimensionless 
temperature, the local skin friction and the local 
Nusselt number, while reverse phenomenon 
occurs in the fluid temperature and the surface 
heat flux for the rising values of the solid volume 
fraction and the magnetic parameter. 

(iii) Effects of evolving values of the Brinkmann 
number is directed towards to cause the 
increment in the temperature field as well as the 
local Nusselt number. 

 
Nomenclature 
 

c,b  positive constants 

B


 transverse magnetic field  11  ANm  

0B  magnetic field strength  11  ANm  

Br  Brinkmann number 

fC  local skin friction coefficient 

pC  specific heat at constant pressure  11  KJKg  

 

Table 3 — Numerical data of  0f   and  0   for distinct types of nanofluids and several values of considering parameters  

with 86.Pr  .

Nanofluids   n  M  Br  0f   0

Ag water 0.07 0.5 0.01 0.1 1.0555077 2.9002370 

Cu water     1.0205750 2.9380805 

2TiO water     0.9082814 3.0141410 

32OAl  water     0.9011290 2.9759800 

Cu water 0.01    0.9203500 3.2801935 

 0.04    0.9777015 3.1018390 
 0.10    1.0515830 2.7868846 
 0.07 1.0   1.1443318 3.4219810 
  5.0   1.3627349 4.2353701 
  10.0   1.4081536 4.4000500 
  0.5 1.00  1.5428459 2.7568148 
   2.00  1.9341546 2.6157980 
   3.00  2.2589790 2.4964190 
   0.01 1.0 1.0205750 2.7071960 
    3.0  2.1941205 
    5.0  1.6810447 
    10.0  0.3983550 
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Ec  Eckert number 

f  dimensionless stream function 

J


 electric current density  2Am  

M  magnetic parameter 
n  nonlinear stretching parameter 

xNu  local Nusselt number 

Pr  Prandtl number 

wq  surface heat flux  2Wm  

xRe  local Reynolds number 

T  temperature of nanofluid  K  

wT  fluid temperature at the surface  K  

T  ambient fluid temperature  K  

u  velocity component corresponding to the x axis 

 1ms  

wu  nonlinear velocity at the surface  1ms  

v  velocity component corresponding to the y axis 

 1ms  

x  direction parallel to the plate  m  

y  direction perpendicular to the plate  m  

Greek 
symbols 

 

  
thermal diffusivity  12 sm  

  similarity variable 

  dimensionless temperature 

  thermal conductivity  11  KWm  

  
coefficient of viscosity  11  sKgm  

  
kinematic viscosity  12 sm  

  
density  3Kgm  

e  electric conductivity  1Sm  

w  surface shear stress  2Nm  

  solid volume fraction  

  
stream function  12 sm  

Superscripts 
 

differentiation with respect to  ׳  

Subscripts 
 

f  base fluid 

nf  nanofluid 

s  nano solid particles 
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