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The present study investigates the influence of adding multi-wall carbon nanotube (MWCNT) into the dielectric fluid 

of  electric discharge machining (EDM) in terms of material removal rate (MRR), surface roughness (SR) and surface 

topology of EN-31 die steel using Cu electrode. A customized rotary electrode set-up has been developed to compare the 

performance improvement of powder mixed rotary electrical discharge machining (PMREDM) as compared to powder 

mixed electrical discharge machining (PMEDM) and conventional EDM. The present study attempts to investigate the 

optimization of process parameters of MWCNT mixed rotary EDM of EN-31 die steel using response surface methodology 

(RSM) and genetic algorithm (GA) in terms of MRR and SR. The optimization results show that MWCNT mixed rotary 

EDM shows highest value of MRR (9.72 mm3/min) and lowest value of SR (Ra = 2.03 µm), which are approximately 

46.17% higher and 45.43% lower than conventional EDM values respectively. Further, various combinations of optimal 

values of MRR and SR and their corresponding input parameters setting have been shown in pareto table created by multi-

objective optimization GA technique available in MATLAB. Finally, field emission scanning electron microscope (FESEM) 

analysis of MWCNT mixed rotary EDM and EDM surfaces is carried out which revealsthat MWCNT mixed rotary EDM 

shows better surface topography as compared to EDM process. 

Keywords: Material removal rate, Surface roughness, Genetic algorithm, Powder mixed electric discharge machining, 

FESEM, Micro cracks, Response surface methodology 

1 Introduction 

In present age of technological development, EDM 

has become one of the most popular unconventional 

machining process. Due to contactless thermal erosion 

by EDM, it is widely used to machine variety of hard 

to cut conductive materials irrespective of their 

hardness. In the last few decades, EDM has gained 

more attention and has been widely used in various 

fields like the mould and die making industry, 

automobile industry, aviation industry and in surgical 

equipment
1
. In EDM process material is removed 

from workpiece due to the series of repetitive sparks 

developed between workpiece and tool electrode 

immersed in dielectric fluid. These series of repeated 

spark occur when a voltage of 80 - 320 V is applied 

between the electrodes at suitable electrode gap for 

sparking. This thermal energy generates a plasma 

channel between the electrodes with a temperature 

range of 8000 – 12000 ºC, which ultimately erodes 

the material by melting and vaporization from the 

vaporizing zone of the workpiece. Low machining 

efficiency and surface integrity are the prime concerns 

for the proper industrialization of the EDM 

process.Due to the unpredictable nature of the EDM 

process, researchers not only tried to improve the 

process performance by controlling various input 

parameters
2
 but also applied  various modifications by 

using different tool electrodes
3,4

 and different EDM 

pulse generator
5
. A step further, various process 

alterations like workpiece ultrasonic vibration assisted 

EDM
6
, dielectric ultrasonic vibration assisted EDM

7
, 

tool ultrasonic vibration assisted EDM
8
, workpiece 

rotary EDM
9
, EDM with rotary tool

10
 and near dry 

EDM
11

 are also investigated and succeed to some 

extent to overcome the EDM challenges.But one of 

the process which get highest success towards EDM 

challenges, is powder mixed electric discharge 

machining (PMEDM). Jeswani
12

was the first who 

reported 60% improvement in MRR and 15% 

reduction in TWR by using Gr (4g/l concentration) 

PMEDMing of mild steel. .Fong and Chen
13

  

unfolded the powder characteristics and reported  

that the smallest particle size generates lower  

surface roughness and highest recast layer thickness. 
—————— 
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Kansal et al.
14

 reported optimum setting of MRR, SR 

and TWR for Gr PMEDM of HCHCr die steel. Cogun 

et al.
15

 reported that Gr PMEDMing of SAE 1040 

steel shows remarkably higher MRR, lower SR, 

higher TWR and higher MH as compare to H3BO3 

PMEDM due to better thermal conductivity of Gr 

powder. Peças and Henriques
16

 reported lowest values 

of surface roughness, crater width, crater depth and 

recast layer thickness by using Si PMEDM. 

Bhattacharyaet al.
17

 revealed that Gr powder produces 

highest MH while Cu powder shows the smallest 

grain size on machined surface during the 

PMEDMing of various die steels. Mai et al.
18

reported 

66% lower machining time  and improved SR 

(0.09µm) by using CNT mixed EDM as compared to 

conventional EDM. Izman et al.
19

achieved higher 

MRR, lower SR and reduced recast layer thickness 

(RLT) as compare to conventional EDM by using 

MWCNT mixed EDM. Hu etal.
20

reported better 

surface finish, higher micro hardness and improved 

corrosion and wear resistance surface on SiCp/Al 

composite using Al PMEDM.  Sari et al.
21

reported 

154% higher MRR, 24% lower tool wear rate (TWR), 

34% lower SR and 37% reduced RLT with MWCNT 

mixed EDM as compared to conventional EDM. H 

Kumar
22

 achieved significant improvement in MRR 

and SF by using CNT mixed EDM as compared to 

conventional EDM. Marashi et al.
23

 obtained 69% 

higher MRR and 35% reduced SR with Ti nano 

powder mixed EDM (NPMEDM) as compared to 

conventional EDM. Kumar et al.
24

reported improved 

MRR and lower SR with low cost Al2O3 NPMEDM 

as compared to conventional EDM. Wang and Yan
25

 

reported that higher MRR can be achieved in case of 

electric discharge blind hole drilling of Al2O3/6061Al 

composite using eccentric hole tool with the only 

concern of TWR. Guu and Hocheng
9
 reported 

approximately twice time improvement in MRR and 

50 % reduction in SR with workpiece rotation at 5000 

rpm. Mohan et al.
26

 reported that tool rotation plays a 

significant role to improve MRR and reduce SR in 

case of electric discharge machining of Al-SiC 

composite. Kuppanet al.
27

 reported significant impact 

of tool rotation on enhancement MRR and Surface 

finish in deep hole drilling of Inconel 718. Govindan 

and Joshi
28

 reported that tool rotation is one of the 

significant factor to enhance MRR in dry electric 

discharge drilling. Puthumana and Joshi
29

 reported 

remarkable enhancement in MRR and decrement in 

TWR in dry EDM by using rotary slotted tool. 

Teimouri and Baseri
30,31

 reported remarkable 

improvement in MRR and surface finish in case of 

magnetic field assisted rotary EDM due to better 

flushing of debris except high TWR and overcut were 

the only concern. All the above discussed research 

works prove that tool rotation has a significant impact 

on EDM machining process.Vishwakarmaet al.
32

 

achieved approximately 2.5 times higher MRR with 

rotary EDM as compared to PMEDM of Al-SiC metal 

matrix composite.  Baseri and Sadeghian
33 

reported 

improved MRR, lower TWR and higher SF with TiO2 

NPMEDM using rotary tool as compared to 

conventional EDM. Based on the  available literature 

survey, it was found that very little work has been 

reported on nano powder mixed rotary EDM 

(NPMREDM) and therefore present work investigate 

the machining performance of MWCNT mixed rotary 

EDM. Present study investigate the optimum setting 

of MRR and SR using GA available in MATLAB. 

Further multi –objective optimization (MOO) using 

GA, available in MATLAB is used for multiple 

response optimization. 

 

2 Materials and Methods 
 

2.1 Experimentation 

The present investigation has been carried out on 

die sinking EDM (Make: J K MACHINES, Model: 

ZNC 25). An external rotary tool head has been 

developed by using DC motor, rotating chuck, timer 

belt drive and arduino chip to provide a range of 

rotational speed to the tool as shown in Fig.1. To 
 

 
 

Fig. 1 — Schematic diagram of PMEDM set-up. 
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optimize the cost of the experiment powder use must 

be minimized. Therefore, a small tank made of acrylic 

material of size 30 X 22 X 13 cm
3
 is used for 

experimental purpose which is filled by MWCNT 

mixed dielectric. A submersible pump attached with 

nozzles is also used to ensure proper flushing of the 

debris from the sparking zone.EN-31 die steel having 

chemical composition (C = 0.9–1.2%, Si = 0.1–

0.35%, Mn = 0.3–0.75%, Cr = 1–1.6%, S and P each 

0.025% (max.) and balance is ferrous) is used as a 

workpiece. The dimension of the workpiece were 

selected as 25 mm length, 25 mm width and 20 mm 

thickness for the present investigation. EN-31 die 

steel because of its high compressive strength, high 

hardness, and high abrasive resistance is widely used 

in bearings, spinning, punch and die industries. Cu 

rod with diameter 10 mm is used as a tool electrode 

and MWCNT (Length: 1-10 μm; OD: 5-20 nm; ID: 2-

6 nm) mixed in EDM oil is used as a dielectric for the 

experimentation purpose. The present experimental 

study is carried out to achieve the optimum value of 

MRR and SR for MWCNT powder mixed rotary 

EDM using RSM and GA. Further, multi-objective 

optimization (MOO) available in MATLAB 2017a is 

used to achieve the common setting of input 

parameters for different optimum response values of 

MRR and SR. Further, the optimum values of MRR 

and SR for MWCNT mixed rotary EDM process is 

then compared with MWCNT mixed EDM, rotary 

EDM and conventional EDM, respectively. For this 

purpose, four independent input variables namely 

peak current (Ip), pulse on time (Ton), pulse off time 

(Toff) and powder concentration (Pc) are selected, 

based on Ishikawa cause effect diagram as shown in 

Fig.2. The range of input parameters was selected 

based on pilot test (varying one variable and keeping 

other constant) and are given in Table 1. Further, the 

result of pilot test showcased in Fig.3, which 

demonstrate the effect of individual parameter on 

MRR and SR.  

Optimization of MRR and SR was the prime 

objective during the present investigation. Therefore, 

measurement of MRR were done by measuring the 

difference between the weight of workpiece before 

and after the machining. Further this difference in 

weight of workpiece before and after machining is 

converted into volumetric loss as: 
 

𝑀𝑅𝑅(𝑚𝑚3/𝑚𝑖𝑛) =
𝑊𝑏−𝑊𝑎

𝜌×𝑡
× 1000             … (1) 

 

Where, 

Wb = weight of workpiece before machining in gm. 

Wa = weight of workpiece after machining in gm, 

ρ = density of workpiece material (g/cm
3
) 

t  = machining time (min) 

 

 
 

Fig.2 — The Ishikawa cause-effect diagram for PMEDM process. 

 

Table 1 — Selected range of input parameters for  

optimization purpose. 

Factor 
Symbol 

Parameter Symbol Levels 

Low  

(-1) 

Medium 

(0) 

High 

(+1) 

Ip Peak current 

(Ampere) 

Ip 3 5 7 

Ton Pulse on time (µs) Ton 100 150 200 

Toff Pulse off time (µs) Toff 40 70 100 

Pc Powder  

concentration (g/l) 

Pc 1 2 3 

Tr Tool rotation (rpm)  1200 
 Polarity  Negative 
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In present investigation surface roughness is 

measured in term of Ra,which is arithmetic mean of 

peak and valleys of the surface irregularities measured 

microscopically. To measure the Ra value after each 

experiment MITUTOYO surface tester (model: SJ 

310) is used throughout the experimentation. 
 

2.2 Response Surface Modeling 

RSM is a well-known designing as well as 

optimization technique for multi interacting process 

parameters. This technique is not only used to 

investigate the effect of individual input parameters 

but also used to examine the effect of interaction of 

input parameters. In RSM performance parameters 

and input parameters are connected as
34

: 
 

𝑦 = 𝑓(𝑥1  ,𝑥2  , 𝑥3 ……… . 𝑥𝑝)            … (2) 
 

where,𝑥1  ,𝑥2  ,𝑥3 are the input process parameters 

and y is the output performance parameter. Generally 

 

 
 

Fig. 3 — Effect of (a) Ip on MRR, (b) Ton on MRR, (c) Toff on MRR, (d) Pc on MRR, (e) Ip on SR, (f) Ton on SR, (g) Toff on SR and  

(h) Pc on SR. 
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a quadratic model of input parameters is used for the 

modeling of fitness function which is as follows: 
 

𝑦 =  𝑐0 +   𝑐𝑖𝑖
𝑝
𝑖=1 𝑥𝑖

2  𝑖  𝑗 𝑐𝑖𝑗𝑥𝑖𝑥𝑗            … (3) 
 

where, 𝑐0 represent constant and all other 𝑐 ′𝑠 are 

the coefficient. 
 

2.3 Genetic Algorithm 

Genetic algorithm (GA) is a unique technique to 

provide solution for both constrained and 

unconstrained optimization problems by generating a 

random initial population comprising of set of input 

parameters. The fitness function, which is generally 

used to transform the objective function value into a 

measure of relative fitness
35

 thus: 
 

𝐹 𝑥 = 𝑔(𝑓 𝑥 )                                       … (4) 
 

where, f is the objective function, g transform the 

value of objective function to a positive number and F 

shows the resulting relative fitness. The individual 

fitness, F (xi), of each individual is calculated as the 

individual’s raw performance f (xi), relative to the 

whole population i.e. 
 

𝐹 𝑥𝑖 =
𝑓(𝑥𝑖)

 𝑓(𝑥𝑖)
𝑁𝑖𝑛𝑑
𝑖=1

                           … (5) 

 

where, Nind  is the size of population and xi is the 

phenotypic value of individual i. 

The values of important GA parameters for entire 

process are chosen as follows: population size = 50, 

cross over fraction = 0.8, mutation rate = 0.01 and 

number of generations = 100. 

A quadratic model for MRR and SR was 

developed by using RSM (Box-Behnken technique) 

available in Design Expert 6 Software. Total 30 

numbers of experiments were performed thrice to 

achieve the average value of MRR and SR against 

each experiment as shown in Table 2. Further these 

results of MRR and SR and are used to generate 

quadratic model of MRR and SR generated by 

Design Expert 6 software as shown in Eq. (6) and 

Eq. (7). 
 

Table 2 — Design of experimental matrix and corresponding response value against each setting. 

Run No. Process Parameters  MRR (mm3/min) SR (µm) 

Ip(A) Ton(µs) Toff(µs) Pc(g/l) 1 2 3 Average 
 
  1 2 3 Average 

1 5 150 40 3 6.16 6.09 6.08 6.11 6.71 6.64 6.63 6.66 

2 7 200 70 2 9.33 9.32 9.19 9.28 7.87 7.92 7.88 7.89 

3 7 100 70 2 8.56 8.59 8.68 8.61 7.32 7.33 7.25 7.3 

4 5 150 70 2 6.67 6.65 6.75 6.69 4.91 4.89 4.84 4.88 

5 5 150 70 2 6.79 6.82 6.73 6.78 4.83 4.88 4.84 4.85 

6 5 150 40 1 5.34 5.42 5.35 5.37 5.88 5.83 5.87 5.86 

7 5 150 100 3 5.91 5.85 5.82 5.86 6.61 6.63 6.71 6.65 

8 5 150 100 1 5.17 5.12 5.13 5.14 5.89 5.87 5.79 5.85 

9 3 100 70 2 4.26 4.35 4.32 4.31 2.08 2.13 2.06 2.09 

10 3 200 70 2 4.67 4.63 4.56 4.62 2.61 2.68 2.66 2.65 

11 7 150 70 3 9.13 9.16 9.04 9.11 9.08 9.11 9.17 9.12 

12 3 150 70 1 3.97 3.96 3.89 3.94 2.82 2.89 2.87 2.86 

13 5 150 70 2 6.76 6.84 6.77 6.79 4.93 4.89 4.82 4.88 

14 7 150 70 1 8.19 8.24 8.11 8.18 8.61 8.54 8.53 8.56 

15 5 200 40 2 6.85 6.78 6.83 6.82 5.07 5.12 5.08 5.09 

16 3 150 70 3 4.68 4.72 4.73 4.71 3.78 3.72 3.69 3.73 

17 5 200 100 2 6.56 6.51 6.55 6.54 5.11 5.08 4.99 5.06 

18 5 150 70 2 6.71 6.64 6.69 6.68 4.81 4.84 4.75 4.80 

19 5 100 40 2 6.33 6.43 6.41 6.39 4.66 4.73 4.68 4.69 

20 5 100 100 2 6.26 6.31 6.27 6.28 4.65 4.67 4.72 4.68 

21 5 200 70 3 5.76 5.83 5.84 5.81 6.96 6.94 6.84 6.92 

22 5 200 70 1 5.07 5.04 4.95 5.02 6.11 6.16 6.12 6.13 

23 7 150 100 2 9.27 9.24 9.15 9.22 7.64 7.69 7.62 7.65 

24 5 150 70 2 6.75 6.82 6.77 6.78 4.93 4.9 4.84 4.89 

25 5 100 70 3 5.61 5.69 5.59 5.63 6.47 6.52 6.48 6.49 

26 3 150 40 2 5.23 5.19 5.09 5.17 2.29 2.36 2.28 2.31 

27 3 150 100 2 4.63 4.59 4.52 4.58 2.33 2.31 2.23 2.29 

28 7 150 40 2 9.36 9.29 9.28 9.31 7.69 7.68 7.61 7.66 

29 5 100 70 1 5.09 5.16 5.11 5.12 5.42 5.51 5.45 5.46 
30 5 150 70 2 6.75 6.82 6.77 6.78 4.85 4.94 4.88 4.89 
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MRR  =- 2.46256 - 0.36646*Ip+0.04180*Ton + 

1.26852E-003*Toff + 3.76167*Pc + 0.11448*Ip
2

– 

1.47333E-004*Ton
2
 – 8.14815E-005*Toff

2
 – 

0.92208*Pc
2
 + 9.00000E-004*Ip*Ton + 2.08333E-

003*Ip*Toff +0.020000*Ip*Pc - 2.83333E-

005*Ton*Toff+ 1.40000E-003*Ton*Pc- 1.66667E-

004*Toff*Pc                                                    …(6)   
 

SR= +1.89882 + 1.37583*Ip + 7.08333E-004*Ton -

8.51389E-003*Toff - 4.36208*Pc+3.12500E-003*Ip
2
 + 

2.20000E-005*Ton
2 

+ 6.11111E-005*Toff
2
 

+1.28500*Pc
2
+ 7.50000E-005*Ip*Ton + 4.1666E-

005*Ip*Toff – 0.038750*Ip*Pc - 3.33333E-

006*Ton*Toff - 1.20000E-003*Ton*Pc + 1.06917E-

016*Toff*Pc                                                   … (7) 
 

The acceptability of the model is required for the 

analysis of data and for this purpose goodness of fit of 

the model is required, which includes the checking of 

model significant test, coefficient test, model 

coefficient test and lack of fitness test
36

. ANOVA is 

carried out to check the overall acceptability of MRR 

and SR models.These response models are further 

used to optimize for individual response and multiple 

response by using GA in MATLAB R2017a. 
 

2.4 Analysis of MRR Model 

Quadratic model for MRR is further investigated 

by using ANOVA at 95% confidence level to check 

the Acceptability of the model. The ANOVA result 

for MRR is shown in Table 3. MRR model shows an 

excellent relationship between input parameters and 

response (MRR) since the value of R
2
and adjusted R

2
 

are 99.61% and 99.19% which provides best 

justification for co-relation input parameters and 

response. Signal to noise ratio is associated with 

adequate precision and if this term has a value more 

than 4, the model is fit for optimization. The 

associated p - value for the MRR model is 

significantly less than 5% (< 0.05) which indicated 

that the model is statically significant [36]. Further, it 

can be observed from the ANOVA model that lack of 

fit is non- significant which also support the 

acceptance of the model. The term A (Ip), B (Ton), C 

(Toff), D (Pc), A
2
, B

2
, D

2
 and AD appear as significant 

variables while the remaining variables and their 

interactions are non-significant. Further, Fig. 4(a) 

 

Table 3 — ANOVA table for MRR model. 

Source Sum of 

Squares 

DF Mean 

Square 

F Value Prob> F  

Block 0.39 2 0.19    

Model 69.18 14 4.94 237.63 < 0.0001 significant 
A 57.99 1 57.99 2788.61 < 0.0001  

B 0.26 1 0.26 12.27 0.0039  

C 0.20 1 0.20 9.63 0.0084  
D 1.66 1 1.66 79.71 < 0.0001  

A2 1.44 1 1.44 69.14 < 0.0001  

B2 0.93 1 0.93 44.73 < 0.0001  

C2 0.037 1 0.037 1.77 0.2059  

D2 5.83 1 5.83 280.35 < 0.0001  
AB 0.032 1 0.032 1.56 0.2340  

AC 0.063 1 0.063 3.01 0.1066  

AD 6.400E-03 1 6.400E-03 0.31 0.5885  
BC 7.225E-03 1 7.225E-03 0.35 0.5657  

BD 0.020 1 0.020 0.94 0.3494  

CD 1.00E-04 1 1.000E-04 4.809E-03 0.9458  
Residual 0.27 13 0.021    

Lack of Fit 0.26 10 0.026 7.73 0.0595 not 

significant 
Pure Error 0.010 3 3.367E-03    

Cor Total 69.84 29     

Std. Dev. = 0.14   R-Squared = 0.9961 
Mean = 6.39   Adj. R-Squared = 0.9919 

C.V. = 2.26   Pred R-Squared = 0.9774 

PRESS = 1.57   Adeq Precision = 49.553 
 

 

 
 

Fig. 4 —  (a) Normal probability plots of residuals for MRR, (b) 

Actual versus predicted response for MRR and (c) Perturbation 

graph for MRR. 
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shows normal plots of residuals for MRR and it is 

clear from the figure that most of the plots are lying 

on or along the straight line which is a clear cut 

indication of uniform scattering of errors. Figure 4(b) 

shows the excellent closeness between actual values 

and predicted values of MRR, which indicate that 

regression model is well suited for the actual values of 

MRR. Finally, Fig. 4(c) shows the perturbation plot 

for MRR which shows the effect of each individual 

parameter on MRR while keeping other parameters 

constant 
 

2.5 Optimization of MRR Using GA 

The mathematical model for MRR is used as an 

input function for GA without any constraint. 

MATLAB response for predicted optimum value of 

MRR appear as 9.50 mm
3
/min, which is shown in  

Fig. 5(a) and corresponding input parameters setting 

are shown in Fig. 5(b). It can be observed from Fig. 5 

(a) that in initial population of the generation, the best 

and average value of MRR varies significantly. But as 

the iterations proceed, the best and average value 

difference become non-significant. Further, it becomes 

very difficult to reduce the different between best and 

average value of MRR as the iterations proceed.  
 

2.6Analysis of Surface Roughness Model 

ANOVA analysis for SR model is shown in  

Table 4, which shows that proposed model exhibit 

excellent correlation between input parameters and 

response (SR). The value of R
2
and adjusted R

2
 are 

99.24% and 98.54% respectively, which shows 

excellent correlation between input parameters and 

output response (SR). Adequate Precision which is 

linked with signal to noise ratio shows value 47.777, 

which is more than 4 and makes the model quite fit 

for optimization. The associated p - value for the SR 

model is significantly less than 5% (< 0.05) which 

shows that model is accepted as a statically significant 

model
36

. Further Fig. 6(a) shows the normal plots of 

residuals for SR. It is clear from the figure that most 

of the plots lie on or along the straight line which is a 

clear cut indication of uniform scattering of errors. 

Figure 6(b) shows the excellent closeness between 

actual values and predicted values of SR, which 

indicate that regression model is well suited for the 

actual values of SR. Finally, Fig. 6(c) shows the 

perturbation plot for SR which shows the effect of 

each individual parameter on SR while keeping other 

parameters constant. 

 

 
 

Fig.5 — MATLAB response for (a) MRR fitness curve and (b) Optimum MRR input setting. 

 

Table 4 — ANOVA table for SR model. 

Source Sum of 

Squares 

DF Mean  

Square 

F Value Prob> F  

Block 0.098 2 0.049    

Model 101.11 14 7.22 875.45 < 0.0001 significant 
A 86.67 1 86.67 10506.01 < 0.0001  

B 0.77 1 0.77 92.74 < 0.0001  

C 6.750E-04 1 6.750E-004 0.082 0.7794  
D 1.96 1 1.96 237.61 < 0.0001  

A2 1.071E-003 1 1.071E-003 0.13 0.7244  

B2 0.021 1 0.021 2.51 0.1368  
C2 0.021 1 0.021 2.51 0.1368  

D2 11.32 1 11.32 1372.49 < 0.0001  

AB 2.250E-004 1 2.250E-004 0.027 0.8714  
AC 2.500E-005 1 2.500E-005 3.03E-03 0.9569  

AD 0.024 1 0.024 2.91 0.1117  

BC 1.000E-04 1 1.000E-004 0.012 0.9140  
BD 0.014 1 0.014 1.75 0.2092  

CD 0.000 1 0.000 0 1.0000  

Residual 0.11 13 8.250E-003    
Lack of 

Fit 

0.10 10 0.010 8.51 0.0522 not 

significant 

Pure 
Error 

3.650E-003 3 1.217E-003    

Cor 

Total 

101.32 29     

Std. Dev. = 0.091   R-Squared = 0.9989 

Mean = 5.43   Adj. R-Squared = 0.9978 

C.V. = 1.67   Pred R-Squared = 0.9922 
PRESS = 0.79   Adeq Precision = 103.194 
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2.7 Optimization of SR Using GA 

The mathematical model for the minimization of 

SR is used as an input function for GA to optimize it. 

MATLAB generated fitness curve Fig. 7(a) shows 

predicted minimum value of SR (Ra = 1.96 µm) and 

Fig. 7(b) shows the corresponding input parameters 

setting. Similar to the MRR fitness curve, SR fitness 

curve is also converging and best and average values 

of SR are approximately coinciding as the iterations 

move forward. 
 

2.8 Multi-objective Optimization with Genetic Algorithm 

In multi-objective optimization with GA, a 

mathematical model for MRR and SR are used to 

develop a common objective function. MATLAB 

response for MOO appears as Pareto table (Table 5) 

and Pareto front (Fig. 8). Pareto table shows different 

input values and corresponding optimal values of 

MRR and SR and Pareto front shows the graphical 

representation of these optimum values of MRR and 

SR. It is clear from the Pareto front and Pareto table 

that if higher MRR is required than SR will also be 

high and if low SR is required than MRR will also be 

low. Therefore a compromised value of MRR and SR 

can be selected by using corresponding input 

parameters setting.  
 

3 Results and Discussion 
 

3.1 Analysis of MRR 

The predicted and experimental value of MRR for 

MWCNT mixed rotary EDM are 9.50 mm
3
/min and  

 

 

 
 

Fig. 6 — (a) Normal probability plots of residuals for SR, (b) Actual versus predicted response for SR and (c) Perturbation graph for SR. 
 

 
 

Fig.7 — MATLAB response for (a) SR fitness curve and (b) Optimum SR input setting. 
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9.72 mm
3
/min respectively at optimum input 

parameters setting. Result shows that experimental 

value of MRR at optimal setting are very close to 

predicted value of MRR and showing 2.31 % error 

between them. Experiments were also carried out for 

conventional EDM, conventional rotary EDM and 

PMEDM to find the optimum MRR for respective 

processes. MRR results for conventional EDM, 

REDM, PMEDM and RPMEDM at corresponding 

optimum setting is shown in Table 6 and also shown 

in Fig.9 (a). All these results indicates that REDM 

shows approximately 22.86% higher MRR than 

conventional EDM while PMEDM shows 

approximately 37.14% and 11.63% higher MRR than 

conventional EDM, respectively and REDM and 

finally PMREDM shows approximately 46.17%, 

18.9% and 6.58% higher MRR than conventional 

EDM, REDM and PMEDM respectively. Highest 

value of MRR for PMREDM occurs due to presence 

of MWCNT in dielectric which not only increases the 

discharge gap between two electrodes but also 

increases the discharge transitivity and tool rotation 

provides extra support towards the enhancement of 

MRR due to better flushing.  Further, rotary EDM 

shows better MRR than conventional EDM because 

rotary action of the tool provide extra support to the 

debris to exit and minimizes the chances of re-

attaching these debris from machining area.Highest 

value of MRR for MWCNT mixed rotary EDM 

occurs at highest Ip, medium Ton, low Toffand medium 

Pc. Since high Ip produces high pulse energy and 

 

Table 5 — MATLAB generated Pareto table for MOO versus 

input parameters. 

 Response Input parameters 

SNo MRR 

(mm3/min

) 

SR  

(µm) 
 IP 

(A) 

Ton 

(µs) 

Toff 

(µs) 

Pc 

(g/l) 

1 -5.31 3.06 3.79 116.05 61.59 1.81 

2 -9.08 7.41 6.91 123.88 65.66 2.16 

3 -8.93 7.23 6.72 136.50 71.63 2.18 

4 -7.68 5.93 5.82 137.47 67.55 2.05 

5 -4.67 1.98 3.00 107.00 57.54 1.79 

6 -7.24 5.48 5.49 132.51 67.70 2.08 

7 -4.90 2.17 3.10 120.43 67.92 1.92 

8 -5.06 2.57 3.42 117.67 61.53 1.82 

9 -9.43 7.68 7.00 146.15 77.02 2.22 

10 -7.37 5.62 5.62 131.78 67.37 2.01 

11 -5.61 3.42 4.03 121.49 68.76 1.96 

12 -5.79 3.61 4.15 126.81 64.95 1.99 

13 -6.41 4.43 4.65 141.99 63.62 2.12 

14 -7.04 5.29 5.28 142.74 75.49 2.14 

15 -8.14 6.46 6.24 127.62 68.21 2.08 

16 -6.23 4.22 5.58 133.58 68.61 2.00 

17 -6.80 4.98 5.12 131.15 68.60 2.07 

18 -8.49 6.82 6.41 138.43 76.43 2.19 

19 -5.91 3.85 4.34 128.89 68.55 1.87 

20 -9.40 7.67 6.98 146.15 77.03 2.23 

21 -5.22 2.67 3.46 125.50 62.11 1.92 
22 -7.48 5.74 5.65 137.16 69.82 2.11 

 

 
 

Fig.8 — MATLAB generated Pareto front graph for MRR and SR. 

 

 
 

Fig. 9 — (a) MRR and (b) SR comparison of EDM, rotary EDM 

and powder mixed rotary EDM (PMREDM) at corresponding 

optimum setting. 
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therefore deeper size craters are produced, which 

finally leads to higher MRR. Further as the Ton 

increases, MRR increases but as it goes beyond a 

certain value it produces more debris and lees time for 

them to exit from machining area which ultimately 

leads to resolidification of debris onto machined area 

and reducing the MRR. Increasing Toff directly 

reduces the MRR. Finally, highest MRR achieved at  

approximately middle level of Pc because as the Pc 

increases, more chain formation and multiple sparks 

occurs at different places but increasing Pc  beyond a 

certain level decreases MRR due to high discharge 

turbulence. 
 

3.2 Analysis of Surface Roughness 

The predicted and experimental value of SR for 

MWCNT mixed rotary EDM are 1.96 µm and 2.03 

µm respectively at optimum input parameters setting. 

Validation result shows that predicted and 

experimental value of SR are very close to each other 

with an accepted error of 3.57%. Experiments were 

also carried out for conventional EDM, conventional 

rotary EDM and PMREDM to find the optimum value 

of SR for respective processes. SR result for 

conventional EDM, REDM, PMEDM and PMREDM 

at corresponding optimum setting is shown in Table 6 

and also shown in Fig.9 (b). All these results indicates 

that REDM shows approximately 33.87% lower SR 

than conventional EDM while PMEDM shows 

approximately 40.59% and 10.16% lower SR than 

conventional EDM and REDM, respectively and 

finally PMREDM shows approximately 45.43%, 

17.48% and 8.15% lower SR than conventional EDM, 

REDM and PMEDM, respectively. Lowest value of 

SR is achieved at low Ip, low Ton, and medium level of 

Pc while Toff appears as a non-significant factor. Low 

Ip produces low pulse energy resulting in small and 

shallow craters on the workpiece which ultimately 

leads to better surface quality. Increasing Ton produces 

more machined particles and more chances to adhere 

on the workpiece therefore increasing the SR. Further 

increasing Pc beyond the optimum value increases SR 

since high Pc increases discharge turbulence and 

produces uneven machined surface. 
 

3.3 Surface Topography 

Surface topography plays an important role for the 

components which are very costly and working under 

high stress conditions and the safety of whole system 

mostly depends on these components. EDM is one of 

the most important unconventional machining process 

used to develop many such crucial parts in mold and 

die making industries, automobile and aviation 

industries. Therefore along with surface quality of the 

machined part, topography of the surface was also 

examined for MWCNT mixed rotary EDM and 

conventional EDM. The EN-31 surface machined with 

MWCNT mixed rotary EDM at input parameters 

setting (Ip = 3A, Ton = 100 µs, Toff = 65 µs, Pc = 1.8 g/l) 

are examined for surface topography using FESEM. At 

low magnification, MWCNT mixed rotary EDM 

shows superior surface with smaller resolidified layer 

on the machined surface (Fig. 10a) while surface 

machined through EDM process shows uneven surface 

with thick resolidified layer on the machined surface 

(Fig. 10c). Further, at high magnification very few 

 

Table 6 — MRR and SR results for PMREDM, PMEDM, REDM and EDM processes. 

S. No. Process Response Setting Response value 

1 PMREDM MRR (Ip = 7A, Ton = 168µs, Toff = 66µs, Pc = 2.24g/l) & N = 1200RPM 9.72(mm3/min) 

SR (Ip = 3A, Ton = 100µs, Toff = 65µs, Pc = 1.8g/l) & N = 1200RPM 2.03(µm) 

2 PMEDM MRR (Ip = 7A, Ton = 168µs, Toff = 66µs, Pc = 2.24g/l) & N = 0RPM 9.12 (mm3/min) 

SR (Ip = 3, Ton = 100, Toff = 65, Pc = 1.8) & N = 0 2.21(µm) 

3 REDM MRR (Ip = 7A, Ton = 168µs, Toff = 66µs) & N = 1200RPM 8.17(mm3/min) 

SR (Ip = 3A, Ton = 100µs, Toff = 65µs) & N = 1200RPM 2.46(µm) 

4 EDM MRR (Ip = 7A, Ton = 168µs, Toff = 66µs) 6.65(mm3/min) 

SR ((Ip = 3A, Ton = 100µs, Toff = 65µs) 3.72(µm) 
 

 

 
 

Fig. 10 — (a, b) FESEM images of MWCNT mixed rotary 

EDMed surfaces and (c, d) EDM surfaces. 
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micro cracks appears on the MWCNT mixed rotary 

EDM (Fig. 10b) while EDM machined surface shows 

bigger micro crack along with micro holes which are 

clearly visible in Fig. 10d. MWCNT mixed rotary 

EDM shows superior surface topographical properties 

because of MWCNT powder mixed in the dielectric 

medium. Adding MWCNT powder not only increases 

the number of spark in the machining zone but also 

reduces the energy associated with each spark. 

Therefore less amount of thermal energy is transferred 

in the machining area. Further, the high thermal 

conductivity of MWCNT particles mixed in EDM 

dielectric enhances the heat transfer capability of 

plasma channel developed and therefore reducing the 

heat flow rate towards the workpiece. Therefore 

reducing the thermal stresses and solidifying 

shrinkages. Further, increased spark gap and rotary 

action of tool electrode which provide better flushing 

condition and ultimately providing a major reason for 

better surface quality than conventional EDM. 

 

4 Conclusions 

Performance enhancement of EN-31die steel using 

MWCNT mixed rotary EDM results in the following 

conclusion: 
(i) MWCNT mixed rotary EDM shows maximum value of 

MRR (9.72 mm3/min) at Ip = 7A, Ton = 168 µs, Toff = 66 µs 

and Pc = 2.24 g/l, which is very close to the predicted value 

of MRR (9.50 mm3/min). Further, RPMEDM shows 

approximately 46.17 %, 18.90 % and 6.58 % higher than 

EDM, REDM and PMEDM respectively. 

(ii) MWCNT mixed rotary EDM shows lowest vale of SR (2.03 

µm) at Ip = 3A, Ton = 100 µs, Toff = 65 µs and Pc = 1.8 g/l, 

which very close to predicted SR value (1.96 µm). Further, 

PMREDM shows approximately 45.43 %, 17.48 % and 8.15 

% lower SR than conventional EDM, REDM and PMEDM 

respectively. 

(iii) With the help of MOO result shown in Pareto Table 5, input 

parameter can be selected against required optimum value of. 

MRR and SR.  

(iv) FESEM analysis of MWCNT mixed rotary EDM shows 

superior surface topography as compared to conventional 

EDM. 
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