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A non-polynomial hyperbolic based theory has been presented for the free vibration response of a rectangular plate with 
linearly varying thickness, which rests on an elastic foundation. Ceramic/ metal has considered as Functionally Graded 
Material (FGM) of the plate using exponential law for material gradation of properties in the thickness direction. The 
influence of Winkler’s and Pasternak's paremeter of foundation on the plate is investigated in conjunction with taper ratio. 
The governing equation of plates has established using the variational principle. Galerkin's technique has been followed for 
the solution of the eigen value problem of the presented model. The obtained results have compared with the observations of 
the isotropic tapered plate, and FGM plate for uniform thickness. The numerical result depicts the good accuracy of the 
present theory comparable to the existing shear deformation theory. The influences of thickness variation for a plate, has 
assumed to be simply supported and clamped, have investigated with various span ratio, aspect ratio, taper ratio and 
foundation stiffness. 
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1 Introduction 
FGMs, the advanced composite material, which has 

received great attention in different engineering 
application. FGMs have a mixture of materials in 
which microstructures so tailored to achieve desired 
properties. These materials have typically made by 
combining two different materials like ceramic and 
metal. The advantage of FGM bears on this idea that 
they can withstand the high-temperature gradient as 
well as high strength. The ceramic constituents in 
FGM provide the high-temperature resistance due to 
bad conductor of heat while metal constituent 
prevents from the fracture. In 1984, The FGM was 
first introduce in Japan due to its versatility in various 
engineering application1.Thin-walled structures like 
plates and shells made of FGM have used in reactor 
vessels, airplane industries, and semiconductor 
devices, which may be led to failure due to vibratory 
response. In this regard, the investigation of their 
dynamic response has quite necessary for the 
engineering application. Various plate theories have 
been established in the last two decades to analyze the 
plate element's behavior.  

In this viewpoint, the Classical Plate Theory 
(CPT) based on the Kirchoff assumption has 
developed for thin plates without an accounting of 
transverse shear strains. Free vibration and 
deformation of isotropic shell based on CPT has 
been investigated by Love2. The small improvement 
in the First-Order Shear Deformation Theory (FOST) 
over the CPT, for reasonably thick and thin plates, 
is to account for the shear deformation effect. 
Bending, buckling, and modal analysis of FGM plate 
have been done using FOST 3-5 after selecting the 
proper Shear Correction Factor (SCF). The selection 
of suitable SCF in FOST is also a big challenge; to 
circumvent this condition, Higher-order Shear 
Deformation Theory (HSDT) comes into the picture, 
where SCF has not needed. The polynomial and non-
polynomial-based HSDT has broadly classified and 
established for a different type of analysis by the 
various author6-10. Mantri et al.11 has presented a new 
model based on HSDT in which the stretching effect 
during static analysis has considered. The variational 
principle has used to deduce the governing differential 
equation of motion, and further solution for 
simply supported plate is obtained using the 
Navier method. 
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Furthermore, the plate on an elastic foundation has 
also been investigated to predict the buckling loads, 
static and dynamic response of airfield pavement 
system as well as foundation of buildings, swimming 
pools, and storage tank. Singh & Harsha12have 
investigated the buckling and vibration effect on 
sandwich FGM plate resting on Pasternak’s 
foundation, supported with various boundary 
conditions. Zhou et al.13have reported the solution for 
free vibration analysis of a rectangular plate resting 
on an elastic foundation using three-dimensional 
elasticity theory. 

Malekzadeh 14has applied the Differential 
Quadrature method to obtain the vibratory solution of 
the FG plate on the elastic foundation to be supported 
with arbitrary boundary conditions. In-order to this, 
the plate with variable thickness has great importance 
in real engineering application. Many researcher15-17 
have studied the structural response of isotropic 
rectangular plate with variable thickness using 
analytical or numerical methods. Kumar et al.18have 
presented the analytical solution of the FGM porous 
plate resting on Pasternak foundation. Hamilton 
principle in conjunction with Gelerkin’s Vlasov 
method has applied on variable thick plate supported 
with various boundary condition. 

In the light of above discussion, the static, buckling, 
and free vibration analysis of tapered isotropic plate 
have been done by the various researcher. But as per 
author knowledge, the work on exponential FGM plate 
with variable thickness resting on two parameter elastic 
foundation is not reported. So, the current research 
objective has to investigate the free vibration analysis 
of the E-FGM (Exponential-Functionally Graded 
Material)plate having variable thickness on Pasternak 
exponential FGM (E-FGM) plate which rests on elastic 
foundation. The two-parameter elastic foundation has 
been chosen as a Winkler-Pasternak model which 
works as vertical spring as well as shear layer above 
the vertical spring. 

Moreover, the E-FGM plate material properties are 
presumed to vary in the direction of thickness 
according to exponential law of distribution by 
considering the volume fractions of the constituents. 
Parametric study based on the various parameter 
(Span ratio, aspect ratio, taper ratio & foundation 
stiffness) has carried out to explore the research. 
Further, some innovative results of E-FGM plate 
having all the edges have been simply supported as 
well as clamped have been listed for future 
perspectives. 

2 Materials and Methods 
2.1 Exponential-FGM (E-FGM) Plate 

A rectangular E-FGM plate of length a and width 
b, resting on Pasternak foundation is shown in Fig 1. 
The plate's thickness hywas varying in the y-direction, 
and the material properties were graded in thickness 
direction-Z according to exponential distribution law. 
The material gradation law was considered as given in 
earlier research19. The Young’s modulus and density 
at the top and bottom surface denoted by EC and Em. 
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variation parameter was selected in present 
formulation, where ℎଵ,ℎଶ&𝜒are the plate thickness 
and taper ratio (𝜒).  
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2.2 Problem Formulation 
Based on the non-polynomial higher-order shear 

deformation theory, the displacement field maybe 
written from20as, 
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𝑊ሺ𝑥,𝑦, 𝑧, 𝑡ሻ ൌ 𝑤ሺ𝑥,𝑦, 𝑡ሻ ...(1) 

Here, (u,v,w) denote the displacements of a point on 
the middle plane, and (Фx,Фy) denote the rotation 
about y-axis and x-axis. The shape function 𝑓ሺ𝑍ሻ ൌ
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was consider with r=0.088. In 

Fig. 1 — Pictorial view of the E-FGM plate having a varying 
thickness in Y-direction. 
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short, shape function may write as 𝑓ሺ𝑧ሻ ൌ 𝜆ሺ𝑧ሻ ൅
𝑧𝜗.The linear strain may be obtained as, 
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Now the consitutive relation can be established as, 
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The strain energy relation established as, 
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Substituting Eqs (2 and 3) in Eq. 4, and after 

integratingwithrespect to the thickness of the 
platemay be re-written in variational form as, 
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The strain energy of the two-parameter elastic 
foundation in variational form is considered as: 
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Kw, KP represents the Winkler, Pasternak 

foundation stiffness and where 𝛻ଶ ൌ
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The kinetic energy of the assumed mass system are 
developed as, 
𝛿𝑇 ൌ

ଵ

ଶ
׬ 𝜌ሺ𝑈𝛿𝑈 ൅ 𝑉𝛿𝑉 ൅𝑊𝛿𝑊ሻ
஺ 𝑑𝑧𝑑𝐴    ...(10) 

After substituting Eq. (1) into Eq. (10), we got, 
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Hamilton’s principle was used here to obtain the 
equation of motion, and analyticallyrepresented as, 
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Putting Eqs (5, 9, and 11) into Eq.12 and collecting 
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Substitute Aij, Bij,Dij ….. into Eq.(13), and rewrite 
in simplyfied form where 𝑅௜௝is linear operator, 
discussed in Appendix A. 
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൅ 𝐽ଷ𝛷௫ 

𝑅ହଵ𝑢 ൅ 𝑅ହଶ𝑣 െ 𝑅ହଷ𝑤 ൅ 𝑅ହସ𝛷௫ ൅ 𝑅ହହ𝛷௬ ൌ 𝐽ଵ𝑣 െ 𝐽ଶ
డ௪

డ௬
൅ 𝐽ଷ𝛷௬14 

2.3 Methodology 
Considering a simply supported rectangular plate 

having variable thickness on Pasernak foundation, 
with boundary conditions used in the present theory. 
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𝑣 ൌ 𝑤 ൌ 𝛷௫ ൌ 𝑁௫௫ ൌ 𝑀௫௫
௕ ൌ 𝑀௫௫

ௌ ൌ 0, on edge x=(0,a) 
𝑢 ൌ 𝑤 ൌ 𝛷௬ ൌ 𝑁௬௬ ൌ 𝑀௬௬

௕ ൌ 𝑀௬௬
ௌ ൌ 0, on edge y=(0,b) 

The Galerkin method was adopted to find the 
solution of the differential equation of motion. The 
following shape function, for free vibration analysis, 
was applied in the present formulation. 

ሼ𝑢ሺ𝑥,𝑦ሻ,𝛷௫ሺ𝑥,𝑦ሻሽ ൌ ෍ ෍ሼ𝑈௠௡,𝜃௫
௠௡ሽ

∞

௡ୀଵ

∞

௠ୀଵ

𝜕𝑋௠ሺ𝑥ሻ

𝜕𝑥
𝑌௡ሺ𝑦ሻ𝑒௜ఠ௧ 

൛𝑣ሺ𝑥,𝑦ሻ,𝛷௬ሺ𝑥,𝑦ሻൟ ൌ

∑ ∑ ൛𝑉௠௡,𝜃௬
௠௡ൟ∞

௡ୀଵ
∞
௠ୀଵ 𝑋௠ሺ𝑥ሻ

డ௒೙ሺ௬ሻ

డ௬
𝑒௜ఠ௧15 

𝑤ሺ𝑥,𝑦ሻ ൌ ෍ ෍𝑊௠௡

∞

௡ୀଵ

∞

௠ୀଵ

𝑋௠ሺ𝑥ሻ𝑌௡ሺ𝑥ሻ𝑒௜ఠ௧ 

 

where, 𝑈௠௡,𝑉௠௡ ,𝑊௠௡ ,𝜃௫
௠௡,𝜃௬

௠௡were the 
unknown parameters and ω denotes the eigen 
frequency associated with (m, n)th mode shape. The 
suggested function Xm (x)&Yn (y) should satisfy the 
geometric boundary condition for simply supported 
plate. The shape function were assumed as, 

𝑋௠ሺ𝑥ሻ ൌ 𝑠𝑖𝑛ሺ 𝛼𝑥ሻ, 𝑌௡ሺ𝑦ሻ ൌ 𝑠𝑖𝑛ሺ 𝛽𝑦ሻ,  

where, 𝛼 ൌ ௠గ

௔
,𝛽 ൌ

௡గ

௕
 

On putting Eq. (15) into the governing Eq. (14) and 
multiplying them by the corresponding eigen 
function. After integrating the domain of solution and 
some mathematical manipulations, the following 
algebraic equations were obtained. 

𝜅௜௝ ൌ

⎣
⎢
⎢
⎢
⎡
𝜅ଵଵ 𝜅ଵଶ 𝜅ଵଷ 𝜅ଵସ 𝜅ଵହ
𝜅ଶଵ 𝜅ଶଶ 𝜅ଶଷ 𝜅ଶସ 𝜅ଶହ
𝜅ଷଵ 𝜅ଷଶ 𝜅ଷଷ 𝜅ଷସ 𝜅ଷହ
𝜅ସଵ 𝜅ସଶ 𝜅ସଷ 𝜅ସସ 𝜅ସହ
𝜅ହଵ 𝜅ହଶ 𝜅ହଷ 𝜅ହସ 𝜅ହହ⎦

⎥
⎥
⎥
⎤

, 

𝑀௜௝ ൌ

⎣
⎢
⎢
⎢
⎡
െ𝐼଴𝜇଺ 0 𝐼ଵ𝜇଺ െ𝐽ଵ𝜇଺ 0

0 െ𝐼଴𝜇ଶ 𝐼ଵ𝜇ଶ 0 െ𝐽ଵ𝜇ଶ
െ𝐼ଵ𝜇ଽ െ𝐼ଵ𝜇ଷ െ𝐼଴𝜇ଵ ൅ 𝐼ଶሺ𝜇ଷ ൅ 𝜇ଽሻ െ𝐽ଶ𝜇ଽ െ𝐽ଶ𝜇ଷ
െ𝐽ଵ𝜇଺ 0 𝐽ଶ𝜇଺ െ𝐽ଷ𝜇଺ 0

0 െ𝐽ଵ𝜇ଶ 𝐽ଶ𝜇ଶ 0 െ𝐽ଷ𝜇ଶ⎦
⎥
⎥
⎥
⎤

 

In which, 
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3 Results and Discussion 
The ceramic/metal rectangular plate had been 

considered which rests on the two-parameter elastic 
foundation for free vibration analysis and discussed 
some numerical examples for establishing the 
accuracy of the present formulation. The Al/Al2O3 

plate was considered all over the study, otherwise 
specified the FG material during the investigation. 
The FG materials consist of alumina and aluminum 
with the following properties, 

• Metal (Aluminum, Al): Em=70 GPa,; Poison
ratio=0.3; Density= 2702 Kg/m3

• Ceramic (Alumina, Al2O3): EC=380 GPa; Poison
ratio=0.3; Density= 3800 Kg/m3

• Ceramic (Alumina, ZrO2): EC=151 GPa; Poison
ratio=0.3; Density= 3000 Kg/m3

The following non-dimensional parameters of
frequency and foundation stiffness are applied during 
the investigation. 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ൌ 𝜔
௔

௛

ଶ
ඥ𝜌஼/𝐸஼  , 𝐾௪ ൌ

௄ೢ௕ర

஽೙
, 𝐾௉

௄ು௕మ

஽೙
, 𝐷௡ ൌ

ா೘௛య

ଵଶሺଵିఔమሻ

In addition, a first numerical example for the 
vibratory response of a taper isotropic plate had taken 
to validate the present formulation for the taper plate. 
The current results are compared with the results 
obtained by Mizusawa21applyingthespline strip 
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method in conjunction with FOSD theory. The 
isotopic plate was divided into a small-small strip to 
investigate the free vibration response, and all the 
edges were simply supported. The results mentioned 
in Table 1 werein agreement with the result obtained 
by Mizusawa21. The small error may be present due to 
the (a) adoption of shear deformation theory, as 
present formulation is based on higher order shear 
deformation theory (b) Present method was 
based on analytical approach while published result 
calculated by numerical technique. As there is no 
need of Shear Correction Factor (SCF) while in FOST 
needed SCF. The non-dimensional frequency 
parameter in comparing results was assumed as 
mentioned above. 

The second example was presented here for 
validating the accuracy of exponential graded material 
plate for uniform thickness, as results for E-FGM 
tapered plate were not available as per author 
knowledge. The free vibration response of rectangular 
E-FGM plate was investigated using Classical plate
theory by Chakraverty & Pradhan19. The governing
equation of motion were solved by applying the
Rayleigh-Ritz method after adopting the harmonic
algebraic displacement function. In order to this, the
E-FGM plate's vibration response was compared in
Table 2 for simply supported and clamped plate. The
outcomes of the comparable results shown a good
agreement with published works.

After validation of the current formulation for free 
vibration of rectangular plates through comparison 
studies with taking two examples, the effect of the 
elastic foundation on exponential FG plate for 
variable thickness is examined, for the first time. For 
accomplished this, the non-dimensional frequency of 
the isotropic (Ceramic) and FG material plate was 
considered with a two-parameter elastic foundation 
(𝐾ௐ, 𝐾௉=50,50), tabulated in Table 3. The taper ratio 
for the plate was selected as χ=0.10,.25,0.50, 0.75 & 
1.0 with span ratio b/h=10. Examining tabulated 
results reveals that non-dimensional frequencies of 
the ceramic plate was more than the FG materials 
plate at each and every taper ratio. It is quite obvious, 
the stiffness of the ceramic material was always more 
than the FG material, as the FGM was a mixture of 
two materials, which reduces the stiffness of the plate. 
Results in Table 4 and Table 5 are tabulated for 
E-FGM tapered plate with two different span ratio
(b/h=10, 100). Tabulated results in Table 4, were 
considered for simply supported plate, reveal that the 
non-dimensional frequency was continuously 
increasing when the taper and aspect ratio increases. 
A similar type of trend was found in Table 5, where 

Table 2 — Comparison of E-FGM uniform thick plate for free vibration, supported with SSSS & CCCC boundary conditions 

a/b 
SSSS CCCC

Present Ref.[19] Present Ref.19 

0.5 8.03420 8.1895 14.6308 16.316
1.0 13.4463 13.103 23.9817 23.890
2.0 34.0274 32.758 66.0194 65.265

Table 3 — Variation of frequency of Ceramic and E-FGM square plate, having span ratio b/h=10 and elastic stiffness (𝐾ௐ,𝐾௉=50,50) 

χ 
SSSS CCCC

Ceramic E-FGM Ceramic E-FGM
0.10 24.5901 21.013 38.8617 30.5629
0.25 26.187 22.3896 41.2878 32.5341
0.50 28.7352 24.5825 45.2754 35.7959
0.75 31.1818 26.6861 49.1738 39.0135
1.00 33.5572 28.7288 52.9700 42.1770

Table 1 — Frequency parameter variation of tapered rectangular 
plate for different span ratio, tapered ratio and aspect ratio 

b/h χ a/b
Non-dimensional 

Frequency 
Present Ref.21 

100 
0.25 0.5 13.803 13.817 

1.0 22.130 22.164 
2.0 55.353 55.368 

0.50 0.5 15.191 15.230 
1.0 24.429 24.543 
2.0 61.144 61.185 

0.75 0.5 16.529 16.590 
1.0 26.666 26.880 
2.0 66.792 66.837 

10 

0.25 0.5 12.512 12.506 
1.0 21.213 21.223 
2.0 53.886 53.853 

0.50 0.5 13.541 13.537
1.0 23.237 23.281 
2.0 59.263 59.140 

0.75 0.5 14.492 14.479 
1.0 25.177 25.243 
2.0 64.484 64.167 
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all the plate edges were fully clamped. For both the 
span ratio and boundary conditions, one thing was 
common, the effect of Pasternak’s foundation was 
more significant than the Winkler’s foundation. 
When, we applied the shear layer above the Winkler’s 
foundation, the frequency increases rapidly. The 
pictorial representation shown in Fig. 2 are for the 
free vibration analysis. The first mode shape (m, n 
=1,1) was for the plate, where all the edges are simply 
supported and clamped.  

Comparative results for non-dimensional frequency 
parameter of SSSS & CCCC edge plate with various 
taper ratios had been listed in Table 6. Here, the 
elastic stiffness (𝐾ௐ, 𝐾௉=50,50) was taking constant 

with various span ratio (b/h=10,20,50,80,100) during 
the investigation. The outcomes after examining the 
results, the frequency parameter increases on the 
increase of boundary constraints.  

Figure 3 depicts the results of rectangular plate for 
vibration analysis having taper ratio 0.25, and 
foundation stiffness(𝐾ௐ, 𝐾௉=50,50). The results have 
compared for isotropic (ceramic) and E-FGM (Al/ ZrO2) 
plate with two different boundary conditions by changing 
the span ratio from 1.5 to 2.0. The common observation 
from the plots are observed that the frequency increases 
on increase of span ratio. The frequency for ceramic 
plate was always more than the Al/ZrO2 plate as well as 
in case of clamed boundary conditions.  

Table 4 — Frequency parameter for E-FGM plate having various taper ratio (χ=0.25,0.50,0.75& 1.0) with different aspect ratio 
(a/b=0.5, 1.0) of SSSS boundary conditions 

b/h 𝐾ௐ 𝐾௉
a/b=0.50 a/b=1.0

χ=0.25 χ=0.5 χ=0.75 χ=1.0 χ=0.25 χ=0.5 χ=0.75 χ=1.0 

10 

0 0 8.8454 9.5772 17.7556 19.0751 14.963 16.3904 17.7556 19.0751 
100 0 8.9369 9.6784 18.8037 20.2100 15.8319 17.3504 18.8037 20.2100 
0 100 12.5903 13.7038 32.7063 35.2230 27.4186 30.1172 33.2791 35.2229 

100 100 12.6545 30.6461 33.2791 35.8384 27.9009 30.6460 33.2791 35.8383 

100 

0 0 9.7216 10.6980 11.6384 20.2973 15.585 17.1971 18.762 20.2973 
100 0 9.8085 10.7929 11.7409 21.4010 16.4377 18.1360 19.784 21.4010 
0 100 13.3528 14.6735 15.9415 36.3148 27.9594 30.8230 33.5953 36.3148 

100 100 13.416 14.7422 16.0154 36.9333 28.4425 31.3531 34.1702 36.9333 

Table 5 — Frequency parameter for E-FGM plate having various taper ratio (χ=0.25,0.50,0.75& 1.0) with different aspect ratio 
(a/b=0.5, 1.0) of CCCC boundary conditions 

b/h 𝐾ௐ 𝐾௉ 
a/b=0.50 a/b=1.0

χ=0.25 χ=0.5 χ=0.75 χ=1.0 χ=0.25 χ=0.5 χ=0.75 χ=1.0 

10 

0 0 15.8672 17.0303 18.1139 19.1178 26.5375 29.0287 31.4414 33.7683 
100 0 15.9196 17.0908 18.1832 19.1963 27.0416 29.5996 32.0822 34.4819 
0 100 18.9535 20.5748 22.1467 23.6669 37.2056 41.0451 44.8599 48.6375 

100 100 18.9974 20.6249 22.2033 23.7303 37.5669 41.451 45.3116 49.1361 

100 

0 0 19.8814 22.1584 24.4662 26.793 29.1266 32.4442 35.8014 39.1875 
100 0 19.9248 22.2068 24.5197 26.8516 29.5966 32.9688 36.3816 39.824 
0 100 22.5084 25.0903 27.7084 30.3492 39.3354 43.8322 48.3884 52.9878 

100 100 22.5467 25.133 27.7556 30.401 39.6847 44.2221 48.8195 53.4607 

Fig. 2 — Pictorial representation of the plate's first mode shape when all the edges are (a) simply supported, and (b) clamped-clamped.  



KUMAR et al.: VIBRATION RESPONSE OF EXPONENTIALLY GRADED PLATES 187

4 Conclusion 
The foregoing research has shown how semi-

analytical solution methods can be pursued to obtain a 
variety of exciting and valuable results for the E-FGM 
plate's vibratory response, being the linearly varying 
thickness with a possible combination of boundary 
conditions. This procedure has employed in a variety 
of plates as thin to thick plates, by changing the span 
ratio and square to a rectangular plate by changing the 
aspect ratio. It has found that on the increase of taper 
and aspect ratio, frequency increases significantly. 
Also, the increase in edge constraints leads a 
significant increase in frequency parameters. One 
more important observation regarding elastic 
foundation, the influence of the Pasternak’s 
foundation has more substantial than the Winkler’s 
foundation.  
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