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Non-invasive early diabetes prediction has been gaining much premarkable over the last decade.  Heart rate variability 

(HRV) is the only non-invasive technique that can predict the future occurrence of the disease. Early prediction of diabetes 

can help doctors start an early intervention. To this end, the authors have developed a computational machine learning 

model to predict type 2 diabetes mellitus (T2DM) risk using heart rate variability features and have evaluated its robustness 

against the HRV of 50 patients data. The electrocardiogram (ECG) signal of the control population (n=40) and T2DM 

population (n=120) have been recorded in the supine position for 5 minutes, and HRV signals have been obtained. The time 

domain, frequency domain, and non-linear features have been extracted from the HRV signal. A decision support system has 

been developed based on a machine learning algorithm. Finally, the decision support system has been validated using the 

HRV features of 50 patients (Control n=10 and T2DM n=40). HRV features are selected for the prediction of T2DM. The 

decision support system has been designed using three machine learning models: Gradient boosting decision tree (GBDT), 

Extreme Gradient boosting (XGBoost), Categorical boosting (CatBoost), and their performance have been evaluated based 

on the Accuracy (ACC), Sensitivity (SEN), Specificity (SPC), Positive predicted value (PPV), Negative predicted value 

(NPV), False-positive rate (FPR), False-negative rate (FNR), F1 score, and Area under the receiver operating characteristic 

curve (AUC) metrics. The CatBoost model offers the best performance outcomes, and its results have been validated on 50 
patients. Thus the CatBoost model can be use as a decision support system in hospitals to predict the risk of T2DM.  

Keywords: Heart rate variability, Type 2 diabetes mellitus, Gradient boosting decision tree, Extreme gradient boosting, 

Categorical boosting 

1 Introduction 

Diabetes mellitus is usually known as diabetes. The 
primary reason behind this disease is that the body 
is unable to metabolize glucose properly. Some 
researchers in diabetes have reported that from 1980 
to 2014, diabetes disease has risen from 4.7% to 

8.5%. The number will further increase to 25%, 51% 
in 2030 and 2045, respectively

1
. There are three types 

of diabetes: • Type 1 diabetes which is found in 
children; in this type, the pancreas cannot produce 
insulin

2,3
 • Type 2 diabetes which is a common type of 

diabetes found in adults. Around 85% of the world 

population has this type of diabetes. It occurs if the 
body cannot convert glucose into energy due to a lack 
of insulin production

4
. • Gestational diabetes which is 

found in pregnant women due to inadequate insulin 
secretion

5
. Although there is no proper cure for 

diabetes, it can be prevented and controlled if early 

indications of diabetes is  possible. An early indication 

of the disease is possible using the HRV signal. HRV 

shows time variation between RR intervals of ECG 
signals. The pacemaker of heart is the sinoatrial node 
(SA) which generates cardiac impulses influenced by 
the autonomous nervous system (ANS). ANS consists 
of sympathetic nervous system (SNS) and 
parasympathetic nervous system (PNS), which control 

the heart rate. SNS and PNS balance the normal heart 
rate which is strongly influenced by different body 
factors. Therefore, the status of ANS can be analyzed 
using the HRV signal. If any disease developed in the 
body, it might affect ANS, so HRV gets affected, and 
an early indication of that disease is possible. HRV is 

a simple and non-invasive measurement technique 
and indicates stages of the diseases. In this study, 
HRV signal has been analyzed mainly using machine 
learning algorithm. The main objective of the study is 
to design a machine learning-based decision support 
system for physicians using HRV features that 

can be used as an initial screening test tool to predict 
T2DM risk. The contributions of the present study are 
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comprehensive analysis between the three types of 
HRV methods, namely time domain, frequency 
domain, and non-linear method. We have been 
concern about the breathing rate (BR) effect on HRV 

for diabetes prediction. The time domain, frequency 
domain, and non-linear features of HRV, along with 
the breathing rate have been used to predict the risk of 
T2DM. We have proposed a machine learning model 
as a decision support system for the prediction  
of T2DM risk. The proposed model is based  

on real and authentic HRV data. We have proposed  
a cost-effective screening tool to detect the risk  
of T2DM patients. Contribution to the validation of  
the machine learning model on patients (n=50) in  
the hospital. 
 

2 Materials and Methods 
 

2.1 Participants and data collection 

The present study was performed by following the 

protocol given by the Taskforce of the European 

Society for Cardiology and the North American 

Society of Pacing and Electrophysiology
6
. The study 

was conducted at Smt. Kashibai Navale Medical 

College and General Hospital (SKNMCGH) Pune, 

Maharashtra, India, in collaboration with College  

of Engineering Pune (COEP), Pune India. The 

institutional ethical committee of SKNMCGH has 

approved the study. The participants were selected 

from the OPD of SKNMCGH by following American 

Diabetic Association guidelines
7
. Patients with a history 

of any acute or chronic diseases were safely excluded 

from the study. Before the electrocardiogram (ECG) 

recording, the procedure and objective of the study 

were informed to the participant, and informed 

consent was received. The ECG of selected subjects 

was recorded in the supine position for 15 minutes, 

and the last 5-minute segment was used for HRV 

analysis as shown in Fig. 1. The ECG was recorded 

using the data acquisition tool Chronovisor HRV DX 

system at sampling frequency 1000Hz, and HRV  

was analyzed using Chronovisor HRV software  

suite 1.1.487.  
 

2.2 Feature extraction 

In this section, the time domain, frequency domain, 

and non-linear features used for T2DM risk prediction 

have been discussed. The HRV features were derived 

using the RR time series interval of ECG signals.  
 

2.2.1 Time domain features 

In the time-domain analysis, simple statistical 

features were derived. The mean HR and mean RR 

features were obtained from the RR interval. The RR 

interval variability was represented using a standard 

deviation of normal to normal interval (SDNN) and 

root mean square standard deviation (RMSSD) 

features as presented in Table 1. Another important 

feature is the breathing rate (BR), which shows the 

effect of respiration on HRV and is represented in 

beats per minute. It is very important to consider BR 

while analyzing the HRV. The statistical difference 

between control and T2DM subjects was calculated 

using the Mann-Whitney U test. Statistical software 

tool Epi. Info. 7 was used for data analysis. In the 

present study, a p-value <0.05 was considered 

statistically significant, and the data were presented in 

the form of mean ± standard deviation
8,9

. 
 

2.2.2 Frequency domain feature 

In the frequency domain method, a power spectral 

density estimator (PSD) calculates the frequency 

 
 

Fig. 1 — ECG recording in a supine position. 

Table 1 — Time-domain features 

Features Control (n=40) T2DM (n=120) p-Value 

mean HR 71.73 ± 9.95 79.88 ± 12.09 0.0001# 

mean RR 851.28 ± 111.26 767.84 ± 114.41 0.0001# 

SDNN 71.82 ± 33.70 31.26 ± 15.08 <0.0001# 

RMSSD 77.21 ± 54.69 70.05 ± 37.89 0.9529 

BR 12.92 ± 2.71 15.15 ± 3.31 0.0001# 

#-Significant difference, n= Number of samples, Mean HR- Average heart rate, Mean RR- Average RR interval, SDNN- Standard 

deviation of NN interval, RMSSD- Root mean square standard deviation, BR- Breathing rate 
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component of the RR interval series. The PSD 

estimation can be carried out using the Fast Fourier 

Transform method (FFT) or the Autoregressive 

modeling method (AR model). However, considering 

the complexity of the AR model, the results of the 

FFT method were used. The PSD estimator 

decomposes the RR interval into a frequency 

component using the FFT method
9
. The power in the 

frequency range of 0.04 to 0.15Hz is defined as a low-

frequency power band. The power in the frequency 

range of 0.15 to 0.4Hz is defined as a high-frequency 

power band. The power in the frequency band was 

calculated in absolute (ms
2
) and normalized unit (nu). 

The LF and HF power reflect the sympathetic and 

parasympathetic activity. In this study, total power 

(TP), LF power, HF power, LF nu, HF nu, and LF to 

HF power ratio were analyzed. The statistical 

difference between frequency-domain features of 

control and T2DM has been mentioned in Table 2. 
 

2.2.3 Non-linear features 

The nature of the biological signal is non-linear. 
Thus, the study of non-linear dynamics is important 

for analysis. The non-linear feature used in this study 
is as follows: Poincare plot, Detrended fluctuation 
analysis (DFA), Approximate entropy (AppEN),  
and Sample entropy (SampEN). The significant 
difference between non-linear features of control and 
T2DM subjects are presented in Table 3.  
 

2.2.3.1 Poincare plot 

The Poincare plot represents the present RR 

interval and the next RR interval, which shows the 

non-linear behaviors of RR interval variability
9
.  

The Poincare plot can be interpreted using standard 

deviation 1 (SD1), representing the short-term 

variability in RR interval, and standard deviation  

2 (SD2), representing the long-term variability in RR 

interval
10

.  
 

2.2.3.2 Detrended fluctuation analysis (DFA) 

DFA is used to assess the self-similarity properties 

of the RR interval. It also measures the correlation 

between different time series signals
11

. The fluctuation 

in the time series signal is represented by parameter α. 

Alpha (α) is called as the scaling exponent. The time-

series signal is integrated and divided into segments 

of length 𝑛 and 𝑥𝑛 𝑘  a least-square line is applied to 

each segment. Next, the integrated time series 𝑥(𝑘)  is 

detrended from the next least square line of each 

segment.  The detrended time series of RR interval is 

calculated by: 
 

𝐹 𝑛 =  
1

𝑁
 (𝑥 𝑘 − 𝑥𝑛 𝑘 )

2𝑁
𝐾=1                        … (1) 

 

DFA is plotted on a double log graph, and a linear 

relationship indicates the presence of fractal scaling. 

The value of α is closer to 1 for control subjects, and 

it may vary with disorders.  
 

2.2.3.3 Approximate entropy (AppEN) 

AppEN measures the regularity of the time-series 

signal. The value of AppEN is larger in the case of  

a control subject compared to diabetes subjects
12,13

.  

It is calculated as: 

Table 2 — Frequency domain features 

Features Control (n=40) T2DM (n=120) p-Value 

TP 3289.23 ± 2817.26 706.99 ±758.30 <0.0001# 

LF power 807.54 ± 688.18 154.02 ± 194.49 <0.0001# 

HF power 933.58 ± 997.94 219.53 ± 372.32 0.0001# 

LF nu 51.08 ± 17.22 45.45 ± 15.78 0.039# 

HF nu 48.19 ± 17.22 59.55 ± 62.89 0.0516 

LF/HF 1.39 ± 0.99 1.59 ± 5.47 0.0477# 

#-Significant difference, n= Number of samples, TP- Total power, LF- Low frequency, HF- High frequency, nu- Normalized unit 
 

Table 3 — Non-linear features 

Features Control (n=40) T2DM (n=120) p-Value 

SD1 42.76 ± 26.69 21.70 ±12.78 0.0001# 

SD2 90.63 ± 42.22 38.06 ± 19.13 0.0001# 

DFA α1 0.92 ± 0.24 0.89 ± 0.17 0.4067 

DFA α2 1.13 ± 0.16 1.13 ± 0.20 0.5596 

AppEN 1.45 ± 0.31 1.35 ± 0.33 0.1233 

SampEN 42.76 ±26.69 21.70 ± 12.78 0.0001# 

#-Significant difference, n= Number of samples, SD- Standard deviation, DFA- Detrended fluctuation analysis, AppEN- Approximate 

entropy, SampEN- Sample entropy 
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𝐴𝑝𝑝𝐸𝑁 𝑚, 𝑟,𝑁 = 
1

𝑁−𝑚+1
 𝑙𝑜𝑔𝐶𝑖

𝑚  𝑟 −𝑁−𝑚+1
𝑖=1

1𝑁−𝑚𝑖=1𝑁−𝑚𝑙𝑜𝑔𝐶𝑖𝑚+1(𝑟)       … (2) 

where, 𝐶𝑚
𝑖  is the correlation integral 

 

2.2.3.4  Sample entropy (SampEN) 

SampEN measures the complexity of the time-

series signal. It is actually like approximate entropy 

but a more refined version
12,13

. Higher values of 

SampEN represent the more irregularity in a time-

series signal. Irregularity in a time series signal 

indicates the status of a patient. In the control subject, 

it was noted that irregularity is more as compared to 

diabetes subject. The sample entropy values can be 

calculated by: 
 

𝑆𝑎𝑚𝑝𝐸𝑁 𝑘, 𝑟,𝑁 = −𝑙𝑛  
𝐴(𝑘)

𝐵(𝑘−1)
    … (3) 

 

The variable 𝐴(𝑘) and 𝐵(𝑘) for all lengths 𝑘 up to 

𝑚 and keeps track of template matches. In this study, 

𝑘 = 0,1,2,… . .𝑚 − 1 with 𝐵 0 = 𝑁, the length of 

the input time-series signal. 
 

2.3 Dataset introduction 

The present study uses two in-house HRV datasets. 

The dataset D1 comprises a control subject (n=40) 

aged 27.37 ± 6.73 and the diabetes subject (n=120) 

aged 53.59 ± 11.01. The dataset D2 comprised a 

control subject (n=10) aged 26.4 ± 6.29, and the 

diabetes subject (n=40) aged 54.60 ± 8.94. The 

dataset D1 is used to train the machine learning 

model, whereas dataset D2 is used to evaluate the 

performance of the machine learning model trained 

using dataset D1.  
 

2.4 Data pre-processing 

The preprocessing step includes outlier rejection 

and normalization of the dataset, which are described 

as follows: 

The outliers are the observation that is deviated 

from their normal range
14

. The first criteria to remove 

outlier from the dataset is - 1). The data that falls 

outside the 𝑥  ± 3𝜎 and 2). The data that falls outside 

of 1.5 times of an interquartile range, above 3
rd

 

quartile and below 1
st
 quartile, are considered an 

outlier. The mathematical formulation of the outlier 

rejection system is written as- 
 

𝑁 𝑥 

=  

𝑥, 𝐼𝑓  > 𝑥  ± 3𝜎
𝑥, 𝐼𝑓 𝑄1 − 1.5 × 𝐼𝑄𝑅 × ≤ 𝑥 ≤  𝑄3 + 1.5 × 𝐼𝑄𝑅

𝑅𝑒𝑗𝑒𝑐𝑡, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 … (4) 

where, 𝑥 represents the attribute of the feature vector 

in the 𝑛 −dimensional space, 𝑥 ∈  𝑆𝑛 . 𝑥 , 𝜎, 𝑄1, 𝑄3, 

𝐼𝑄𝑅 is the average, standard deviation, first quartile, 

third quartile, and interquartile range of  𝑥 ∈  𝑆𝑛 . 

The min-max normalization technique was used  

for normalization, i.e., rescaling the attribute value 

between zero mean and unit variance to achieve the 

normal distribution
15

. The mathematical representation 

of Min-max normalization is as follows- 
 

𝑍 𝑥 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛
 𝑝 − 𝑞 + 𝑞  … (5) 

 

where, 𝑥 is the 𝑛 - dimensional attribute of the 

feature vector, 𝑥 ∈  𝑆𝑛 , 𝑝 is the new maximum value, 

and 𝑞 is the new minimum value 
 

2.5 Machine learning models 

The dataset consists of a control subject and a 

diabetes subject. Thus, this problem can be considered 

as a binary classification assignment. The python data 

manipulation tool was used for implementing a 

machine learning model. We used three ensemble 

boosting algorithms in our study. The details about 

the algorithm are as follows: 
 

2.5.1 Gradient boosting decision tree (GBDT) 

Friedman extended the adaptive boosting concept 

by introducing the Gradient boosting decision tree 

(GBDT)
16

. The goal of GBDT is to improve the 

performance of the model by updating the weight of 

the samples during the training process. GBDT 

involves three elements: 1) optimization of the loss 

function, 2). Use of a weak learner to improve the 

performance, 3) develops an additive model to 

minimize the loss function.  

The GBDT model initialized with the constant 

value, which minimizes the loss function. In each 

iteration of the training process, a negative gradient of 

the loss function is assessed as the residual value of 

the present model, and a new tree is formed to fit the 

residual. This new tree is trained to fit the present 

residual and added to the previous model. After this 

process, the residual is updated, and the process 

continues iteratively until the user-set maximum 

number of iteration conditions is reached.  The GBDT 

algorithm is as follows: 
 

Algorithm 1 — Gradient boosting decision tree 

Input: Training set 
  𝑥1 ,𝑦1 ,  𝑥2 ,𝑦2 …… (𝑥𝑁 ,𝑦𝑁) , 𝑥 ∈  𝑆𝑛 , y  ∈
 𝑆𝑛 , Loss function 𝐿(𝑦, 𝑓 𝑥 ), 

Output: Updated new tree 𝑓1(𝑥) 
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(1) Initialize model with a constant value 

𝑓0 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛  𝐿(𝑦,𝛼)𝑛
𝑖=1 ; 

 

(2) For m= 1, 2, 3….𝑀 

(a) Calculate the residual 

𝑟𝑒𝑠 = −
𝜕𝐿(𝑦𝑖 ,𝑓 𝑥𝑖 )

𝜕𝑓  𝑥𝑖 
 , 𝑖 = 1,2,3… .𝑁 

(b) Fit a tree 𝐶𝑚𝑓  with the residual 𝑟𝑒𝑠 using the 

training set  𝑥𝑖 , 𝑟𝑒𝑠)  
(c) 𝛼𝑚𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛  𝐿(𝑦𝑖 ,𝑓𝑚−1 𝑥𝑖 + 𝛼)𝑛

𝑖=1  

(d) Update the current model by  

𝑓𝑚  𝑥 =  𝑓𝑚−1 𝑥 + 𝐶𝑚𝑓𝛼𝑚𝑓  
 

(3) 𝑓1 𝑥 = 𝑓𝑚  𝑥  
 

 

2.5.2 Extreme gradient boosting (XGBoost) 

The XGBoost is a more regularized form of 

Gradient boosting proposed by Tianqi Chen in 2016
17

. 

The mathematics behind XGBoost is the same as the 

GBDT, but it shows the improved speed of tree 

construction and tree searching. The strength of 

XGBoost is parallel computing, L1 and L2 

regularization, and second-order derivative of the loss 

function.  It uses the advanced regularization of L1 

and L2 algorithms, which improves the generalization 

capabilities of the model. The optimized XGBoost 

model with the N decision tree is represented by  

Eq. (6). 
 

𝑦𝑖 =  𝑓𝑛(𝑥𝑖)

𝑁

𝑛=1

 

  … (6) 
 

The loss function is given by Eq. (7) 

𝐿 𝑓 =  𝑙( 𝑦𝑖 ,𝑦𝑖) +  𝛽 𝑓   … (7) 
 

The first term represents the loss function which 

measures the predicted output 𝑦𝑖  and tree output 𝑦𝑖 . 
The second term 𝛽 represents the regularization used 

as a penalty to avoid overfitting of the model. The 

𝛽 can be written as- 
 

𝛽 𝑓 = 𝛼𝑇 +
1

2
 𝑤 2  … (8) 

 

where, 𝑇 is the number of leaf nodes of the trees, and 

𝑤 is the weight of the leaf nodes. The final loss 

function equation is represented as- 
 

𝐿 𝑓 =     𝑚𝑖

𝑖=𝑙

 𝑤𝑗 +
1

2
  𝑛𝑖 + 𝜇

𝑖=𝑙

 𝑤𝑗
2 + 𝛼𝑇

𝑇

𝑗=1

 

 … (9) 

where, 𝑚𝑖  , 𝑛𝑖  represent 1
st
 order, the 2

nd
 Gradient 

of the loss function, respectively. The parameters 𝜇 

and 𝛼 represent the degree of regularization, which 

provides gradient direction to minimize the loss 

function and avoid overfitting.  
 

2.5.3 Categorical boosting (CatBoost) 

Catboost is a new machine learning method  

based on the Gradient boosting decision tree (GBDT), 

and Y and ex first proposed it in 2018
18

. It supports 

numerical, categorical, and text features. Various 

boosting techniques can solve the problem associated 

with the heterogeneous features, but CatBoost can 

handle the categorical data. CatBoost has the 

following advantages over the GBDT algorithm: 

(1) It deals with the categorical data and uses the 

whole dataset for training. The GBDT uses 

Greedy target based statistics (GTBS), which can 

replace the categorical features with the average 

label, leading to overfitting the model. CatBoost 

adds the prior weight to GTBS, which reduces the 

overfitting of the model. For example, we have a 

dataset D with the features 𝐷 =  𝑥𝑖 ,𝑦𝑖   , 𝑖 = 1,
2, 3…𝑛, if a permutation is 𝜎 = (𝜎1,𝜎2 ……𝜎𝑛) 

then 𝑥𝜎𝑝 ,𝑘  is substituted with 
 

  𝑥𝜎𝑗 ,𝑘=𝑥𝜎𝑝 ,𝑘  𝑌𝜎𝑗 + 𝛾∙𝑃
𝑝−1
𝑗=1

  𝑥𝜎𝑗 ,𝑘=𝑥𝜎𝑝 ,𝑘  𝑌𝜎𝑗 + 𝛾
𝑝−1
𝑗=1

  … (10) 

 

where, 𝑃 is the prior value, and 𝛾 is the weight of the 

prior value. This method reduces the overfitting of the 

model. 

(2) CatBoost combines multiple categorical features. 

When categorical features are converted into 

numerical values, it may lose some information. 

Thus, combining features may give new powerful 

features
18

. 
 

(3) In GBDT, each weak learner is trained based on 

the Gradient of the previous learner. Therefore, 

the Gradient of a weak learner in each iteration is 

biased, leading to overfitting the model. CatBoost 

can overcome this gradient bias using ordered 

boosting. Ordered boosting helps to avoid the 

predicted shift caused by gradient bias
18

. The 

algorithm of order boosting is as follows: 
 

Algorithm 2 — Ordered boosting 

Input:  𝑋𝑘 , 𝑌𝑘  𝑘
𝑛  , 𝐼 ;  𝜎 ← permutation of  1, 𝑛  

𝑀𝑖 ← 0 for 𝑖 =   1… .𝑛; 

for 𝑡 ← 1 to 𝐼 do 
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       for 𝑖 ← 1  to 𝑛  do 

𝑟𝑖 ←  𝑦𝑖  −𝑀𝜎 𝑖 −1(𝑋𝑖); 

       for 𝑖 ← 1  to 𝑛  do  

∆𝑀 ←   𝐿𝑒𝑎𝑟𝑛 𝑀𝑜𝑑𝑒𝑙   𝑋𝑗 , 𝑟𝑗  : 𝜎 𝑗 ≤ 𝑖  ; 

𝑀𝑖 ← 𝑀𝑖  + ∆𝑀 

return  𝑀𝑛  
 

Final model uses 𝑀𝑖  to obtain the unbiased 

Gradient boosting by separately training the model 

with and without sample 𝑋𝑖  . 
 

2.6 Model optimization 

The dataset was divided into 80% for training, and 

the other 20% were used for testing. We applied a 

grid search approach and 5-fold inner cross-validation 

to optimize the hyperparameters of the machine 

learning model. The inner 5-fold cross-validation was 

performed only on the training dataset. The optimized 

parameters of GBDT were as follows: ‘subsample’, 

‘max_features’, ‘learning_rate’, ‘criterion’, ‘random_state’, 

‘loss.’ The optimized parameter was used for XGBoost 

were as follows: ‘max_depth’, ‘colssample_bytree’, 

‘min_child_weight’, ‘learning_rate’, ‘random_state’, 

‘gamma’. The following are the CatBoost parameter 

used for optimization: ‘n_jobs’, ‘n_estimators’, 

‘max_depth’, ‘criterion’, ‘random_state’, ‘bootstrap’. 

All the possible combinations of these hyperparameters 

were used before training and tested on the model. 

The machine learning model, which shows the best 

performance with the hyperparameters, was considered 

as the best model. The framework of the study is 

shown in Fig. 2. 

2.7 Performance evaluation 

The performance of the machine learning model 

was evaluated based on the various performance 

evaluation metrics: Accuracy (ACC), sensitivity 

(SEN), specificity (SPC), positive predicted value 

(PPV), negative predicted value (NPV), false-positive 

rate (FPR), false negative rate (NFR), F1 score, and 

area under the receiver operating characteristic curve 

(AUC). These metrics were evaluated using true 

positive (TP), false positive (FP), true negative (TN), 

and false-negative (FN).  The performance metrics are 

shown in Table 4. 
 

3 Results and Discussion 

This section presents the results of the selected 

HRV features to predict the risk of T2DM. In this 

study, we have taken two datasets. The dataset D1 

consists of 40 normal subjects and 120 diabetes 

subjects. The dataset D2 consists of 10 normal 

subjects and 40 diabetes subjects. The HRV features 

from dataset D1 were used to train the machine 

 
 

Fig. 2 — A complete framework of the study. 

Table 4 — Performance metrics 

Metrics Description 

ACC (TP+TN)/(TP+FP+TN+FN) 

SEN (TP)/(TP+FN) 

SPC (TN)/(TN+FP) 

PPV (TP)/(TP+FP) 

NPV (TN)/(TN+FN) 

FPR (FP)/(FP+TN) 

FNR (FN)/(FN+TP) 

F1 Score 2TP/(2TP+FP+FN) 

AUC The area under the ROC curve 
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learning model, whereas dataset D2 was used as test 

data and used to evaluate machine learning models' 

performance. We have trained the machine learning 

model by the HRV features from dataset D1 and 

divided it into training data and testing data. The 

various traditional machine learning algorithms like 

Decision tree, Random forest, Naive Bayes, Support 

vector machine, and k-nearest neighbors were 

evaluated. The traditional machine learning algorithm 

has shown a good performance while training, but 

when dataset D2 was applied as test data, their 

predictive ability was lacking. Thus, the three best 

machine learning models GBDT, XGBoost, and 

CatBoost, which performed very well on train data 

and test data, were selected for the study. Before the 

training of the machine learning model was optimized 

using hyperparameters. The machine learning model 

results were evaluated based on performance 

measures. Performance of the model GBDT, XGBoost, 

and CatBoost using dataset D1 is shown in Table 5. 

It can be observed that the optimized CatBoost 

model performs well as compared to other models and 

yields an accuracy of 91.6%, the sensitivity of 97.1%, 

the specificity of 76.9%, PPV of 91.8%, NPV of 

90.9%, FPR of 0.23, FNR of 0.02, f1 score of 0.94 

and AUC of 0.87. It was noted that the FPR and  

FNR of the CatBoost model were less, which 

indicates the ability of the model to predict correct 

classes.  

The receiver operating characteristic (ROC) curve 

is another meaningful visualization way to compare 

the diagnostic performance of different models. It is  

a plot of ‘sensitivity (TPR) versus ‘1-Specificity’ 

(FPR)
19

. ROC indicates the performance of individual 

models, and the area under the ROC lies between  

0.5 to 1, shows the classification ability. The AUC 

near to 1 represents the best machine learning model 

performance. ROC curves for GBDT, XGBoost, and 

CatBoost are given in Fig. 3.  
 

3.1 Predictive ability evaluation and validation of the model 

TheCatBoost model has shown better results on 

dataset D1. Now to know its predictive ability on 

unknown data, test data, or actual patient data, we 

have been using dataset D2. The dataset D2 was the 

test data for the CatBoost model. We hypothesized 

that the machine learning model trained to segregate 

two groups of control and diabetes based on the HRV 

features of dataset D1 would also differentiate the 

HRV features of dataset D2 into control and diabetes 

groups. Thus, HRV features of dataset D2 were used 

as input features for all the machine learning models 

which were trained using dataset D1.  

The results given by the machine learning models 

were noted, and accordingly, true positive, false 

positive, true negative, and false negative were 

manually calculated. When the HRV features of 

dataset D2 were applied to the GBDT machine 

learning model trained using dataset D1, the values of 

true positive: 36, false-positive: 4, false-negative: 3, 

true negative: 7 were noted. When the HRV features 

of dataset D2 were applied to the XGBoost machine 

learning model trained using dataset D1, the values of 

true positive: 38, false-positive: 2, false-negative: 2, 

true negative: 8 were observed. When the HRV 

features of dataset D2 were applied to the CatBoost 

machine learning model trained using dataset D1, the 

values of true positive: 39, false-positive: 1, false-

negative: 1, true negative: 9 were obtained. Thus, the 

CatBoost machine learning model has the highest 

predictive ability. The performance assessment of 

dataset D2 applied to the machine learning model 

developed using dataset D1 is shown in Table 6. 

Table 5 — Performance evaluation of dataset D1 

Model ACC (%) SEN (%) SPC (%) PPV (%) NPV (%) FPR FNR F1 Score AUC 

GBDT 84.3 95.8 50 85.1 80 0.50 0.04 0.90 0.72 

XGBoost 87.5 91.6 75 91.6 75 0.25 0.08 0.91 0.83 

CatBoost 91.6 97.1 76.9 91.8 90.9 0.23 0.02 0.94 0.87 
 

 
 

Fig. 3 — Area under ROC plot of the optimized model. 
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It can be observed that the test data from dataset 

D2 fed to the CatBoost machine learning model 

trained with dataset D1 has shown the highest ACC of 

96%, SEN of 97.5%, SPC of 90%, PPV of 97.5%, 

NPV of 90%, FPR of 0.10, FNR of 0.02, F1 score of 

0.97 and AUC of 0.93 as compared to other 

algorithms. The CatBoost model trained with dataset 

D1 has correctly predicted 39 diabetes subjects out  

of 40 diabetes subjects and 9 control subjects out of 

10 control subjects. Thus, the FPR and FNR were 

reduced. The area under the ROC curve of all three 

models is shown in Fig. 4. 

We have achieved the highest accuracy, sensitivity, 

and specificity with the CatBoost model. In some 

studies, the time domain and frequency domain 

characteristics of HRV have been used to predict 

diabetes. So far, to the best of our knowledge, no 

researcher has considered the time domain, frequency 

domain, and non-linear features along with the breathing 

rate factor in a single study. Various authors have 

achieved good prediction accuracy, but no study has 

implemented their machine learning model on actual 

patients. Thus, the implementation of the machine 

learning model on patients assures the validation of the 

model. We have found that most of the HRV features 

values are reduced in diabetic subjects compared to the 

control subjects, and their significant difference can help 

to predict T2DM at earlier stages.  

The basic HRV features are the time-domain 

features. The author AL-Hazimi et al.
20

 have found 

that the time domain features like SDNN, RMSSD, 

etc., were reduced in the diabetes group compared to 

the control group. Pfeifer et al.
21

 have observed that 

parasympathetic activity was reduced in diabetes 

patients. Schroeder et al.
22

 have found decreased 

time-domain parameters in the diabetes group. 

Kirvela et al.
23

 performed time domain and frequency 

domain analysis of HRV and found a significant 

reduction in these parameters. 

The author Seyd et al.
24

 performed time domain 

and frequency domain HRV analysis. It was noted 

that the time domain parameters like mean HR, mean 

RR, SDNN, RMSSD, and the frequency domain 

parameter like TP, LF power, HF power were lower 

in diabetes patients. Chemla D et al.
25

 used FFT and 

the autoregressive model to analyze the effect of HRV 

on diabetes patients. Javorka et al.
26

 used linear and 

non-linear parameters used to predict type 1 diabetes 

mellitus. Faust et al.
27

 analyzed the time domain, 

frequency domain, non-linear features and found that 

non-linear features provide prominent results in  

the diagnosis of diabetes. Acharya et al.
28,29

 have 

proposed diabetes integrated index (DII) using non-

linear HRV features, and an accuracy of 86% was 

observed with the AdaBoost model. Jian et al.
30

 and 

Swapna et al.
31

 have used higher-order spectrum 

(HOS) features to predict diabetes and obtained  

an accuracy of 79.9%, 90.5%, respectively. The 

summaries of diabetes prediction using HRV features 

are given in Table 7. 

The best machine learning model was obtained 

using the CatBoost algorithm. Thus, this model can be 

considered as a decision support system for healthcare 

professionals. The graphical user interface (GUI) with 

the backend programming of the CatBoost algorithm 

was implemented using the python software as shown 

in Fig. 5. The user can manually extract the HRV 

features and enters the values of HRV features 

through the GUI. After clicking on submit button, 

users will be notified of the results as control or 

T2DM risk. Based on the results, patients will be 

advised to communicate with the doctors. 

Table 6 — Performance evaluation of dataset D2 on optimized model 

Model ACC (%) SEN (%) SPC (%) PPV (%) NPV (%) FPR FNR F1 Score AUC 

GBDT 86 92.3 63.6 90 70 0.36 0.07 0.91 0.77 

XGBoost 92 95 80 95 80 0.10 0.05 0.95 0.87 

CatBoost 96 97.5 90 97.5 90 0.10 0.02 0.97 0.93 
 

 
 

Fig. 4 — Area under ROC plot of results obtained from the 

optimized model on test data. 
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3.2 Consent regarding small sample size of control and 

diabetes dataset 

The designed model can be considered as a 

preliminary model. We attempt to design the machine 

learning model with real and authentic data. However, 

it is challenging to find control and diabetes subjects 

unless they go through the pathological test. So it is 

difficult to increase the sample of control and diabetes 

subjects in less time constraint. We are still working 

to improve the sample size of control and diabetes 

subjects. 
 

4 Conclusion 

Type 2 diabetes mellitus is a long-term disease. 

Early prediction of diabetes can help doctors as well 

as patients take preventive measures. We have seen 

that HRV features have reduced in the diabetes group, 

and this reduction starts in early stages of diabetes. 

Thus, HRV features can be helpful to predict disease 

at an early stage. We can conclude that the CatBoost 

machine learning model is a better model to classify 

diabetes patients based on different performance 

metrics like ACC, SEN, SPC, PPV, NPV, FPR, FNR, 

F1 score, and AUC. The machine learning model was 

validated on 50 patients, and it has correctly predicted 

48 patients out of 50 patients. Therefore, we can 

recommend this model as a decision support system 

to predict the risk of T2DM. 

Acknowledgment 

The authors would like to acknowledge their 

sincere gratitude to the Department of physiology, the 

central research lab, Smt. Kashibai Navale Medical 

College and General Hospital (SKNMCGH) Pune, 

India, where the study has been conducted. We would 

also like to thank the College of Engineering Pune 

(COEP) for providing fellowship during the study. 
 

References 
1 Sarwar N, Gao P, Seshasai S R, Gobin R, Kaptoge S,  

Di Angelantonio E, Ingelsson E, Lawlor D A, Selvin E, 

Stampfer M, & Stehouwer C D, Lancet, 375.9733 (2010) 2215. 

2 Chiang Jane L, M Sue Kirkman, Lori M B Laffel, & Anne L 

Peters, Diabetes Care, 7 (2014) 2034. 

3 Begum S A, Afroz R, Khanam Q, Khanom A, & Choudhury 

T S, Journal of Paediatric Surgeons of Bangladesh, 5.1 

(2014) 30. 

4 Crowshoe L, & Dannenbaum D, Green M, Henderson R, 

Hayward M N, Toth E, Can J Diabetes, 42 (2018) S296. 

5 Centers for Disease Control and Prevention, Atlanta, GA: US 

Dept of Health and Human Services CDC, 201.1 (2011) 

2568. 

6 Electrophysiology, Task Force of the European Society of 

Cardiology the North American Society of Pacing, Circ, 93.5 

(1996) 1043. 

7 American Diabetes Association, Diabetes Care, 41.1 (2018) 

S13. 

8 Acharya U R, Joseph K P, Kannathal N, Lim C M, & Suri J S, 

Med Biol Eng Comput, 44.12 (2006) 1031. 

9 Faust O, Acharya U R, Molinari F, Chattopadhyay S, & 

Tamura T, Biomed Signal Process Control, 7.3 (2012) 295. 

Table 7 — Comparison with the existing study of diabetes prediction using HRV 

Features Result ML model validation on the number of patients 

Non-linear28 Accuracy 86% - 

Non-linear29 Accuracy 90% - 

HOS30 Accuracy 79.9% - 

HOS31 Accuracy 90.5% - 

Time domain, Frequency domain, Non-linear features, and  

Breathing rate (Proposed Method) 

Accuracy 91.6% 50 patients 

ML: Machine learning, HOS-Higher order spectrum 
 

 
 

Fig. 5 — A graphical user interface to predict T2DM using HRV features for doctors in the hospital. 
 



          RATHOD et al.: T2DM RISK PREDICTION USING HEART RATE VARIABILITY FEATURES  249 
 

 
10 Brennan M, Palaniswami M, & Kamen P, IEEE Trans 

Biomed Eng, 48.11 (2001) 1342. 
11 Peng C K, Havlin S, Hausdorff J M, Mietus J E, Stanley H E, 

& Goldberger A L, J Electrocardiol, 28 (1995) 59. 
12 Fusheng Y, Bo H, & Qingyu T, Nonlinear Biomed Signal 

Processing, 2 (2001) 72. 
13 Richman J S, & Moorman J R, Am J Physiol Heart Circ 

Physiol, 278 (2000) H2039. 
14 Walfish S, Pharm Technol, 30.11 (2006) 82. 
15 Patro S, & Sahu K K, arXiv preprint arXiv: 1503.06462, 

(2015) 1. 
16 Natekin A, & Knoll A, Front Neurorobot, 7 (2013) 21. 
17 Chen T, He T, Benesty M, Khotilovich V, Tang Y, & Cho H, 

R package version 0.4-2, 1.4 (2015). 
18 Prokhorenkova L, Gusev G, Vorobev A, Dorogush A V, & 

Gulin A, arXiv preprint arXiv: 1706.09516, (2017) 1. 
19 Hajian-Tilaki K, Caspian J Intern Med, 4.2 (2013) 627. 
20 Al-Hazimi A, Al-Ama N, Syiamic A, Qosti R, & Abdel-Galil K, 

Ann Saudi Med, 22.5-6 (2002) 400. 
21 Pfeifer M A, Cook D, Brodsky J, Tice D, Reenan A,  

Swedine S, Halter J B, & Porte D, Diabetes, 31.4 (1982) 339. 
22 Schroeder E B, Chambless L E, Liao D, Prineas R J, Evans G W, 

Rosamond W D, & Heiss G, Diabetes Care, 28.3 (2005) 668. 

23 Kirvela M, Salmela K, Toivonen L, Koivusalo A M, & 

Lindgren L, Acta Anaesthesiol Scand, 40.7 (1996) 804. 

24 Seyd P A, Ahamed V T, Jacob J, & Joseph P, Int J Biol Sci, 

4.1 (2008) 24. 

25 Chemla D, Young J, Badilini F, Maison-Blanche P,  

Affres H, Lecarpentier Y, & Chanson P, Int J Cardiol, 104.3 

(2005) 307. 

26 Javorka M, Trunkvalterova Z, Tonhajzerova I, Javorkova J, 

Javorka K, & Baumert M, Clin Neurophysiol, 119.5 (2008) 

1071. 

27 Faust O, Acharya U R, Molinari F, Chattopadhyay S, & 

Tamura T, Biomed Signal Process Control, 7.3 (2012)  

295. 

28 Acharya U R, Faust O, Sree S V, Ghista D N, Dua S, Joseph P, 

Ahamed V T, Janarthanan N, & Tamura T, Comput Methods 

Biomech Biomed Engin, 16.2 (2013) 222. 

29 Acharya U R, Faust O, Kadri N A, Suri J S, & Yu W, 

Comput Biol Med, 43.10 (2013) 1523. 

30 Jian L W, & Lim T C, J Med Imaging Health Inform, 3.3 

(2013) 440. 

31 Swapna G, Rajendra Acharya U, Vinitha Sree S, & Suri J S, 

Intell Data Anal, 17.2 (2013) 309. 
 

 


