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Thermo-physiological properties of polyester-cotton plated knits have been predicted using two different network 
architectures (NA1 & NA2). NA1 consists of four individual networks working in tandem with common set of inputs and 
NA2 consists of one network giving four outputs. It is found that network architecture NA1 is able to predict the thermo-
physiological properties of plated fabrics better as compared to NA2 network architecture. Sensitivity analysis is performed 
to judge the sensitivity or the importance of each input parameter in determining thermo-physiological properties of plated 
fabrics. The most sensitive parameter in prediction of thermal resistance is total yarn linear density, filament fineness for 
thermal absorptivity, loop length for air permeability and moisture vapour transmission rate. 
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1 Introduction 
Thermo-physiological properties of textiles are 

crucial to provide comfortable microclimate to the 
wearer by managing controlled movement of heat, 
moisture vapour and liquid moisture from skin through 
clothing to environment. Along with the objective 
evaluation, prediction of thermo-physiological 
properties of textiles is equally challenging and crucial 
for characterization and designing of fabrics for any 
desired application before the actual commencement of 
fabric production. The thermo-physiological properties 
of textile materials can be predicted by mechanistic, 
statistical models and soft computing techniques. 

Mechanistic models are useful tools in 
understanding the fundamentals and physics involved 
in heat and moisture transfer through textiles.  

However, the assumptions considered in the 
simplification of mechanistic models may not be valid 
in all conditions and can lead to high prediction errors 
in real conditions owing to inherent variability in the 
textile structures. Statistical models can give good 
prediction performance, provided a large data set is 
presented to make the model and a relationship exists 
between input parameters and response variables. 
Statistical models fail to present satisfactory analysis of 
relationship in such cases. Artificial neural network is a 
stochastic (based on probabilistic method) and heuristic 

model (action based on prior experience)1-3. It 
simulates the functioning of a biological neuron and 
every component of the network is analogous to the 
actual constituents or operations of a biological 
neuron1, 4. ANN has the ability to learn any kind of 
linear/non-linear relationship between input and output 
parameters during training and to make prediction 
based on the training experience. ANN also shows the 
ability of generalization by predicting values of 
responses for new unseen data set not used during the 
network training. Correct network training can 
drastically reduce the error between actual and 
predicted values. Selection of appropriate number of 
hidden layers, number of neurons in each hidden layer 
and division of data set into training and test set is a 
tricky process, as it dictates the training process and 
ultimately the network’s performance. Training of 
ANN is followed by evaluation of the network 
performance separately for training and the testing 
data. Coefficient of determination (R2) between 
experimental (target) and predicted values, mean 
absolute percentage error (MAPE) and mean square 
error (mse) are some of the statistical parameters with 
which performance of ANN is appraised.  

Several researchers2-9 have attempted the prediction 
and optimization of various performance properties of 
textiles by using artificial neural network, statistical 
and theoretical models. Bhattacharjee and Kothari6 
developed multi-layered feed forward neural networks 
to predict steady state and transient thermal properties 
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of woven fabrics and concluded that better prediction 
of thermal behavior of fabrics can be achieved in case 
of different neural networks for different outputs. 
Shabridharan and Das10 compared ANN and statistical 
model for prediction of thermal properties of 
multilayered fabrics and obtained low mean absolute 
percentage error for ANN as compared to statistical 
model. Fayala et al. 8 developed a three layered neural 
network with four input nodes corresponding to four 
inputs, viz fibre conductivity, fabric weight, porosity 
and air permeability to predict thermal conductivity of 
knitted fabrics and finally suggested that the 
developed model could predict thermal conductivity 
with correlation coefficient of 0.91. Pattanayak and 
Mittal11 developed feed forward artificial neural 
network using two hidden layers and 20 neurons in 
each layer for prediction of air and water vapour 
permeability of knitted apparel fabrics and obtained 
error % between measured and predicted values of 
network lying within tolerance limit. Alibi et al.5 
studied the relationship between elastic properties of 
knitted fabrics and structural parameters like knitted 
structure, yarn count, gauge, weight per unit area and 
thickness by ANN model and observed the robustness 
of the model in the prediction of elastic properties of 
fabrics. Majumdar et al. 12 predicted the single yarn 
tenacity of ring- and rotor- spun yarns using ANN and 
found good prediction performance of the developed 
model with mean error less than 5% for ring and rotor 
yarns. Baldua et al.13 developed artificial neural 
network and response surface model for prediction of 
air- jet textured yarn properties and obtained low level 
of prediction error for ANN. Ozkan et al. 14 used feed 
forward and general regression neural networks for 
prediction of nips stability and number of nips, and 
concluded that former model shows better 

performance (at most 6%) than the latter in terms of 
prediction accuracy on train and test data sets. 

Although some studies have discussed6,10-11 prediction 
of thermal properties i.e. thermal resistance, thermal 
conductivity of woven and knitted fabrics, none of the 
studies give a detailed review of the modelling of 
comfort properties particularly thermal absorptivity and 
moisture vapour transmission rate of plated knitted 
fabrics. Moreover, very few studies are devoted to the 
prediction of thermo-physiological properties such as 
thermal properties, air permeability and moisture vapour 
transmission rate collectively. In the present work 
therefore, attempts have been made to model the 
thermo-physiological properties of plated knitted fabrics 
from constructional parameters like yarn linear density, 
filament fineness and loop length using two different 
network architectures and to compare developed models 
in terms of their prediction performance and robustness. 
Sensitivity analysis has also been undertaken to evaluate 
the relative importance of each input parameter on the 
thermo-physiological properties. 
 
2 Materials and Methods 
 

2.1 Materials 
A total of 50 C/PET (cotton polyester) plated 

knitted fabrics were used for the study. Out of the 50 
samples, 40 samples (80%) were presented as training 
set to neural network and remaining 10 samples 
(20%) were used as the testing set. All the samples 
were prepared on flat knitting machine (Elex, China) 
with machine gauge of 14, needle bed of 42 inches 
and 588 needles on each bed. The machine had two 
needle beds called front and rear bed. The front bed 
was utilized for the preparation of single jersey plated 
fabrics. Fabric specifications of test set are shown in 
Table 1. 

Table 1 — Specifications of test set 

Sample 
code 

Back 
LD, tex 

Filament 
fineness, dtex 

Total LD 
tex 

Loop 
length 
mm 

Thermal 
resistance ×10-3 

km2/W 

Thermal 
absorptivity 
Ws1/2/m2K 

Air permeability 
cm3/cm2/s 

MVTR 
g/m2/24h 

CPET3 11.1 2.31 40.63 6.4 20.5 84.0 156.1 5.99 
CPET6 11.1 1.54 40.63 5.0 20.5 94.1 113.1 5.10 
CPET10 11.1 1.54 40.63 7.1 24.5 70.1 168.2 6.13 
CPET15 11.1 1.1 40.63 7.1 31.2 68.5 155.0 5.99 
CPET27 16.7 2.31 46.2 6.0 22.8 92.5 96.5 5.15 
CPET30 16.7 2.31 46.2 7.1 25.5 74.2 133.0 5.98 
CPET32 26.1 3.62 55.63 6.0 23.8 111.9 95.0 3.66 
CPET35 26.1 3.62 55.63 7.1 29.2 81.3 131.0 5.82 
CPET41 33.3 4.62 72.70 5.0 31.1 149.5 59.8 3.05 
CPET45 33.3 4.62 72.70 7.1 35.1 131.0 127.3 5.01 

LD – Yarn linear density, MVTR – Moisture vapor transmission rate. 
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2.2 Methods 
 

2.2.1 Objective Evaluation 
Thermal properties such as thermal resistance and 

thermal absorptivity were measured using Alambeta 
(Sensora, Czech Republic). In this instrument fabric is 
kept between hot and cold plate. The heat transfer 
from hot plate to cold plate through fabric is 
determined by the instrument. Air permeability of 
fabrics was determined by FX 3300 air permeability 
tester (Textest AG, Switzerland) at a pressure of 98 
Pa according to ASTM D 737. Moisture vapour 
transmission rate of the fabrics was tested on moisture 
vapour transmission cell (MVTR cell) (Grace, Cryov 
ac division). Amount of water vapour that transmits 
through 100 inch2 fabric area during period of 24 h 
can be determined by this instrument rapidly.  

Difference in humidity maintained on two sides of 
test fabric positioned in MVTR cell enables moisture 
vapour transmission rate to be determined according 
to the following equation: 
 

MVTR ൌ ሺ269	 ൈ 10ି଻ሻ ቀ∆RH%	 ൈ	
ଵସସ଴

௧
ቁ(1) … ܪ 

 

where  RH% is the average difference in successive 
% RH values; t, the time interval (min); and H, the 
amount of water in g/m3 of air at cell temperature.  
 

2.2.2 Development of Artificial Neural Network  
Multilayered back propagation feed forward neural 

network was used to predict the thermo-physiological 
properties of plated fabrics. All the programming was 
done using MATLAB software neural network 
toolbox.  
 

Sigmoid transfer function ‘tansig’ was used for 
input and hidden layers and a linear function ‘purelin’ 
was used for the output layer. Normalization was 

applied to both input and target vectors. 
‘mapminmax’ function was used to normalize inputs 
and targets to fall in the range of -1 to 1. Network was 
trained using ‘trainlm’ function which is Levenberg-
Marquardt algorithm. Structural elements of different 
network architectures are presented in Table 2. 

Two different network architectures (NA1 & NA2) 
were developed and compared for their prediction 
performance. Network architecture (NA1) – consisted 
of four sequential networks (NN1, NN2, NN3 and 
NN4) working in tandem with input layer of 4 nodes 
in turn corresponding to four input parameters, 
namely back layer yarn linear density, filament 
fineness, total yarn linear density and loop length, and 
an output layer of 1 node corresponding to the 
property to be predicted. Back layer in the study is 
referred to inner/next to skin layer. Polyester yarns of 
11.1, 16.7, 26.1 and 33.3 tex were used in the 
back/inner layer. Four levels of loop length i.e. 5, 6, 
6.4 and 7.2 mm were selected for the present study. 
The levels of loop lengths were selected to engineer 
fabrics of slack, medium and tight construction. 
However, GSM was not included in the list of input 
parameters as yarn linear density directly influences 
the GSM of fabrics. Hence, only yarn linear density 
was selected as one of the input parameters owing to 
its influence on GSM. 

The four different networks fed with common set 
of inputs gave individual single outputs i.e. output of 
NN1 was thermal resistance, output of NN2 was 
thermal absorptivity, air permeability and moisture 
vapour transmission rates were the outputs of NN3 
and NN4 respectively. Three layered network with 
one input layer, one hidden layer and one output layer 
was used for the four networks. The number of 

Table 2— Structural elements of different network architectures 

Elements Individual networks Combined network 

 NN1 NN2 NN3 NN4  TR, TA, AP, MVTR 

Output parameters  TR TA AP      MVTR  

Input parameters Back LD, filament fineness, total LD, LL Back LD, filament 
fineness, total LD, LL 

Number of nodes in input layer 4 4 4 4 4 

Number of hidden layers 1 1 1 1 2 

Number of nodes in hidden layers 7 4 7 7 5,10 

Transfer function between input & hidden layer Tansig tansig tansig tansig tansig 

Transfer function between hidden & output layer Purelin purelin purelin purelin purelin 

Training rule LM algorithm LM algorithm LM algorithm LM algorithm LM algorithm 

TR— Thermal resistance, TA— Thermal absorptivity, AP— Air permeability, MVTR— Moisture vapour transmission rate, LD— Yarn 
linear density, LL— Loop length, tansig— Tan sigmoid, purelin— linear transfer functions and, LM—Levenberg- Marquardt algorithm. 
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neurons was fixed after many trials at 7, 4, 7 and 7 for 
NN1, NN2, NN3 and NN4 respectively (Table 2). 
Trial and error method was employed i.e. working 
with different number of hidden layers and neurons 
and the combination that gave maximum coefficient 
of determination and minimum error was selected for 
networks. Figure 1 shows the network architecture of 
NA1. 
 

Network architecture (NA2) – consisted of single 
network with same set of input parameters as in NA1 
but with four nodes in the output layer corresponding 
to four predicted properties, namely thermal 
resistance, thermal absorptivity, air permeability and 
moisture vapour transmission rate. Four layered 
network with one input layer, two hidden layers with 
5 and 10 neurons and one output layer was used for 
the network as shown in Table 2. Figure 2 shows the 
network architecture of NA2.  
 

Figure 3 shows the weights and bias connections 
between input, hidden and output layers for individual 
network with thermal resistance as output. Weights 
and bias connections between input, two hidden and 

 
 

Fig. 1 — Network architecture of NA1 for individual thermo-
physiological properties (thermal resistance, thermal absorptivity,
air permeability and moisture vapour transmission rate)  
 

 

Fig. 2 — Network architecture for combined network with four
outputs (TR — thermal resistance, TA — thermal absorptivity, AP —
air permeability and MVTR —  moisture vapour transmission rate)  

 
 

Fig. 3 — Weight and bias connections and different layers of individual network 
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one output layer for combined network with four 
outputs is shown in Fig. 4. 
 
2.2.3 Sensitivity Analysis  

Sensitivity analysis was performed to judge the 
sensitivity or the importance of each input parameter 
in determining thermo-physiological properties of 
plated fabrics. Each input was eliminated once from 
the optimized neural network and then trained again 
up to the optimum level. 
 
3 Results and Discussion 
3.1 Prediction Performance 

Prediction performance of the two different 
network architectures i.e. individual networks (NN1, 
NN2, NN3 & NN4) & combined network has been 
compared in terms of mean absolute percentage 
error (MAPE) and coefficient of determination (R2). 
Individual errors between experimental and ANN 
predicted values and mean absolute percentage error 
of thermal resistance, thermal absorptivity, air 
permeability and moisture vapour transmission rate 
are calculated and summarized in Table 3.  

Mean absolute percentage errors for thermal 
resistance, thermal absorptivity, air permeability and 

moisture vapour transmission rate were found to be 
2.03, 3.1, 3.15 and 2.58% for training data set and 
4.84, 5.13, 7.40 and 7.25% respectively for test data 
set for individual networks to predict four properties 
individually.  
 

Mean absolute percentage errors are found to be 
5.03, 8.61, 10.45 and 18.23% for thermal resistance, 
thermal absorptivity, air permeability and moisture 
vapour transmission rate respectively for combined 
network used to obtain four outputs.  
 

Individual error % and mean absolute percentage 
errors for all four properties under consideration are 
found to be lower for individual networks compared 
to combined network, suggesting that individual 
networks (each giving one output) can predict the 
thermo-physiological properties in close agreement 
with experimental values as compared to combined 
network giving four outputs. Individual networks 
(NN1, NN2, NN3 & NN4) include less number of 
hidden layers and less number of epochs (10, 32, 18 
& 16) to reduce performance function (Table 4)  
 

Combined network consume higher processor 
memory for 101 iterations, and training time is also 
higher for combined network (1.46 s) as compared to 

 
 

Fig. 4— Weight and bias connections and different layers of combined network 
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individual networks which takes 0.93s to converge 
(Table 4). Figures 5 (a) – (d) show the relationship 
between experimental and network predicted values 
of the thermo-physiological properties i.e. thermal 
resistance, thermal absorptivity, air permeability and 
moisture vapour transmission rate respectively. R2 
values are over 0.9 for all the thermo-physiological 
properties, suggesting robustness and generalization 
power of the network architectures giving four 
different outputs, as four individual models are able to 
explain 90% variability in the test data set. 

Individual networks giving four single outputs 
predict the thermo-physiological properties with good 

coefficient of determination (0.92, 0.95, 0.93 and 0.9) 
for thermal resistance, thermal absorptivity, air 
permeability and moisture vapour transmission rate 
respectively. The mean absolute percentage errors are 
also found less as compared to the errors obtained 
from the combined network (Table 4). R2 values 
obtained from the combined network such as 0.89, 
0.84, 0.89 and 0.90 (Table 4) for the four outputs are 
found lower than NA1, suggesting that NA1 
architecture shows better prediction ability. 

Mean absolute percentage error which indicates the 
difference in target and predicted values is higher for 
prediction of air permeability and moisture vapour 

Table 3 — Individual errors between experimental and predicted values of tested properties 

Sample 
code 

Thermal resistance 
×10-3, km2/W 

Thermal absorptivity 
Ws1/2/m2K 

Air permeability 
cm3/cm2/s 

Moisture vapour transmission rate 
g/m2/24h 

 Experimental Predicted  Experimental Predicted  Experimental Predicted  Experimental Predicted 

CPET3 20.50 21.135  
(3.10) 

84.0 83.74 
(0.31) 

156.13 152.48 
(2.34) 

5.99 6.26 
(4.55) 

CPET6 20.50 21.200 
(3.42) 

94.1 85.18 
(9.48) 

113.13 126.38 
(11.71) 

5.10 4.81 
(5.77) 

CPET10 24.50 26.593 
(8.54) 

70.1 72.22 
(2.99) 

168.20 154.89 
(7.91) 

6.13 6.69 
(9.12) 

CPET15 31.20 32.455 
(4.02) 

68.5 72.10 
(5.25) 

155.00 148.97 
(3.89) 

5.99 6.44 
(7.45) 

CPET27 22.80 22.417 
(1.68) 

92.5 87.48 
(5.43) 

96.50 90.46 
(6.26) 

5.15 5.56 
(8.00) 

CPET30 25.50 26.395 
(3.51) 

74.2 73.36 
(1.14) 

133.00 130.94 
(1.55) 

5.98 6.27 
(4.78) 

CPET32 23.87 23.345 
(2.20) 

111.9 97.25 
(13.11) 

95.00 81.44 
(14.28) 

3.66 4.64 
(26.92) 

CPET35 29.22 26.356 
(9.80) 

81.32 87.37 
(7.44) 

131.00 128.52 
(1.89) 

5.82 5.86 
(0.60) 

CPET41 31.10 33.847 
(8.83) 

149.5 141.90 
(5.12) 

59.80 55.70 
(6.85) 

3.05 3.07 
(0.78) 

CPET45 35.06 36.219 
(3.30) 

131.0 132.40 
(1.07) 

127.30 105.66 
(17.00) 

5.01 5.24 
(4.53) 

MAPE  4.84  5.13  7.37  7.25 

Values in parenthesis are Error%, MAPE— Mean absolute percentage error. 
 

Table 4— Performance parameters of different network architectures 

Parameter Thermal resistance  
×10-3, km2/W 

Thermal absorptivity 
Ws1/2/m2K 

Air permeability 
cm3/cm2/s 

Moisture vapour transmission 
rate, g/m2/24h 

 NN1 Combined 
network 

 NN2 Combined 
network 

 NN3 Combined 
network 

 NN4 Combined 
network 

Network architecture 4-7-1 4-5-10-4 4-4-1 4-5-10-4 4-7-1 4-5-10-4 4-7-1 4-5-10-4 
Epochs 10 101 32 101 18 101 16 101 
Performance ratio 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
Average elapsed time, s  1.5 1.46 0.5 1.46 1.25 1.46 0.45 1.46 
MAPE 4.59 5.03 5.13 8.61 7.40 10.45 7.25 18.23 
Max. error % 9.80 10.13 13.10 22.71 17.0 26.47 26.9 51.66 
Min. error% 1.68 0.25 0.31 0.99 1.55 0.18 0.60 0.85 
r2 0.92 0.89 0.95 0.84 0.93 0.89 0.90 0.90 



INDIAN J. FIBRE TEXT. RES., MARCH 2018 
 
 

50 

transmission rate as compared to thermal properties 
for both network architectures. However, mean 
absolute percentage error for the two properties is 
higher in combined network as compared to that in 
individual networks. The input parameters selected 
for the network construction such as back yarn linear 
density, filament fineness, loop length and total yarn 
linear density influence the fabrics bulk properties 
like thickness, fabric weight and are the determinants 
of thermal properties. Selection of the input 
parameters can influence the prediction performance 
of the developed networks. The selected input 
parameters are found sufficient for prediction of 
thermal properties. However, air permeability 
depends on the openness of the fabric structure and 
fabric porosity. The exclusion of porosity as one of 
the input parameters might be the reason for high 
mean absolute percentage error in prediction of air 
permeability. Moisture vapour transmission rate 
through fabrics depends on free air spaces in the 
fabric for moisture diffusion and moisture diffusivity 
of the fibres. Hydrophillic and hydrophobic nature of 
the fibre can affect the moisture diffusion through 
textiles significantly. The inclusion of constituent 
fibres as one of the input parameters to neural 
network may result in lowering the error percentage 
in prediction of moisture vapour transmission rate. 
The predicted thermo-physiological properties of 

plated fabrics by NA1 are in close agreement with 
target outputs (experimental values) which proves the 
robustness and generalization ability of the network. 
 

3.2 Sensitivity Analysis  
MSE (mean square error) ratio ranks the sensitivity 

or the importance of input parameters of neural 
network. MSE ratio of test data set before and after 
exclusion of input parameters is used for the 
sensitivity analysis (Table 5). Change in MSE is noted 
after exclusion of each input parameter from network 
architecture, as shown in following equation:  
 

MSE୰ୟ୲୧୭ ൌ 	
୑ୗ୉౛
୑ୗ୉౛౟

 … (2) 
 

where MSEe is the mse after excluding respective 
input parameters; and MSEei, the mse before 
excluding input parameters. 

Higher MSEratio indicates that the corresponding 
excluded parameter is more sensitive in determining 
the thermo-physiological properties. Based on MSEratio, 
input parameters are ranked according to sensitivity 
with rank 1 given to the most sensitive parameter and 
4 to the least sensitive input parameter in determining 
thermo-physiological properties of plated fabrics. 
Decreasing order of sensitivity of input parameters in 
determining thermal resistance is total yarn linear 
density, filament fineness, back layer yarn linear 
density and loop length. Hence; based on sensitivity 

 
 
Fig. 5 — Correlation between experimental and ANN predicted [(a) thermal resistance (×10-3 km2/W), (b) thermal absorptivity 
(Ws1/2/m2K), (c) air permeability (cm3/cm2/s) and (d) moisture vapour transmission rate ( g/m2/24h)]  
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analysis, it is observed that the total yarn linear density 
of fabric is the most sensitive input parameter which is 
well justified on the basis that the increase in the yarn 
linear density affects the fabric’s bulk properties 
increasing the fabric thickness. It is well-established fact 
that fabric thickness by far is the greatest determinant 
affecting the thermal resistance of textiles, hence in the 
present study as well the high sensitivity of total yarn 
linear density shows dependence of thermal resistance 
on fabric thickness. However, loop length is found to be 
the least sensitive input parameter determining the 
thermal resistance of fabrics. 

The sensitivity of input parameters in determining 
thermal absorptivity follows the decreasing order: 
filament fineness, total yarn linear density, back layer 
yarn linear density and loop length.  

The input parameters determining air permeability are 
ranked in decreasing order as: loop length, filament 
fineness, total yarn linear density and back layer 
yarn linear density. Moisture vapour transmission rate is 
predicted from four input parameters having decreasing 
order of sensitivity as : loop length, total yarn linear 
density, filament fineness and back layer yarn 
linear density.  
 

Permeability of fabrics for air and moisture vapour 
primarily depends on free open spaces in fabrics. The 
statement above explains the observed trends that loop 

length is the most sensitive parameter affecting air 
permeability and moisture vapour transmission rate 
through fabrics. As the fabrics become slacker with the 
increase in loop length, free spaces available in the 
fabric increases, enabling more air passage and moisture 
diffusion through fabrics. 
 
4 Conclusion 

4.1 NA1 consists of four individual networks working 
in tandem with common set of inputs and NA2 consists of 
one network giving four outputs. Network architecture 
NA1 is able to predict the thermo-physiological properties 
of plated fabrics better as compared to NA2 network 
architecture.  

4.2 Decreasing order of sensitivity of input parameters 
in determining thermal resistance is: total yarn linear 
density, filament fineness, back yarn linear density and 
loop length. 

4.3 The most sensitive parameter in prediction of 
thermal absorptivity is filament fineness while loop 
length is the least sensitive.  

4.4 The most sensitive parameter in prediction of air 
permeability and moisture vapour transmission rate is 
loop length. 
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