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Prediction of braid pattern on mandrels with constant non-circular cross-sections  
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 In this study, a new useful mathematical model has been developed to predict the braid pattern for every point onto the 

mandrel surface with non-circular cross-sections. The Reza-Jalil-Mohammad (RJM) equation thus obtained has been 

proposed for the braid angle. The implementation and validation of this mathematical model has been discussed for a 

cylindrical mandrel. It is observed that using RJM equation, one can get the arrangement of strands in circular braiding 

machine for each mandrel with different cross-sections.  
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1 Introduction 
A braid is a complex structure or pattern  

formed by interlacing three or more strands of flexible 

materials, such as fibre, yarn and wire. Fundamentally, 

braid is a system of three or more strands intertwined 

in such a way that no two strands are twisted around 

one another
1
. 

The braid structures can be flat or tubular and 

have many applications due to good properties, such 

as high strength, low elongation, suitable formability, 

ease of recapping molds with various cross-sections, 

ease of modeling in finite element software for the 

prediction of mechanical properties of the created 

product, no restriction on the angle between the used 

strands in structures of braid, etc
2,3

. 

Circular braiding, a well-established textile 

process for forming tubular fabrics, has been extended 

to produce a range of structural shapes for composite 

applications in the fields including medicine, candles, 

civil engineering communities, transport and especially 

aerospace
4-7

. 

In 2D circular braiding, strands (reinforcement 

yarns) are wound on to spools or carriers mounted on 

a track plate around a central mandrel. Carriers are 

driven by horn gears and follow a serpentine path 

around the track plate
8
. Half of the strands move 

clockwise and form a braid angle of ( b ) with the 

mandrel axis, and the other half moves in a counter 

clockwise manner, forming a braid angle of ( b ) 

with the mandrel axis. These two strand groups ( b ) 

are interlocked to form a biaxial fabric on the mandrel, 

as shown in Fig. 1(ref. 9). 

Few technical works have been focused on the 

braiding process and the braid structure. The work 

done by Brunnschweiler
10,11

 in the 1950s is still the 

most detailed research. Some authors have presented 

models for simple circular braiding, but they are not 

suitable for the mandrel with non-circular cross 

sections
5,12,13

. Michaeli and Rosenbaum
14

 developed 

an algorithm for the control of a braiding machine. 

Although the control algorithm relates the machine 

speeds and mandrel shapes with braid angles to some 

extent, it does not provide a process model, covering 

all parameters for both the braiding process and the 

braid structure. Also, it cannot answer the fundamental 

question of why, under certain conditions, braiding 

over a mandrel with non-circular cross section is 

difficult or even impossible. Du et al.
15 

considered 

mandrels of a circular section whose diameter varied 

along the length of the mandrel. They developed 

equations relating the positions and speeds of the 

mandrel, carriers, and strands at any given time to  

the braid angle of the fabric formed at that time. They 

used differential equations to describe the rate of 

growth of the fabric. They used a technique to 

numerically integrate the latter equations and also 

employed the former equations to calculate the set of 

braid angles along the length of the mandrel. Soebroto 

et al.
16 

created an integrated design system for braided 

tubular composites. They developed design curves 

relating braiding parameters to braid geometry and 
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experimentally verified them. The simulation of the 

circular braiding process as applied by the tool is still 

based on kinematic modeling only
16-24

. However, 

these studies have not presented a specific mathematical 

equation which could be applied in determination of 

braid angle for constant non-circular cross sections. 

Hence, the current study is aimed at presenting an 

applicable equation for the determination of braid 

angle in order to use this in stress analysis of braided 

composites in finite element software; an explicit and 

applicable equation for non-circular cross sections, is 

required. In other words, an equation is required to 

achieve the braid angle by giving geometric 

coordinates of cross-sections points.  

As shown in Fig. 1 (circular braiding machine), 

the mandrel with a circular cross-section (supported 

by a holder) is located between the carriers and is 

concentric with the track plate. The mandrel moves 

with an axial velocity (V). The strands are driven by 

spools or carriers with an angular velocity of ±ωc. 

For a mandrel having a circular cross-section 

with radius (R), the braid angle ( b ) (Fig. 1), which is 

the most important parameter for getting physical and 

mechanical properties in braid structures, can be 

determined as follows: 
 

V

R c
b


 )tan(   … (1)  

 

It can be written as: 
 

V

b
B

R


2
)tan(    … (2)  

where BV is the braid feed, which is defined as the 

ratio of the axial velocity and the angular velocity  

of the braider (i.e. length of mandrel covered per 

revolution). 

A geometric approach can be used to determine 

perpendicular spacing between strands (center-line 

spacing in Fig. 1), as shown below: 
 

)cos(
4

bc
N

R
S 


   … (3)  

 

where N is the number of carriers in a circular 

braiding machine. The Eq. (3) can be used to 

determine the degree of the coverage of the mandrel, 

and it can also be used as the first approximation to 

anticipate strand locking
9
. 

It is clear that braid angle and perpendicular 

spacing between strands for a mandrel with constant 

circular cross-section (Sc) are invariable. But in many 

industries, especially in aerospace industry where 

composite structures are used in such different parts 

as fuselage, stringers, ribs, tail, wing skin, flaps, etc. 

2-D braid structures can be used. In other words, by 

using a circular braiding machine, many of these can 

be braided and then through different methods of 

giving resin, especially RTM, resin could be injected 

to make the desired part. But the fundamental point is 

that in order to make different parts using circular 

braiding machine, many of these parts have a non-

circular cross-section. Hence, changing the braid 

angle and the perpendicular spacing between strands 

in every point should be done in a simple and 

practical way. To put it more exactly, when a mandrel 

with a constant non-circular cross-section is used, 

braid angle and perpendicular spacing between 

strands (Snc) are variable for every point on the 

mandrel surface. In the other words, the braid pattern 

 
 

Fig. 1 — Schematic of a circular braiding machine17 
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varies in every point on the mandrel surface and 

finding the braid pattern for these mandrels is an 

important and practical task. 

In view of above, present study has been 

undertaken to develop new useful mathematical 

model to predict the braid angle and perpendicular 

spacing between strands in the braiding of a mandrel 

with constant non-circular cross-section. Finally, the 

implementation and validation of this mathematical 

model has been discussed for a cylindrical mandrel. 
 

2 Materials and Methods 
 

2.1 Model Assumptions 

This mathematical model is based on the 

following basic assumptions: 

(i) Geometry of mandrel cross-section is 

differentiable. 

(ii) Yarn path from carrier to mandrel surface is 

continuous and differentiable. 

(iii) Yarn path from the carrier to the fell point (the 

point on the mandrel surface wherein the braid 

pattern is formed) onto the mandrel surface 

(convergence zone) is straight and this straight 

line is tangent in the fell point. 

(iv) As soon as the yarn touches the mandrel surface, 

it sticks to the mandrel surface. 

(v)  Braid pattern on the mandrel surface is 

differentiable. 

The first assumption implies that the geometry of 

mandrel cross-section has no edges and dents on the 

mandrel surface. The second assumption shows that 

the yarn path has certain smoothness without any 

kinks. The third assumption implies that sufficient 

tension is applied on to the braiding yarns, and 

therefore they are tangent to the mandrel surface in 

the fell point. The fourth assumption implies that the 

yarn does not slip relative to the mandrel and the last 

assumption implies that the braid pattern is formed 

smoothly with no yarn kinks on the mandrel surface. 
 

2.2 Braiding Process 

Figure 2 shows a model of a circular braiding 

machine representing braiding a mandrel with 

constant non-circular cross-section, as shown by the 

differentiable equation ym= f(xm). It is assumed that 

the yarns are straight, and hence have no interaction 

to avoid the complexity of figure. It is sufficient to 

describe the position of a carrier at a small time 

interval (∆t → 0). In this case, it can also be assumed 

that the carriers rotate over the guide ring with radius 

Rg, instead of rotating on the track plate. 

As shown in Fig. 2, the carrier initially is in the 

position of q1 on the guide ring and strand is in the 

position of P1 on the mandrel surface; after ∆t second, 

carrier is in the position of q2 on the guide ring and 

strand is in the position of P2 on the mandrel surface. 

Accordingly, a mandrel with the equation of cross-

section ym= f(xm) and axial velocity V is braiding.  
 

2.3 Mathematical Relations 

As discussed for model assumptions and 

braiding process, when the carrier rotates on the guide 

ring (quantity dγ), mandrel moves in z direction 

(quantity dzm), and the strand lies on mandrel surface 

from P1 to P2 to form an almost straight line  

[Fig. 2(b)]. Accordingly, the braid angle for any  

point from the mandrel surface can be determined as 

follows: 
 

m

b
dz

ds
)tan(   … (4)  

 

As shown in Fig. 2(b), the slight movement on 

the cross section of mandrel is ds, which has been 

created from the rotation of the carrier (quantity dγ) 

and the movement of the strand from P1 to P2. On the 

 
 

Fig. 2 — Schematic diagram of braiding process and parameters 

for a mandrel with an non circular cross sections ym = f(xm) [(a) 

front view, and (b) top view] 
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other hand, from the definition of BV, it can be 

concluded that: 
 




2

V
m

B
ddz    … (5)  

 

Following equation can be derived for braid angle, 

by substituting Eq. (5) in Eq. (4):  
 

V

b
Bd

ds 




2
.)tan(    … (6)  

 

As shown in Fig. 2(b), 
d

ds can be written as follows: 

d 21   … (7)  
 




d

ds
k

d

ds


  …(8)  

 

where k = ±1. 
The value of k depends on direction of carrier 

rotation (clockwise or counter-clockwise) and carrier 

position in quadrant. Figures 3(a) and (b) show k 

values for different rotation directions of carrier. 

Therefore, Eq. (6) can be rewritten as follows: 
 

V

b
Bd

ds
k




2
.)tan(


   … (9)  

 

According to the third assumption, the slope of 

tangent at any point of the mandrel surface )]([ mxf   is 

equal to the slope of yarn path from carrier to that 

point on the mandrel surface. Therefore, equation of 

yarn path from carrier to the point on mandrel surface 

(xm,ym) can be written as follows:  
 

)()( yymy xbxxfy    … (10)  
 

where b(xy) is the intercept of equation of yarn 

path.  

In this study, the subscript y is indicative of yarn 

path from carrier to the mandrel surface, and the 

subscript m represents points on the mandrel surface. 

As mentioned in the braiding process, it is 

assumed that in a circular braiding machine, carriers 

rotate over the guide ring with radius Rg; hence the 

movement path of the carriers is in the following 

circle:  
 

222
gcc RYX    … (11) 

 

It should be noted that the subscript c is indicative 

of carrier. As shown in Fig. 2, at any moment, yarn 

path from carrier to point on the mandrel surface yy 

intersects the movement path of carriers in the points 

q. With simultaneous solution of Eq. (10) and Eq. 

(11), coordinates of q can be calculated as: 
 












222

)()(
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
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
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

cq

cq

cgc

mmmcmc

Y

X

XRY

xxfyXxfY

222

)()(
  …(12)  

 

For any point on mandrel surface (xm,ym), the 

corresponding point on movement path of carriers 

(Xcq , Ycq) can be calculated. Delta angle (∆) can be 

defined as follows [Fig. 2(b)]: 

 
 

Fig. 3 — Value of k (a) clockwise, and (b) counter-clockwise 
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)(tan 1

cq

cq

X

Y
   … (13)  

 




mdx

d
  … (14)  

 

On the other hand, the relationship between dxm, 

dym and ds (Fig. 4) can be determined as follows: 
 

222
mm dydxds    … (15)  

 

222 ])([ mmx dxxfdxds    … (16)  
 

2)]([1 m

m

xf
dx

ds
   … (17)  

 

By considering Eqs (14) and (17), 
d

ds can be written 

as follows:  
 











2)]([1
. mm

m

xf

d

dx

dx

ds

d

ds
  … (18)  

 

Finally, according to Eqs (9) and (18), braid angle 

in any point of mandrel surface can be written as 

follows: 
 

V

m

b
B

xf
k




2
.

))((1
)tan(

2




   … (19)  

 

Using Eq. (19), braid angle in any point of a 

mandrel with the constant non- circular cross-section 

can be determined. Equation (19) obtained for the  

first time in this study, is named as the Reza-Jalil-

Mohammad (RJM) equation. 

Figure 5(a) shows part of the opened schematic 

from a mandrel with the circular cross-section. In a 

mandrel with the circular cross-section, perpendicular 

spacing between strands (sc) is constant and can be 

calculated by Eq. (3). When a mandrel has a non- 

circular cross-section, perpendicular spacing between 

strands (snc) is different in any point [Fig. 5(b)], and it 

can be calculated by RJM equation, as follows: 
 

)sin(
2

b
V

nc
N

B
S    … (20) 

 

))
2

.
))((1

(sin(tan
2

2

1

V

mV
nc

B

xf
k

N

B
S






    … (21)  

 

As shown in Fig. 5(b), with increasing the braid 

angle in a mandrel with non- circular cross-section, 

perpendicular spacing between strands (snc) is 

increased and vice versa. 
 

3 Results and Discussion 

In order to verify the RJM equation, a mandrel 

with a constant circular cross-section was evaluated 

(Fig. 1). Equation of the mandrel can be written as 

follows: 
 

22
mm xRy    …(22)  

 

If the upper half of the circle is considered: 
 

m

m
m

y

x
xfmy


 )()(   …(23)  

 
 

Fig. 4 — Geometry relationship between variations of xm , ym and ds 

 
 

Fig. 5 — Part of the opened schematic from a braided mandrel 

with the (a) circular cross-section and (b) non-circular cross-

section (Snc1<Snc2<Snc3) 
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So, Eq. (12) for circle can be written as:  
 














222

2

gcc

m

cm
c

RXY

y

XxR
Y

  …(24)  

 

With simultaneous solution of Eq. (24), following 

equation is obtained: 
 

02 224222  mgcmc yRRXxRXR   …(25)  
 

As regards the upper half of the circle, the carrier 

rotation of direction clockwise, for a point on mandrel 

surface (xm,ym), Xcq and ∆ can be calculated as 

follows: 
 

m

g

mcq y
R
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)( 22 
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d







   …(28)  

 

With substitution of Eqs (22), (23) and (26) in Eq. 

(28),  can be written as follows: 
 

my

1
   …(29)  

 

Finally, according to the RJM equation, braid angle 

for a mandrel with a constant circular cross-section is 

as follows: 
 

V

R

B

R

B

y

y

R

c

VV

m

m
b


 






22

1
)tan(   …(30)  

 

Eq. (30) is the same as Eq. (1) or Eq. (2), as 

obtained by the RJM equation. 

The aim of the current research was to achieve a 

simple, applicable and usable equation to determine 

the braid angle on all the mandrels with non-circular 

cross-sections (either axisymmetric or non-axisymmetric, 

either geometrically defined cross-sections or not 

geometrically defined cross-sections) and the constant 

length which has no dent or edge. This equation 

(RJM) is very useful and by solving this equation, the 

braid angle could be simply predicted in any 

locations. It could also be applied in common 

software for modelling and further analyzing.  

4 Conclusion 

A new mathematical model has been developed 

using circular braiding process which relates process 

variables and mathematical model to predict the braid 

pattern on a mandrel with constant non-circular cross-

section. The RJM equation has been developed, for 

the first time, for determining the braid angle in any 

point of a mandrel with the constant non-circular 

cross-section. For validation purpose, a mandrel with 

a constant circular cross-section is evaluated by the 

presented mathematical model. 

Using RJM equation, one can get the arrangement 

of strands in the circular braiding machine for each 

mandrel with a differentiable cross-section, such that 

it can be used in mechanical analyses by engineering 

software. 
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