
Indian Journal of Fibre & Textile Research 

Vol 44, June 2019, pp. 180-187 

 

 

 

 

 

 

Numerical analysis of free folding of flat textile products and proposal of new test 

concerning bending rigidity 

Piotr Szablewski
a
 & Ryszard Korycki 

Department of Technical Mechanics and Computer Science, Lodz University of Technology,ul. Zeromskiego 116, 90-924 Lodz, Poland 

  Received 29 November 2017; revised received and accepted 16 February 2018 

Free folding of flat textiles has been studied by means of elastica for the same shape and folding conditions across the 

product. Elastica is described using the system of six first-order differential equations accompanied by a set of boundary 

conditions. The problem is solved by the shooting method and divided in two stages. The shooting method is ineffective for 

some parameters, and the process is divergent which is clarified by sensitivity analysis. The proposal adopts the width of 

fold as a measure of bending stiffness (C) and the sample is now subjected to bending in both directions in a wide range of 

curvatures. This is alternative to the Peirce’s test, in which the test specimen is subjected to a slight bending in one direction 

only. The Peirce’s test gives the unprecised results under some loadings. This study presents a detailed sensitivity analysis of 

some process parameters to describe the unique solution for bending problem of textiles. It is also proposition for new test 

for bending rigidity of textiles.  
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1 Introduction 

The stacking or folding of the flat textile products 

can be analyzed using Peirce’s cantilever bending 

theory
1
. Hearle et al.

2
 have pointed out that textile 

structures can be classified into an hierarchical 

structure representing the deformations of one-, two- 

and three-dimensional continua. The properties of a 

particular continuum depend generally on the 

continuum properties of lower level units and the 

interconnection. These relationships have been studied 

for yarn structures and deformations, as well as  

fabric structures
3,4

, but little work appears to have been 

done on the deformations of fabrics treated as 

two-dimensional continua, partly due to the difficulty 

in characterizing the elastic properties of textile sheets
5
, 

and partly due to the difficulties in obtaining solutions
6
.  

This paper presents an analysis of the cylindrical 

bending of a planar fabric using both physical and 

mathematical models of planar bending curves and 

elasticas
7-10

. The flat deflection curve describes that 

heavy elastica is obtained under the decisive influence 

of gravitational force. The system of differential 

equations accompanied by boundary conditions 

describes the physical behavior of elastica. The 

problem is solved by the shooting method
11

 and 

divided in two stages. Next, the sensitivity of some 

parameters is analyzed to clarify the divergence of the 

shooting method. The new test introducing the 

bending rigidity is proposed as the alternative to 

Peirce’s method. The proposal adopts the width of 

fold as a measure of bending stiffness (C). Stuart  

et al.
12

 and Grossberg
13

 describe theoretical 

considerations concerning the bending of textile 

structures and evaluate some practical applications of 

fabric behavior. The bending rigidity was presented 

by Szablewski
14

, and Grosberg and Swani
15

. The 

folding of flat textile fabrics was analyzed by Lloyd et 

al.
16

 and Liu et al.
17

. The problem is solved using the 

sensitivity method to optimize the range of 

application of some decidable parameters. The 

sensitivity was analyzed using direct and adjoint 

approaches by Korycki
18

 and efficiently applied in 

textile engineering
19,20

. 

The novelty of this study is (i) the dimensionless 

description of heavy elastica using the differential 

equations with a set of boundary conditions; (ii) the 

sensitivity analysis of parameters to describe the 

unique solution of shooting method; and (iii) the 

proposal of a new universal test for textile sample 

under bending in both directions (face to face, and 

back to back) which adopts the width of fold as a 

measure of bending stiffness and can be the 

alternative to Peirce’s method. 

——————— 
aCorresponding author. 

E-mail: piotr.szablewski@p.lodz.pl 
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2 Materials and Methods 
 

2.1 Modeling of Elastica 

The elastica is defined as the one-dimensional 

structure of bending rigidity (C), characterized by the 

linear weight (q) and subjected to large deflections. 

Here the flat textile product is subjected to bending 

(e.g. woven fabric) of the specified length (l) and 

width (b). The shape and folding conditions are the 

same across the product. Thus, the space three-

dimesional problem can be reduced to an optional 

longitudinal cross-section. The flat deflection curve, 

described as heavy elastica, is obtained under the 

decisive influence of gravity force as shown in 

Fig. 1(a). The inextensible structure is subjected to 

plane stress, i.e. the cross-sections do not influence 

each other. 

Each point of the coordinate (s), measured  

along the elastica, is defined by the Cartesian 

coordinates  sx ,  sy . The internal forces  

within the deformed elastica can be reduced to the 

force components )](and)([ sFsF yx  and the 

bending moment  sM . 

The equilibrium of an infinitesimal elastica  

sector (ds) helps to formulate the following system  

of equations, as shown in Fig. 1(b): 

 

 
  .0

,0

,0




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dMMdxFdyFM

dsqdFFF

dFFF

yx

yyy

xxx

 

… (1) 

Introducing the stable length of the sector ds, we 

can denote 

.sin,cos  
ds

dy

ds

dx

 
… (2) 

According to Peirce, the next equation is a physical 

linear model as shown below: 

,
ds

d
CCM


 

 
… (3) 

where 
ds

d
   is the curvature; φ, the deflection 

angle of elastica segment; M, the bending moment; 

and C, the bending rigidity. Applying Eqs (1)-(3),  

the first-order differential equations have the 

following form: 

.sin    ,cos    ,
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… (4) 

The equations of heavy elastica are generally 

determined by the coordinate s within the unknown 

parameters: (Fx, Fy, M, ,  x, y). The differential 

equations are nonlinear in respect of trigonometrical 

functions and it is necessary to define the boundary 

conditions at the ends of elastica. There are four 

principal cases of introduced constraints which allow 

to formulate six boundary conditions (Fig. 2). 

To rearrange the equations to the dimensionless 

form, we introduce an additional parameter 

 
 
Fig. 1 — (a) Model of flat textile product approximated by 

elastica, and (b) equilibrium conditions within infinitesimal 

elastica sector 

 
 

Fig. 2 — Boundary conditions of heavy elastica, where point A is 

(a) free, (b) supported by fixed bearing, (c) supported by mobile 

bearing, and (d) fixed 
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connecting the bending rigidity (C) and linear weight 

(q) in the form 
3

1

]m[ 









q

C
D , that is the bending 

length according to Peirce. The set of dimensionless 

parameters has the following form: 

.   ,   ,,   ,,
2 D

y
y

D

x
x

qD

F
F

qD

F
F

qD

M
M

D

s
s

y

y
x

x 

  

… (5) 

The dimensionless equations can be denoted in 

respect of above parameters as follows. 
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… (6) 

The only fundamental solution of above equations 

is determined for a weightless elastica (q = 0) by 

elliptic integrals
21

. Therefore, the problem is solved 

numerically as a set of numerical values of unknown 

functions at particular points of elastica.  
 
2.2 Free Fabric Folding 

The numerical shooting method is applied to solve 

the typical problems in textile engineering. The 

problem of differential equations with boundary 

conditions is transformed to the equivalent one with 

the initial conditions. 

The physical model of folding effect is shown in 

Fig. 3(a). The woven fabric is folded on the rigid base 

by gravity force of the increasing length of elastica 

(l), leaving the feeding rollers. These rollers are 

located at the height (H) and have the insignificant 

angular velocity as constant value. The other elastica 

end is connected with the woven fabric. 

Let us assume that the support by feeding rollers 

(point A) is modeled by mobile bearing to secure the 

correct feeding. The tangential line to elastica axis in 

point A should be vertical. The other end (point B) is 

simulated by means of fixed bearing between the 

fabric and the base. The bending of fabric is 

determined by linear model according to Peirce of  

the constant bending rigidity (C). Based on the 

observations of elastica, it can be assumed that the 

folding consists of two stages, as indicated in 

Figs 3(b) and (c). 

Stage I begins with the vertical shape and l = H. 

This phase ends for the length (l) assuring the angle 

φ = 0 between the tangent to elastica and the 

horizontal axis at point B. Then the Stage II begins 

when the variable portion of elastica is flat and  

rests on the base. Stage II ends for the length (l), when 

the fold is completely closed [Fig. 3(c)]. The 

mathematical model also introduces two steps.  

Some solutions can be ambiguous for the growing 

length of elastica l > H, because their physical 

interpretation is illogical. 

The folding of elastica is described using the 

compressive forces which is physically analogous to 

the buckling of bar of the prescribed length (l). The 

consecutive forms of critical force according to Euler 

equations are accompanied by the different deflection 

curves. The only simplest form of bending curve, 

equivalent to the lowest potential energy, maps the 

correct shape of elastica and is regarded as the correct 

one. The higher orders of critical forces and the 

corresponding deflection curves are superfluous. 

The length of elastica grows stepwise and the 

length increment is equal to l . Each new length 

requires that the system of differential Eq. (4) should 

be solved again. 

The solution procedure defined by the coordinate s 

between point B ( 0s ) and point A ( ls  ) needs 

 
 

Fig. 3 — (a) Physical model of elastica in Cartesian coordinate system, (b) Stage I of elastica folding, and (c) Stage II of elastica folding 
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six different boundary conditions in point B to 

determine the variables yxFFM yx and,,,, . 

There is a typical boundary value problem of variable 

boundary conditions, depending on the folding stage. 

The known and unknown variables at the end points 

are compiled in Table 1 for the Stage I. Boundary 

conditions during the Stage II of folding are assumed 

accroding to Fig. 4(a). 

Let us assume that the complete length of elastica 

released from point A is equal to l2. Its part is located 

flat on the base from point B to point K, of the partial 

length equal to the unknown x-coordinate of a point K 

Kx . The curvatures of the segment BK and at the 

point K are equal to zero, and therefore the bending 

moment 0M . It follows that the point K works 

like a fictitious bearing. Therefore, the differential 

Eq. (4) should be integrated in respect of ds from 

point K to point A on the length (
K2 xl  ), by the 

deflection angle 0 at point K. The horizontal 

compressive forces are so small that, according to 

results published earlier
8
, there is no risk of stability 

loss for BK segment, i.e. its rectilinear form is a stable 

equilibrium. The boundary conditions at the end 

points during the Stage II are listed in Table 2. 

 
3 Results and Discussion 
 

3.1 Solution by Means of Shooting Method 

The elastica folding is solved by means of 

dimensionless Eq. (6) for the assumed parameters, 

considering the height of rollers H = 1 m; the bending 

length D = 0.35 m.  
 

Solution of Stage I 

Let us assume the initial length l = 1.01 m. 

According to Table 1, three variables at point B,  

viz. 
yx FF ,  and  are unknown and should be 

assumed to complete the initial vector 
 0

c  of 

shooting method. The boundary conditions at point A 

(
D

l
s  ) have the following form: 
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D

H
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… (7) 

The current values 321 ,, rrr  can be determined 

after the solution of Eq. (6) with the initial conditions. 

The initial-value problem is solved using the 

Table 1 — Boundary conditions at the end points of elastica 
during the Stage I 

Point Known variables Unknown variables 

Initial point B (s = 0) x = 0, y = 0, M = 0 Fx, Fy, φ 

End point A (s = l1) x = 0, y = H, φ = π/2 Fx, Fy, M 

 

Table 2 — Boundary conditions at the end points of elastica 

during the Stage II 

Point Known variables Unknown variables 

Initial point K (s = 0) φ = 0, y = 0, M = 0 Fx, Fy, x = xk 

End point A 

(s = l2‒xk) 
x = 0, y = H, φ = π/2 Fx, Fy, M 

 
 

Fig. 4 — (a) Temporary shape of elastica during Stage II, and (b) 

parameters characterizing the elastica fold 
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fourth-order Runge-Kutta method. The vector of 

shooting method c will be improved by Newton's 

procedure until the system of differential equations 

will be satisfied with the predefined accuracy ε which 

is the end condition in the Newton’s method, namely 




3

1i

ir

 . 

The proper selection of initial vector 
 0c is very 

important. Introducing the prescribed length of 

elastica l, the vector should be as close as possible to 

the correct solution, i.e. the boundary conditions (7) 

are optimal. Otherwise, the iterative process can be 

divergent. The length always increases by l

= 0.01 m. The initial vector 
 0c is now adopted as the 

solution of the previous step and the calculations are 

iterative repeated for the new length. The stop 

criterion is satisfied when the angle at point B  

is equal to zero (φ = 0), which is at the end of Stage I. 

The corresponding length of elastica ( 1gl ) is  

called the border length of Stage I. In this example, 

1gl = 1.336 m. 

 

Solution of Stage II 

The initial elastica length is l = ll 1g  and it 

increases by a constant increment. Point K is 

characterized by the coordinate 0s  and conditions 

0,0  y , M  0. Thus, some dimensionless 

components of initial vector 
 0c  are unknown: the 

forces yx FF ,  and coordinate 
D

x
x K

K  . Boundary 

conditions at point A of the coordinate 
D

xl
s K
  are 

the same as in Stage I. The stage ends when the 

sliding part of the elastica contacts the base at the 

point S [Fig. 4(b)]. Figure 4(b) includes some 

parameters, which characterize the fold created i.e. 

the width Fx  and height Fy . According to 

calculations, m185.1F x  and m293.0F y . 

The corresponding length of elastica ( 2gl ) is called 

the border length of Stage II. In this example, 2gl

= 3.416 m. 

Numerical solutions of differential Eq. (6) give the 

dimensionless forces xF , yF  within the points A and 

B and the bending moment M  at any point of 

elastica. To receive the values in SI units, let us 

multiply the equations by the coefficients according to 

Eq. (5). Let the linear weight density be q = 0,01 N/m. 

The results for two exemplary lengths are listed in 

Table 3. 

The shooting method is divergent for some small 

values of D, order of less than 0.122 m, and the 

decreased bending rigidity C. Let us explain this 

problem by means of sensitivity analysis. 
 

3.2 Sensitivity Analysis of Elastica Equations 

Introducing the shooting method to analyze the 

Stage I [Fig. 3(b)], we have to determine the control 

parameters i.e. the dimensionless forces 
yx FF ,  and 

the angle  at one end of the elastica. Simultaneously, 

at the other end the boundary conditions [Eq. (7)] 

should be satisfied. The equations can be solved with 

a predetermined accuracy if the control parameters are 

recorded with an accuracy better than the predisposed 

number of significant digits in a digital computer. On 

the contrary, the solution of equations with the 

assumed accuracy is impossible. A small change of 

the control parameters causes the large change  

of the solutions and the calculation algorithm is 

unstable. All variables in Eq. (6), such as 

yxFFM yx and,,,,   depend on three control 

parameters 000 and, yx FF and coordinate s. Let us 

determine the bending parameters of elastica 

equations (length - stiffness) in respect of the 

algorithm unstability. 

The sensitivity is analyzed using the direct 

approach. Let us determine the variational form of 

differential Eq. (6) in respect of the particular 

parameter defined generally by v. The corresponding 

variation of bending moment 
sd

Md
 has the following 

form: 

Table 3 — Boundary conditions at the end points of elastica 

during Stage I 

Length Point A Point B 

l = 1.01 m 

 Fx = -0.00069 N 

 Fy = 0.00175 N 

 M = -0.00035 Nm 

 Fx = -0.00069 N 

 Fy = 0.01185 N 

l = lg1 

 Fx = -0.00378 N 

 Fy = -0.00437 N 

 M = -0.00126 Nm 

 Fx = -0.00378 N 

 Fy = 0.00899 N 
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The notations concerning the partial derivatives of 

parameters with respect to v have the following form: 
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The result are six differential equations of the 

unknowns derivatives [Eq. (9)], as shown below: 
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Next, the same variations are determined for the 

boundary conditions at the point B ( 0s ) listed in 

Table 4. 

To analyze the sensitivity, it is necessary to solve a 

system of Eq. (6) with a set of boundary conditions 

defined in Table 4 for each control parameter v. The 

values of forces 
yx FF ,  and angle  are determined 

by means of solution of these equations.  

The obtained derivatives at an optional elastica point 

yxFFM yx

~
and

~
,

~
,

~
,

~
,~  describe the changes in the 

angle (), bending moment ( M ), forces (
yx FF , ) and 

coordinates ( yx, ) in respect of an infinitesimal 

change of the corresponding control parameter v at 

point B ( 0s ). The most important is to specify the 

changes at the second end of elastica (point A), to 

satisfy the appropriate boundary conditions [Fig. 3(b)]. 

To examine the sensitivity of differential equations 

with increasingly smaller values of parameter D, the 

Eq. (6) is solved with the appropriate initial conditions 

using the fourth-order Runge-Kutta method. The 

assumed data are as follows: the length l = 1.01 m, the 

bending length 0.122 m ≤ D ≤ 0.400 m. The variations 

of elastica derivatives at the second end (point A) versus 

the bending length D are depicted in Fig. 5(a)-(c). 

The sensitivity of coordinates yx,  and angle  to 

changes of initial values 000 ,, yx FF  increases 

rapidly close to bending length D = 0.16 m. For the 

value D = 0.12 m, the system is more and more 

sensitive. Therefore, even minimal change of initial 

values 000 ,, yx FF  in shooting method causes a very 

large change in the values yx,  and  in point A. 

Thus, the shooting method is ineffective at small 

values of D, particularly near D = 0.12 m. The values 

below this limit cause the iterative process to be 

divergent, and therefore, other computational methods 

should be applied. 

 
 

Fig. 5 — Sensitivity in respect of changes of initial values (1) 
0

xF , (2) 
0

 , (3) 
0
yF : (a) of angle , (b) of coordinate x , and (c) of 

coordinate y
 

Table 4 — Variations in initial conditions for three parameters (v)
 

Parameters 0~  0
~

xF  
0

~
yF  

0
~

M  
0~

x  
0~

y  

0v  
1 0 0 0 0 0 

0

xFv   
0 1 0 0 0 0 

0

yFv   0 0 1 0 0 0 
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3.3 Proposal of New Test Concerning Bending Rigidity 

Results of numerical experiments prove that the 

width of fold is directly proportional to the bending 

rigidity. Based on observations of similar real 

phenomena, it is expected that an increase in stiffness 

causes an increase in the width of formed fold. 

Therefore, the width may be considered as a 

parameter characterizing the bending rigidity, 

similarly as introduced by Peirce bending length D. 

The height (H) of fabric feeding also affects the width 

of the fold. 

The problem has been solved numerically for 

different values of height (H), which confirms the 

assumption. The changes of the coordinate describing 

the forming fold Fx  are shown in Fig. 6(a), 

considering height H for several bending lengths D.  

Figure 6(b) illustrates the calculation results in 

contour-lines plan, that is the contours of width 

coordinate of forming fold (
Fx ) versus two variables 

H and D. 

In the neighbourhood of the specified point A at a 

fixed height (H), the different bending lengths (D) 

generate nearly the same width of the fold 
Fx  

[Fig. 6(b)]. The reason is almost horizontal course  

of the contour. However, in the neighborhood  

of the point B, the width of fold corresponds 

unequivocally to the bending length D. The larger  

the width of the fold, the greater is the bending 

length. Condition illustrated by the point A is not 

convenient, whereas point B secures the advantageous 

assessment of bending stiffness based on the width of 

forming fold. 

Therefore, it is convenient to evaluate the bending 

stiffness based on the measured width of the forming 

fold Fx . To apply the method correctly, the height 

(H) should be defined to ensure the unambiguous 

results for a wide range of bending length (D). 

According to Fig. 6(b), the optimal height is of the 

order of 0.5 m, and all measuring points are similar to 

point B. The width of the fold determined for 

H = 0.5 m is found (Fig. 7) as almost linear. 

Peirce introduced the bending length as a 

representative measure of the elastica stiffness. The 

current proposal determines the width of fold Fx  as a 

measure of bending stiffness C. The sample can be 

 
 

Fig. 6 — (a) Width of forming fold Fx  versus height H of fabric 

feeding for different bending length (D), and (b) contour-lines 

plan of width ( Fx ) as a function of two variables H and D 

 
 

Fig. 7 — Width of fold Fx as a function of bending length D for 

height of fabric feeding H = 0.5 m 
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subjected to bending in both directions (right and left) 

in a wide range of curvatures. This is an interesting 

alternative to Peirce’s test, which introduced the test 

specimen subjected to a slight bending in one 

direction only. 
 

4 Conclusion 

The ambiguos solutions of the nonlinear 

differential equations describing the elastica 

equilibrium affect essentially the convergence of 

numerical algorithm. The shooting method is 

divergent for the infinitesimal values of bending 

stiffness. The sufficient convergence is assured only 

by the finite difference method. 

The shooting method is effective for a specific 

range of stiffness which can be estimated using the 

sensitivity analysis of the solutions for the bending 

rigidity. Numerical tests have proved that this method 

is beneficial in respect of computation time and 

computer memory usage. The finite difference 

approach is slower due to the large number of 

unknowns and requires a considerable computer 

memory. However, the finite difference method is 

convergent for the smaller bending stiffnesses. The 

problem of free folding was solved numerically. It is 

an interesting proposal to evaluate the bending 

stiffness based on the measured width of the fold. The 

optimal width was proposed ( Fx = 0.5 m) for a range 

of bending stiffnesses appearing in textile industry. 

The sensitivity was analyzed to determine the 

application range for the bending test. The sensitivity 

approach can be additionally applied to optimize the 

shape of elastica for the assumed material 

characteristics which can be an interesting extension 

of current work. 

The initial objective of textile mathematical 

modelling is always to simplify the real textile 

structure and deformation and to create an adequate 

model. The examples of elastica bending show that 

there are great opportunities to model and simulate its 

behaviour under different conditions. 
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