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A genetic algorithm model has been developed to determine the optimal parameters of mechanical aspects of a silk 

wire-rope scaffold with the highest predictive accuracy and generalized ability simultaneously. The study pioneered on 

employing a genetic algorithm (GA) to optimize the parameters of scaffold in tendon and ligament tissue engineering. 

Experimental results show that the GA model performs the best predictive accuracy to imply mechanical behavior with 

native values successfully.  
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1 Introduction  

Scaffolds in tissue engineering provide an initial 

support and framework for attaching, proliferating and 

differentiating different cell lines as an extracellular 

matrix (ECM)
1
. An ideal scaffold, that provides 

biological signals along with a combination of suitable 

mechanical behavior, is required for making the 

successful engineered tissues like tendon and ligament 

in tissue engineering field
2
. Proper mechanical support 

is an essential consideration for scaffolds construction. 

Therefore, various methods have been developed to 

progress the mechanical performance of scaffolds
3
. 

Due to suitable mechanical properties, fibre-based 

scaffolds have been widely used to simulate tendon and 

ligament tissues
4
. These tissues have special 

mechanical properties like viscoelastic and non-linear 

behavior that are similar to fibre-base structurs
5, 6

. On 

the other hand, textile structures for example woven, 

knitted, braided or twisted types made of fibres have 

the most mechanical similarity with tendon and 

ligament tissues, so they can be the best choice to 

design and fabricate their scaffold
7
.  

Silk is one of the famous materials for providing an 

excellent combination of high strength (up to 4.8 GPa), 

remarkable toughness, elasticity (up to 35%) and 

environmental stability. For the first time Altman and 

Kaplan explored the potential of native silk fibroin 

fibres as 3 dimensional scaffolds for tissue 

engineering of the anterior cruciate ligament (ACL). 

Mechanical properties of human ACL are comparable 

to textile structure as reported in a study as a twisted 

structure
8
. Because of the importance of simulation 

mechanical properties, recently researchers have 

attempted to develop the relation between structural 

and mechanical properties of a scaffold by various 

methods like mathematical or statistical method 

precisely.  

This study has been made to develop a new method 

to estimate mechanical properties of silk wire-rope 

scaffold used in tendon and ligament tissue 

engineering by artificial neural network method.  

A genetic algorithm model is developed for the 

automation and optimization of designing a scaffold 

for the first time.  

One of the most powerful information processing 

systems which mimic the function of the human brain 

and biological neural networks is artificial neural 

network (ANN). This technique is useful when there 

are a large number of effective parameters in the 

special process without requiring a prior knowledge 

of the relationships of process factors
9
. Artificial 

neural networks are compositions of simple 

processing elements, called artificial neurons
10

. 

Among different types of ANN, multi-layer 

perception (MLP) neural networks with back 

propagation (BP) training procedure for modeling a 

problem is one of the most commonly used models
11, 12

. 

From the scientific point of view, to know the effect 

of some production parameters in various applications 
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like tissue engineering and prediction of the scaffold 

properties, neural network models are the best way to 

predict and simulate structures
13

.  

Besides, genetic algorithms (GAs) have been widely 

and successfully applied to different optimization 

processes
14

. GAs are well appropriate for the 

concurrent manipulation of models with changing 

solutions and structures, since they can search non-

linear resolution spaces without requiring gradient 

information and prior knowledge about model 

features
15

. According to the environmental adaptation 

degree of chromosomes, the fitness value is taken as 

the bases of ranking chromosomes, in order to know 

which chromosome would survive in the next 

generation. As a matter of fact, these methods are 

powerful tools for finding the target optimal formula 

for optimization problems. By the self-adaptation 

function and threshold, the system itself has the ability 

to evolve through optimum solution for the problem
16

.  

To optimize effective parameters in this study for 

fabricating a silk wire-rope scaffold, GA was applied 

to optimize effective parameters which lead to 

optimum mechanical properties because of its 

intuitiveness, ease of implementation and its ability to 

effectively solve highly nonlinear and mixed integer 

optimization problems
17

. In the proposed GA model, 

the effective parameters of silk wire-rope scaffold in 

tendon and ligament tissue engineering are 

dynamically optimized by implementing the GA 

evolutionary process and then performing the 

prediction task using these optimal values. The 

optimal values of parameters are searched by GAs 

with a randomly generated initial populations 

consisting of chromosomes. The values of the two 

parameters, namely the number of filament and the 

number of twist in each layer of wire-rope yarn, are 

directly coded in the chromosomes with real-valued 

data. The single best chromosome in each generation 

is the survives of the succeeding generation. 

Predicting mechanical properties of scaffold has been 

a major research issue in tissue engineering. 

Therefore, the genetic algorithm model has been 

applied to the problem in preparing scaffolds by tissue 

engineering to verify its accuracy and generalization 

ability, considering that it is more accurate than the 

traditional multivariate statistical models and neural 

network technique.  
 

2 Materials and Methods  
According to Wang et. al.

8
, silk hierarchical 

structure scaffolds which are similar to the 

arrangement of collagen fibres in tendon and ligament 

tissue, were designed. To design an effective model, 

values of parameters in wire-rope scaffold have to be 

chosen carefully in advance
18

. These parameters 

include the number of filament in each layer 

(parameters P1-P4 for first, second, third and fourth 

layer respectively), which determines the strength at 

the break and the number of twist in each layer 

(parameters P5-P8 for first, second, third and fourth 

layer respectively), which defines elongation-at-break 

in a wire-rope scaffold. The number of filament and 

the number of twist vary from 2 to 5 filaments and  

20 to 80 twist/meter in each layer. Scaffolds were 

identified by the type of structure, by the number of 

filament and by the number of twist in different 

layers. For example, if the number of filament in each 

layer (from first to forth layer) is 2, 5, 5, 3 (labeled 2-

5-5-3) and if the number of twist in each layer (from 

first to fourth layer) is 40, 20, 60, 40 (labeled 40-20-

60-40). Figure 1 shows wire-rope scaffold structure 

schematically.  
 
2.1 Sample Preparation and Experimental Design  

The data used in the ANN and GA model were 

collected from 40 silk wire-rope scaffold samples 

according to Taguchi orthogonal matrix. A single silk 

yarn with 200 den yarn count, 11.1N ultimate tensile 

strength (UTS) and 22.5% elongation-at-break was 

measured after degumming process. Removal of 

sericin layer for silk medical application is necessary. 

Hence, degumming bath of Na2CO3 solution at  

95–98°C for 30 min and repeating the process for 

another 60 min in a fresh degumming solution has 

been done
19

.  

Forty different scaffolds were characterized by 

mechanical properties analyzing 30 samples in each 

group immediately after setting final twisting. Setting 

the final structure was essential because of ban of 

 
 
Fig. 1—Wire-rope scaffold design for tendon and ligament tissue 

engineering  
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snarling in twisted yarns in the oven at 100°C for  

30 min(ref. 20). 

The mechanical properties such as UTS, 

elongation-at-break and stiffness of each sample were 

measured using a Zwick mechanical testing system. 

The length of specimens was chosen 32 mm because 

of the average length of native ACL tissue. Then 

samples were stretched to failure at a crosshead speed 

of 50 mm/min. The defined structures and the result 

of mechanical properties of each sample are shown in 

Table 1.  

 
2.2 Modeling and Methodology 

In this work, the mechanical properties of 

applicable wire-rope scaffold in tendon and ligament 

tissue engineering from its structure were predicted by 

MLP ANN as fitness function of GA to optimize the 

variable parameters of wire-rope scaffold structure.  

First, to model MLP ANN was trained with 

effective parameters of wire-rope scaffold structure by 

the error back propagation algorithm to prepare 

prediction model. In Table 2 input and output 

parameters in ANN have defined. This whole soft 

component was implemented using MATLAB R2009a. 

 
2.2.1 Neural Network Model for Predicting Features of ACL 

The feed-forward back-propagation neural network 

was applied to the experimental sample, including  

8 input neurons in the input layer, one hidden layer of 

eight neurons and one output layer of three neurons. 

Training algorithm function based on the Levenberg-

Marquardt optimization theory was chosen to faster 

convergence of ANN and the over fitting error 

preserve. First, the effective parameters on the  

wire-rope scaffold were determined among all 

possible parameters and then used in ANN input layer 

(Table 3). After that, predicting the mechanical 

properties by ANN was studied. The threshold 

function was set to the ‘tangent sigmoid function’ and 

the ‘pure line function’ for hidden layer and output 

layers, respectively. The number of epochs was set to 

29 and the learning rate was set to 0.01 in each epoch. 

Table 3 presents the parameter settings in ANN. 

 
2.2.2 Optimized Structure using GA  

GA has some parameters that can control 

algorithm. Also, the parameters must be determined 

before GA execution, however there is no clear order 

to determine them. The stopping criteria of GA should 

be specified by several criteria like exceeded 

maximum number of generations, no feasible point 

found, exceeded time limit and terminated 

optimization by the output or plot function. In this 

study, stopping condition of GA (defined as the 

generation) reaches to the specified value with a 

minimum acceptable fitness values for the best 

individual in the last generation. 

Table 1—Defined structures and the result of mechanical 

properties of silk wire-rope yarn samples 

Sample 

code 

Number of  

filament  

(P1 - P4) 

Number of 

twist  

(P5- P8) 

UTS  

N 

Elongation  

% 

Stiffness 

N/mm 

S1 2-2-2-2 20-20-20-20 162 22.9 22.11 

S2 2-2-3-3 40-40-40-40 359 29.5 38.03 

S3 2-2-4-4 60-60-60-60 622 37.9 51.29 

S4 2-2-5-5 80-80-80-80 903 54.7 51.59 

S5 2-3-2-2 40-40-60-60 246 36.5 21.06 

S6 2-3-3-3 20-20-80-80 600 46.1 40.67 

S7 2-3-4-4 80-80-20-20 1130 36.3 97.28 

S8 2-3-5-5 60-60-40-40 1790 49.7 112.55 

S9 2-4-2-3 60-80-20-40 619 38.2 50.64 

S10 2-4-3-2 80-60-40-20 534 32.1 51.99 

S11 2-4-4-5 20-40-60-80 1680 66.4 79.07 

S12 2-4-5-4 40-20-80-60 1340 54.1 77.4 

S13 2-5-2-3 80-60-60-80 627 49.4 39.66 

S14 2-5-3-2 60-80-80-60 519 35 46.34 

S15 2-5-4-5 40-20-20-40 1460 45.3 100.72 

S16 2-5-5-4 20-40-40-20 1620 32.1 157.71 

S17 3-2-2-5 20-80-40-60 441 33.4 41.26 

S18 3-2-3-4 40-60-20-80 509 47.4 33.56 

S19 3-2-4-3 60-40-80-20 398 21.9 56.79 

S20 3-2-5-2 80-20-60-40 450 26.7 52.67 

S21 3-3-2-5 40-60-80-20 541 30.6 55.25 

S22 3-3-3-5 40-60-80-20 1120 41.5 84.34 

S23 3-3-4-3 80-20-40-60 903 48.5 58.18 

S24 3-3-5-2 60-40-20-80 615 51.2 37.54 

S25 3-4-2-4 60-20-40-80 869 56.6 47.98 

S26 3-4-3-5 80-40-20-60 1380 55.9 77.15 

S27 3-4-4-2 20-60-80-40 833 40.9 63.65 

S28 3-4-5-3 40-80-60-20 1820 45.1 126.11 

S29 3-5-2-4 80-40-80-40 1140 47.2 75.48 

S30 3-5-3-5 60-20-60-20 2060 46.7 137.85 

S31 3-5-4-2 40-60-40-80 1190 60.7 61.26 

S32 3-5-5-3 20-80-20-60 2470 54.1 142.68 

S33 3-5-5-3 20-20-20-20 2392 22.6 330.75 

S34 2-5-5-4 40-40-40-40 1641 29.1 176.22 

S35 3-5-5-3 40-40-40-40 2385 29.7 250.95 

S36 2-5-5-4 20-20-20-20 1652 28.9 178.63 

S37 3-5-3-5 20-40-40-20 1957 35.1 174.38 

S38 3-4-3-5 40-40-40-40 1449 31.0 146.19 

S39 3-5-3-5 40-20-20-40 2163 31.7 213.03 

S40 3-4-3-5 20-20-20-20 1311 25.2 162.64 
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To find the optimized structure of GA, each 

chromosome was coded with 8 genes. The first to 

fourth genes were the number of filament in each 

layer of wire-rope scaffold and the fifth to eighth 

genes were the number of twist in each layer. Whole 

genes were coded between-1 to 1. After that, 

introducing the fitness function was the most 

important. The fitness function in present work is 

defined according to following equations:  
 

UTSe
prediction target

target

UTS UTS

UTS

−
=    … (1) 

 

elogation

predicton target

target

elongation elongation
e

elongation

−
=  … (2) 

 

Fittness function
2

UTS elongatione e+
=  … (3) 

where UTStarget = 2160, 1503 and 658 for ACL young, 

middle and old age; and elongationtarget = 33, 25 and 13 

for ACL young, middle and old age
21

.  

If the fitness function is lower, its chromosome 

creates better topology and has greater chances to 

survive, and GA is searching the highest fitness 

function or best topology. Figure 2 shows the 

structure of GA model
22

.  

The proposed model was developed and 

implemented in the MATLAB 10 environment. 

Because of the stochastic algorithm, GA was run many 

times for each reported case. The utilized system has 

these characteristics: processor (CPU)−32-bit operating 

system Core(TM) i3 2.13GHz, RAM− 2.00 G.  

 

3 Results and Discussion  
In the present study, the ANN has been applied to 

design a model for predicting the mechanical 

properties of wire-rope hierarchical scaffold in 

applications of tendon and ligament tissue 

Table 2—Input and output parameters of the neural network 

model 

Variables Coding Unit 

Inputs   

Number of filament in first layer P1 - 

Number of filament in second layer P2 - 

Number of filament in third layer P3 - 

Number of filament in fourth layer P4 - 

Number of twist in first layer P5 TPM 

Number of twist in second layer P6 TPM 

Number of twist in third layer P7 TPM 

Number of twist in fourth layer P8 TPM 

Outputs   

Ultimate tensile strength UTS N 

Elongation at break - N/mm 

Stiffness - % 

Table 3—The parameter settings in ANN 

Parameters of ANN Value 

Network type Back propagation 

Training function Levenberg Marquardt  

Adaptive learning function LEARNGDM 

Performance function MSEREG 

Number of layers 3 

Neuron in hidden layer 8 

Transfer function of hidden layer Tangent sigmoid 

Transfer function of output layer Pure line  

Epochs 29 

Learning rate 0.01 

 
 

Fig. 2—GA structure22 
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engineering. After that, GA was utilized to optimize 

the input values in model including the number of 

filament and the number of twist to receive the best 

structure.  

First of all, the initial population size is optimized. 

With a large population size, the genetic algorithm 

searches the solution space more thoroughly, thereby 

reducing the chance that the algorithm will return a 

local minimum that is not a global minimum. 

However, a large population size also causes the 

algorithm to run more slowly.  

When best and mean fitness function values are 

closing each other, it means all solutions are 

becoming similar to each other and there is one 

solution. Usually, the best fitness value improves after 

several generations and then it is approximately 

constant. In generation 30, convergence happens 

between mean and best values and the mean value is 

close to the best value, so optimum population size 

can define 30.  

The number of generations is next parameter. It 

was considered to have 30 generation for young, 

middle and old age group. Because of considering the 

time execution and convergence between mean and 

best values, these values can be selected for the 

optimum number of generation. Like population size, 

for large values of generation number, growth of the 

execution time is remarkable.  

In addition to population size and generation 

number, other GA parameters, after much number of 

trials, have been set (Table 4). 

Figure 3 shows the fitness function values in each 

generation for young, middle and old age group of 

people. In all figures for young, middle and old age, 

mean and the best values are very close and 

parameters setting in genetic algorithm model 

according to Table 4 are acceptable.  

After finding and running the best GA program, the 

optimization of input values for young, middle and 

old age including the number of filament and twist in 

each layer of wire-rope scaffold and final outputs 

including UTS, elongation at break and stiffness were 

predicted according to Table 5. The result shows that 

the best structure for young, middle and old people is 

 
 

Fig. 3—Fitness value vs. generation in GA optimization for 

(a) young age group, (b) middle age group and (c) old age group  

Table 4—The parameter settings in GA 

Parameter of GA Value  

Population type Double vector 

Population size 30 

Creation function Uniform 

Display Iter 

Fitness scaling function Rank 

Selection function Stochastic uniform 

Crossover fraction 0.9 

Mutation function Gaussian 

Migration direction Forward 

Migration fraction 0.9 

Stopping criteria and generation 30 generations (maximum) 
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2-5-4-5, 2-5-4-4 and 2-4-3-4 for the number of 

filament in each layers of wire-rope scaffold, 

respectively. In addition to the number of filament, 

the number of twist in each age group is also 

predicted. By using these values, output parameters 

(mechanical behavior) are anticipated.  

Table 6 presents ability of the best genetic 

algorithm model to predict the mechanical properties. 

Also, Table 6 reveals that the prediction error for UTS 

and elongation-at-break changes from 10.7 to 13.65. 

For stiffness, the prediction error is much more 

because of the interaction between UTS and 

elongation-at-break.  
 

4 Conclusion  
Prediction model has been constructed using neural 

network to predict final mechanical properties of 

scaffold after extracting and visualizing the main 

characteristics of the data set. The study of 

mechanical behavior is based on the desirability 

approach. GA method is applied to optimize the main 

characteristics. All these methods have contributed to 

establish a convenient model that could predict and 

optimize the global mechanical properties of wire-

rope yarn. For example, the best structure of the ACL 

of young people is 2-5-4-5 and 57-36-46-31 for the 

number of filament and the number of twist in each 

layer of wire-rope scaffold, respectively.  
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Table 5—Optimized result of inputs and outputs parameters for 

ACL scaffold in young, middle and old age group of people 

Optimized parameter Young 

age 

Middle 

age 

Old  

age 

Inputs    

Number of filament in first layer 2 2 2 

Number of filament in second layer 5 5 4 

Number of filament in third layer 4 4 3 

Number of filament in fourth layer 5 4 4 

Number of twist in first layer 57 67 23 

Number of twist in second layer 36 44 37 

Number of twist in third layer 46 64 18 

Number of twist in fourth layer 31 17 25 

Outputs    

UTS (N) 1940.2 1463.7 660.19 

Elongation at break, % 34.3 31.7 27.2 

Stiffness, N/mm 286.1 259.3 153.27 

Table 6—The prediction error of testing samples using GA model 
 

Output  

parameter  

Age group  Experimental 

value 

Predicted 

value 

Prediction  

error, % 

UTS N Young age  1730 1940.2 10.8 

Middle age  1620 1463.7 10.7 

Old age  750 660.19 13.65 

Elongation at  

break, % 

Young age  38.3 34.3 11.66 

Middle age  35.1 31.7 10.72 

Old age  30.5 27.2 12.13 

Stiffness  

N/mm 

Young age  141.16 286.1 50.66 

Middle age  144.23 259.3 44.38 

Old age  76.84 153.27 49.76 

 


