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This study aims at predicting the effects of selected process parameters on nips stability and number of nips by using 
different artificial intelligence methods. Partially oriented polyester yarn with 283 dtex linear density and different numbers 
of filaments are intermingled with different speed and pressure levels. The feed forward neural network with multi-hidden 
layers (ML-FFNN) and general regression neural networks (GRNN) have been selected as artificial intelligence methods. 
The number of filaments, intermingling speed and pressure values are used as input variables on the artificial neural 
networks. The effects of number of hidden layers on the ML-FFNN and number of nodes in the hidden layer are 
investigated. Based on comparative results, the ML-FFNN is found to give better performance (at most 6%) than by GRNN 
in terms of prediction accuracy on train and test data sets. It can be concluded from this study that the neural networks has 
great ability to predict intermingling process parameters. 
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1 Introduction 

Increasing economic constraints on the textile 
industry brought forward alternative and less 
expensive methods to conventional techniques. 
Intermingling is an alternative to sizing, twisting in 
texturing, drawing, spinning, and knotting in splicing, 
and also in blending as a new process. Therefore, the 
intermingling process, provided that the interest 
problems are overcome, appears to be promising for 
the future of textile industry1. Intermingled yarns 
number of nips and nips stability are important 
properties in terms of yarn structure. Speed and 
pressure levels are most effective parameters in 
intermingling processes. In the first instance, accurate 
prediction of these parameters is important for the 
production of yarn with the desired characteristics. 
For this purpose, there are a lot of different techniques 
available. 

Artificial intelligence methods have various 
application areas in textile industry and there are 
different studies reported, about their application, in 
literature. Some of these studies are about 
classification for cotton yarn quality2, prediction of 
physical and mechanical properties of yarn3-6, 
characterization and evaluation of yarn surface 

appearance7, optimizing the yarn spinning process8, 
prediction of NEP rotor spinning yarn9, fabric dying 
application10-13, evaluating the apparent quality of 
knitted fabrics14, and predicting thermal resistance of 
cotton fabrics15. There is a study about predicting the 
intermingled yarn strength and elongation properties 
by a single layer feed forward neural network 
model16. Most of studies, based on artificial neural 
networks, focus on determining and predicting the 
process parameters and product properties. Thus, the 
artificial neural networks can be considered as an 
alternative predicting method, besides the statistical 
and other mathematical models. However, it has been 
found that the study on the use of artificial intelligent-
methods for predicting intermingled yarn properties is 
scanty. Hence, in the present study intermingling yarn 
number of nips and nips stability values are predicted 
using general regression neural networks and multi-
layer feed forward neural network models. Speed, 
number of filaments and pressure values are selected 
as the input parameters of the prediction models.  

Artificial neural networks (ANNs) are based on 
inspiration of physical nervous system. The computer 
and human brain have some similarities such as 
significantly complex, nonlinear and parallel 
computing17. Generalized regression neural networks 
(GRNN) models are one of the probabilistic neural 
networks model, proposed first time on Specht’s 
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study. GRNN estimates to continuous variable and 
converges to regression surface that can be linear or 
nonlinear. As GRNN models do not need an 
iteratively calculation algorithm, lots of different 
applications such as prediction and modelling can be 
built by using GRNN18. 
 

GRNN models are beneficial especially on 
continuous variables prediction such as time series 
and regression. This model estimates expected value 
of dependent variable by using set of independent 
variables. To find the expected value of dependent 
variable, the integration over a probability density 
function (pdf) is necessary. A nonparametric 
estimator known as Kernel estimation or Parzen 
windows is used for finding the pdf19. 
 

The network map of the GRNN model is given in 
Fig. 1(a) 20. There are four layers on GRNN, such as 
input layer, hidden layer, summation layer and output 
layer. Independent variables of the regression are 
modeled as inputs of the input layer. Hidden layer 
provides the training pattern. There are two summation 
neurons, same as hidden neuron values and weighted 
by y values. The output is calculated by the last layer.  

Multi-layer feed forward neural networks (ML-
FFNN), one of the methods of ANN models, use a 
back-propagation learning algorithm to train the 
network. Even though ML-FFNN has some 
disadvantages, such as slow converging ability for 
some approximation functions and increasing training 
time with increasing number of weights, it has some 
abilities such as learning, nonlinearity, input-output 
mapping and robustness21. 

The map of ML-FFNN with two hidden layers is 
illustrated in Fig. 1(b). According to Fig. 2, ML-
FFNN has three or more layers, namely input layer, 
hidden layer, output layer. Input or independent 

variables of system represent as input units or nodes 
in the input layer. The second or more layers are 
called hidden layers. There are different numbers of 
nodes in the hidden layers for providing nonlinearity 
ability. The last layer is called output layer. The 
outputs of the system are represented by output units 
or node in this layer. 
 

2 Materials and Methods 

2.1 Materials 

Partially oriented polyester yarns (POY) with 
various numbers of filaments (34, 68, 47 and 100) 
were intermingled. All these filaments have round 
cross-section and theoretical number of all POY 
filaments is 283 dtex. 
 
2.2 Methods 

POY bobbins were intermingled with Hemaks 
HMX 114 model intermingling machine. Intermingling 
was performed using three different take up speed 
(150, 300, 450 m/min) and pressure (3, 5, 6 bar) levels. 
TEMCO Y profile LD 22 air-jet was used in this 
process. Number of nips and nips stability of 
intermingled yarns are tested using Itemat Lab TSI test 
device. Each bobbin was tested 10 times and the mean 
values are shown in Table 1. Thus, 360 different test 
instances are used for both ML-FFNN models and 
GRNN models. 

 
 

Fig. 1—(a) Map of a GRNN, and (b) Map of a multi-layer feed forward neural network 
 

 
 

Fig. 2—Input and output parameters of the prediction system 
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The test results are used as input data for the neural 
network models (ML-FFNN and GRNN). As shown 
in Fig. 2, the structure of prediction system has two 
main units, namely input and output parameters. The 
methodology of implementing ML-FFNN and GRNN 
is composed at five steps as given follows: 
 

(i)  Creating training, test and validation data sets − the 
data sets are composed of randomly divided main 
data set.  

(ii) Building neural network model − the structure and 
parameters of neural network are selected in this 
step. 

(iii) Training the neural network model − in this step, 
built model is trained with the training data set until 
the stopping criterion is reached. 

(iv) Calculating the performance measures − 
performance of the model for the train, test and 
validation data sets is calculated. 

(v)  Evaluating the prediction performance − prediction 
accuracy for both train and test data set is evaluated. 

 

All of the neural network models are implemented 
by using Matlab software package. The model 
performance could be affected by number of nodes on 
each hidden layer. For this reason, the ML-FFNN 
models are implemented by different number of nodes 
in the hidden layer and the best one is selected. The 
best ML-FFNN and GRNN models are compared by 
their train and test data set in terms of prediction 
accuracies.  

 

Eighty per cent of the data set is selected for 
training data set and remain instances for testing data 
set and same data sets are used to compare methods 
objectively. Validation provides to generalize the 
model and stop training to avoid over fitting. 
Therefore, five percentage of the train data set is 
selected randomly as validation data set for the ML-
FFNN models. 
 

3 Results and Discussion 

3.1 Setting up to ML-FFNN Model 

Neural network model can behave differently under 
different conditions, such as number of hidden layer, 
number of nodes in the hidden layer, changing 
training function, etc. Due to the fact that parameter 
selection can cause bad performance of prediction, 
different parameter values should be tried to find the 
best prediction performance. Therefore, seventy 
(ranging from 1 to 70) number of nodes in the hidden 
layerare tested for the ML-FFNN, which has one layer 
(Fig. 3). The best performance of R value is obtained 
for 35 nodes in the hidden layer for predicting 
stability of nips. Same results are found for predicting 
number of nips when the number of nodes in the 
hidden layer is set to 33. The ML-FFNN which has 35 
nodes in the hidden layer provides better mean R 
value than 33 nodes for both prediction of number of 
nips and nips stability. Therefore, the number of 
nodes in the hidden layer is set to 35. 

Five different numbers of hidden layer are also 
analyzed (Fig. 4). The best performance of R value is 

Table 1—Number of nips and nips stability test results of intermingled yarns 

150 m/min 300 m/min 450 m/min POY bobbins 

3 bar 5 bar 6 bar  3 bar 5 bar 6 bar  3 bar 5 bar 6 bar 

Number of nips per meter 

POY 1 
(283F34) 

40.10 53.10 55.60 46.20 61.80 72.50 55.00 60.30 61.00 

POY 2 
(283F47) 

63.00 79.30 73.20 65.60 77.60 74.20 59.80 66.70 63.40 

POY 3 
(283F68) 

58.70 76.50 65.10 66.70 80.00 76.70 47.00 70.10 66.80 

POY 4 
(283F100) 

80.50 82.30 84.40 55.20 50.80 72.20 67.40 77.80 73.20 

Nips stability, % 

POY 1 
(283F34) 

62.00 80.50 84.30 62.70 78.50 85.70 93.90 97.50 96.90 

POY 2 
(283F47) 

91.40 96.90 97.20 95.00 93.90 94.80 94.80 96.60 81.80 

POY 3 
(283F68) 

82.00 95.90 91.20 81.40 93.20 87.50 65.30 97.70 96.90 

POY 4 
(283F100) 

89.30 94.60 96.80 71.60 76.80 96.60 87.50 98.20 97.10 
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reached with four hidden layers for predicting 
stability of nips. When the number of hidden layer is 
two, similar results are found for predicting the 
number of nips. The ML-FFNN model is built for 
both of the number of hidden layers 2 and 4 to select 
best model.  

The other parameters determined are maximum 
number of epochs is set to1000; Levenberg-Marquardt is 
used as training function; and the performance of 
training is analyzed by mean squared error (MSE). 
Mentioned parameters are used for both ML-FFNN 
models. 
 

3.2 Type of ML-FFNN Model 

3.2.1 Two Hidden Layers (ML2-FFNN) 

Effect of different numbers of hidden layer has been 
discussed before. In this section two hidden layer 

models are implemented. The model is applied and the 
training performance of the ML2-FFNN is reached in 
epoch 4 with the best value of MSE as 10.5935 to 
predict the number of nips and nips stability.  

Training, validation, test and overall performances 
of the ML2-FFNN are shown in Fig. 5. According the 
results, overall R and R2 value are calculated as 
0.96266 and 0.92671 respectively. The ML2-FNN 
model predicts successfully for all instances. The 

 
 

Fig. 3—Performance evaluation for different number of hidden neurons 
 

 
 

Fig. 4—Performance evaluation for different number of nodes in 
the hidden layer 

 
 

Fig. 5—ML2-FNN fitting graph 
 

 

Fig. 6—ML4-FNN fitting graph 
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results demonstrate that the ML2-FFNN model 
explains 92.7% of the mean variation of both nips 
stability and number of nips. 
 

3.2.2 Four Hidden Layers (ML4-FFNN) 

In this section, four hidden layer model is 
implemented. To predict the number of nips and nips 
stability, the best value of MSE is found in epoch 3 with 
a value of 27.035. 

Training, validation, test and overall performances of 
the ML4-FFNN are shown in Fig. 6. According to the 
results, overall R and R2 value are calculated as 0.96302 
and 0.92741 respectively. The ML4-FNN model 
predicts successfully for all instances. The results 
demonstrate that the ML4-FFNN model explains 
92.74% of the mean variation of both nips stability and 
number of nips.  
 

3.2.3 Comparison of ML-FNNN Models 

In order to compare performance of different ML-
FFNN models, training and test data results with both 
predictions of nips stability and number of nips are given 
in Table 2. The ML4-FFNN model has more accurate 
prediction than ML2-FFNN model, especially on test 
data set. The differences among models’ R values 
increase about 16 per cent on prediction of nips stability. 
According to training datasets, the ML2-FFNN model 
has much better (2.57%) performance. However, the 
ML4-FFNN model has much accurate performance on 
test dataset (16.4%). Consequently, ML4-FFNN model 
is useful to predict nips stability and number of nips 
values. 
 

3.3 GRNN Model 

GRNN also use the same training and test data sets as 
used with ML-FFNN models. Training and test results 
of the GRNN are shown in Fig. 7. According to the 

Table 2—Comparison of different ML-FFNN models 

Train data results Test data results 

Nips stability Number of nips  Nips stability Number of nips 

Model 

R R2  R R2  R R2  R R2 

ML2-FFNN 0.9014 0.8125 0.9679 0.93683 0.8157 0.6654 0.9357 0.8755 

ML4-FFNN 0.887 0.7868 0.964 0.9293 0.9107 0.8294 0.948 0.8987 

% Difference 1.44 2.57 0.39 0.753 -9.5 -16.4 -1.23 -2.32 

Table 3—Comparison of ML-FFNN and GRNN models 

Train data results  Test data results 

Nips stability Number of nips Nips stability Number of nips 

Method 

R R2  R R2  R R2  R R2 

FFNN Model  
(ML4-FFNN) 

0.887 0.7868 0.964 0.9293 0.9107 0.8294 0.948 0.8987 

GRNN Model 0.8858 0.7846 0.9460 0.8949 0.8770 0.7691 0.9459 0.8947 

% Difference 0.12 0.22 1.8 3.44 3.37 6.03 0.21 0.4 
 

 
 

Fig. 7—GRNN fitting graph 
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training results, R and R2 values are calculated as 
0.95766 and 0.9171 respectively. The R and R2 values 
are calculated as 0.9558 and 0.9136 respectively for the 
test results. The GRNN model predicts successfully for 
all instances. The results show that the GRNN model 
explains about 92% of the mean variation in both nips 
stability and number of nips.  
 
3.4 Comparison between GRNN Model and ML-FNNN Model 

In order to compare the performances of the best 
ML-FFNN and GRNN models, training and test data 
results with both predictions of nips stability and 
number of nips are analysed (Table 3). The results are 
seemed to be very close for both models. However, 
the ML-FFNN provides more accurate prediction 
fornumber of nips on training data set and nips 
stability on test data set. The differences among 
models’ R values increase about 6 % on prediction of 
nips stability. Consequently, ML-FFNN model is the 
best model to predict nips stability and number of nips 
values. 
 
4 Conclusion 

The study shows that according to R and R2 values, 
the ML4-FFNN model suppresses to GRNN and 
ML2-FFNN. It can be concluded that neural networks 
has great ability to predict intermingling process 
parameters. For the further studies, different input and 
output variables can be investigated, and different 
neural network methods may also combine each other 
to predict more accurately. Furthermore, the proposed 
prediction model (ML-FFNN) may be further refined 
with using new data set. 
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