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Effect of rotor type, rotor diameter, doffing-tube nozzle, and torque-stop on polyester/cotton rotor-spun yarn hairiness 
have been studied. To model the hairiness of polyester/cotton blended yarn, artificial neural networks and regression models 
have been used. The results show that there are significant differences in performance of network with different 
architectures and training algorithms. The network with two hidden layers has the best performance and can predict 
hairiness with high accuracy. Relative importance of input variables is studied with partial derivatives method based on the 
optimum network. The results indicate that rotor type and rotor diameter have the greatest and least effect on the blended 
yarn hairiness. 
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1 Introduction 
Nowadays, hairiness is one of the most important 

parameters of yarn, similar to the strength, evenness 
and twist. Hairiness has a great influence on yarn 
quality as well as on porosity, permeability, transport 
of moisture, comfort, aesthetic properties and  
handle1-4. Yarn hairiness is usually considered as a 
negative factor because substantially this hairiness 
often entangles and hampers the formation of perfect 
and distinct shed in the weaving looms5. Moreover, 
augmentation of hairiness causes fibre fly during 
spinning, and only when a good and soft handle  
for specific goal is required, hairiness is a desirable 
factor. Yarn can be divided into two parts, viz  
the surface hairs and stem6. Hairiness of yarns is 
characterized by the filaments or free fibres (fibre 
loops, fibre ends) protruding from the yarn stem  
and uniformly distributed along the yarn length7. 
Generally, the hairiness is related to the fibre physical 
characteristics, features of sliver, spinning methods, 
spinning machines and their setting, yarn twist, and 
linear density. Many researchers have attempted to 
find the relationship between fibre characteristics and 
resultant yarn8-12. Few researchers devoted their 
studies on the effects of machine parameters on the 
yarn hairiness, especially on the rotor-spun yarn 8,13. 

As mentioned above the yarn hairiness is important 
and hence it is essential to develop a system for 
prediction of hairiness before yarn production to 
prevent wasting of time, energy and materials. 
Commonly the yarn hairiness is controlled through 
the trial and error method especially when a spinning 
mill receives new demand from a consumer. There are 
two approaches for modeling yarn properties, viz 
theoretical and experimental. Due to complexity of 
theoretical modeling and simplifying assumptions, 
and also the poor performance of theoretical 
approaches14, experimental modeling is preferred. 
Statistical and intelligence methods are two important 
ways of experimental modeling. A growing trend has 
been observed, in recent two decades, towards 
artificial intelligence methods due to their better 
performance in prediction than statistical approaches. 
Artificial neural networks (ANNs) are computational 
modeling tools that have found extensive acceptance 
in many disciplines for modeling real-world complex 
problems15. There are many literature using ANNs 
and regression approaches to model yarn properties16-

22. Some researchers designed a model for predicting 
yarn hairiness based on fibre properties measured by 
three different systems namely HVI, AFIS and 
FMT12. Babay et al.1 built a model using a back-
propagation neural network from cotton fibre 
properties measured by HVI. They also used an 
approach called “virtual leave on out” to deal with 
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over fitting problem. The objective of Üreyen and 
Gürkan7 work was to develop ANN and linear 
regression models for the yarn hairiness prediction. 
Entering the roving properties as an input variable 
was their novelty. Khan et al.4 studied on the 
evaluation of the performance of multilayer perceptron 
and multivariate linear regression models for worsted 
spun yarn hairiness prediction from various top, yarn 
and processing parameters. Bo13 tried to predict yarn 
hairiness according to spinning conditions. Haghighat 
et al.3 used an ANN model and multiple linear 
regression (MLR) for predicting the hairiness of 
polyester/viscose blended ring-spun yarns based on 
various process parameters.  

By reviewing the literature, it is found that there is 
hardly any comprehensive work on the analysis of the 
influence of machine parameters and their relative 
importance on the hairiness of polyester/cotton 
blended rotor-spun yarns. Therefore, in this study, 
two models have been developed using ANN and 
MLR to predict rotor-spun yarns hairiness according 
to machine parameters namely rotor type, rotor 
diameter, doffing-tube nozzle, and torque-stop. 
Another part of this work refers to altering the 
network characterization parameters in order to find 
the best and optimum network for yarn hairiness 
prediction. Finally, relative importance of input 
variables is determined using partial derivatives 
method which is explained in later section. 

 
2 Materials and Methods 

All the yarns used in this study were produced in a 
running spinning mill (Nafis Nakh Co.). As the aim of 
this research was to present an applicable model in 
industrial scale, the severe technical limitations in 
changing machine settings and machine apparatus 
were considered. Following most effective factors 
influencing the yarn hairiness were considered: 

 Rotor type 
 Rotor diameter 
 Doffing-tube novels  
 Torque-stop 

 The rotor diameter, groove shape, groove 
roughness, and surface quality are the parameters 
affecting on the resultant yarn properties23.  
In order to include the most of rotor parameters, two 
kinds of rotor (T and G) were selected which are 
universally applicable. Rotor with two different 
diameters, 33 mm (less than fibre length) and 40 mm 
(more than fibre length) were used. The configuration 

of the doffing-tube nozzle itself has a quite substantial 
influence on yarn appearance. In order to investigate 
the effects of take-off nozzle, the fluted and spiral 
nozzles namely KN4, KN8, and KS were used.  
K specifies the material used for nozzle production 
which is ceramic in this study. The numbers 4 and 8 
indicate the number of flutes in the nozzle and  
S refers to the spiral state. Torque-stop with red  
clip was used in this study. Experimental specimens 
for rotor-spun yarns were prepared from blended 
polyester/cotton (75/25) slivers. The characteristics  
of fibres, slivers and produced yarns are given in 
Table 1. 

Silvers were spun into yarns on Schlafhorst 
machine with 70000 rotational speed of rotor and 
7500 rotational speed of beater. Eighteen types  
of yarns were produced with different machine 
settings according to machine factors mentioned 
above. The processing program is shown in Table 2. 
In every level, one of the machine parameters was 
changed and the other parameters were kept constant. 
Fourteen bobbins were produced for each setting.  
To eliminate the spinning variations, all the yarns 
were produced in the same position on the same 
machine. Total of 252 bobbins of yarns were 
evaluated for hairiness on the Shirley tester in the 
standard atmosphere (25˚C temperature and 65% 
relative humidity) and the average of measured 
hairiness for each yarn type was determined (Table 2). 

 

3 Results and Discussion 
In order to design the ANN models, data set was 

divided randomly in three groups so that 60% of the 
data was assigned for training, 20% for validation  

Table 1 – Specification of fibres, slivers and yarns used 

Parameters  Value 

Fibre  

Polyester  

    Length, mm  
    Fineness, dtex 

38 

1.67 

Cotton 

    Length, mm 
    Fineness, dtex 

 

29 

1.58 

Sliver 
Count, tex 

 

4000 

CV, % 4.46 

Yarn 
Count , tex 

29.5 

Twist multiplier (αe) 3.8 

Opening roller S21 
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and 20% for testing of the developed models. 
Training set was used for computing the gradient and 
updating the network weights and biases. The error on 
the validation set was monitored throughout the 
training process. The validation error normally 
decreases during the initial phase of training, as does 
the training set error. However, when the network 
begins to over fit the data, the error on the validation 
set typically begins to rise. The network weights and 
biases are saved at the minimum of the validation set 
error24. Since regression model does not require the 
validation set, both training and validation sets are 
used for determination of the model parameters. It is 
important to note that the same test data has been used 
for all developed models. 

 
3.1 Statistical Model 

One of the approaches used intensively as a 
supervised learning method is regression. When the 
response in regression equation is the linear function 
of more than one predictor variable, it is called MLR. 
In this study, the MLR model is used for developing 
the polyester/cotton blended rotor-spun yarn hairiness 
model. The predictor variables are rotor type (RT), 
rotor diameter (RD), doffing-tube nozzle (DTN), and 
torque-stop (TS). Using the training and validating 
data set, following regression equation is obtained: 

Hairiness= –1.2619(RT)+0.6769(RD)–0.3202(DTN)+ 
0.0702(TS)+4.8989  … (1) 

 

The result of analysis of variance (ANOVA) of 
regression model is given in Table 3. 

The value of Sig indicates that the input variables 
are not the same and the model is significant in 95% 
significance level. In order to assess the performance 
of developed regression model, test data are entered to 
the model and correlation coefficient (R-value=0.33) 
is calculated. Correlation quantifies the strength of a 
linear relationship between two variables. When 
coefficients are close to +1 or -1, it indicates that there 
is a strong direct or inverse relationship between the 
variables respectively, while the coefficient closes to 
0 suggests that there is no relationship between the 
variables. Here, R-value indicates the capability of 
model to predict, so it can be said that the higher  
the R-value, the higher is the accuracy. Unreliable  
R-value of linear regression shows that MLR is not 
appropriate for yarn hairiness prediction based on the 
machine factors. There are two ambivalent attitudes 
towards this fact, namely one refers to existence of 
nonlinear relationship between the parameters, and 
the other is existence of interaction between the 
parameters. Table 4 indicates the correlation between 
variables.  

As can be seen in Table 4, there is only negative 
correlation between rotor type and rotor diameter and 
the negligible correlation exists between the other 
parameters. But two uncorrelated variables are not 
necessarily independent, because they might have  
a nonlinear relation. In order to investigate the 
interaction between parameters, a quadratic regression 
model is fitted to data. The nonlinear model includes 

Table 2 – Sampling process in spinning mill 

Sample Rotor  
type 

Rotor  
diameter 

mm 

Novel Torque- 
stop 

Hairiness 
‘hairs/m 

1 T 40 KN4 - 31.18 

2 T 40 KN8 - 34.26 

3 T 40 Spiral - 24.62 

4 T 40 KN4 + 28.06 

5 T 40 KN8 + 30.10 

6 T 40 Spiral + 28.22 

7 T 33 KN4 - 24.26 

8 T 33 KN8 - 28.26 

9 T 33 Spiral - 24.21 

10 T 33 KN4 + 22.28 

11 T 33 KN8 + 30.41 

12 T 33 Spiral + 20.72 

13 G 33 KN4 - 19.22 

14 G 33 KN8 - 31.62 

15 G 33 Spiral - 19.85 

16 G 33 KN4 + 23.65 

17 G 33 KN8 + 28.00 

18 G 33 Spiral + 21.25 

(+) Torque-stop was used, (-) Torque-stop was not used. 

Table 3 – Results of ANOVA for MLR model in 95% 
significance level 

Model Sum of 
squares 

Df Mean 
square 

F Sig. 

Regression 1342.45 4 335.61 22.98 0.000 

Residual 2803.90 192 14.60 - - 

Total 4146.35 196 - - - 
 

Table 4 – Results of correlation coefficients between parameters 

Parameter RT RD DTN TS 

RT 1.00 - - - 

RD -0.50 1.00 - - 

DTN 0.03 0.00 1.00 - 

TS 0.01 0.00 -0.03 1.00 
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15 terms with constant, linear, interaction, and 
squared terms. The R-value of model is found to be 
0.85. So, it can be said that the model parameters  
have nonlinear relationships. Quadratic model has 
acceptable performance, but due to existence of 
numerous terms in this model and calculation 
complexity, it is not an appropriate predictor tool.  

 
3.2  Artificial Neural Network Model 

In this study, beside regression model, the feed 
forward multilayer perceptron network with back 
propagation training algorithm was used to develop a 
model for prediction of yarn hairiness. One of the 
most important issues in generation of network is 
determination of number of hidden layer and number 
of neurons in each layer. There are few thumbs in this 
manner, but none of them is certain. Hence, networks 
were built with varying hidden layer from 1 to 5 and 
the number of neurons in each layer varied from 2 to 
10 in steps of 2. Matlab software version R2011a was 
used for programming ANN models. For faster 
convergence in training step, the Levenberg-
Marquardt (LM) algorithm was selected and also 
hyperbolic tangent sigmoid was considered as the 
transfer function for hidden layers. Maximum number 
of epochs to train was fixed to 1000 and linear 
function was used for output layer. As the weights 
and biases were chosen randomly, each network 
structure was trained 5 times and the information of 
the best network structure assessed by R-value was 
recorded. Total number of 3905 networks was trained 
and the results of models evaluation are given in 
Table 5. 

According to Table 5, high R-values of all fitted 
ANN models to data indicate that ANN is an excellent 
tool for the prediction of yarn hairiness. The best 
result is achieved by the network with 5 hidden layers 
(NN5), but the accuracy of the best two hidden layer 
network (NN2) is almost the same and clearly the 
complexity of network with two hidden layer is less. 
Hence, NN2 is selected for further study. In order to 
investigate the effect of transfer functions and training 

algorithms on NN2. The following options are 
considered: 

 Back-propagation training algorithm:  
o Gradient descent with momentum (Traingdm) 
o Gradient descent with momentum and adaptive 

learning rate (Traingdx) 
o Conjugate gradient with Powell-Beale restarts 

(Traincgb) 
o One-step secant (Trainoss) 
o Levenberg-Marquardt (Trainlm) 

 Transfer function of hidden layers: 
o Hyperbolic tangent sigmoid transfer function 

(Tansig) 
o Logistic sigmoid transfer function (Logsig) 
o Radial basis (Radbas) 

The main criterions for selection between different 
groups of back-propagation algorithms are speed, 
consumed memory and time. It must be mentioned 
that for each case the created network is trained  
5 times and the obtained results are assessed by  
R-value. Furthermore, consumed time of training  
is recorded for further investigation. The resultant 
information is presented in Table 6. 

Referring to Table 6, the network using Taringdm 
and Traingdx were exempted from extra investigation 
due to their extremely poor performance. Networks 
using Trainlm not only have the maximum R-value 
between other algorithms (0.9649), but also the best 
mean R-value (0.9632). Trainoss and Traincgb are in 
the next places. It is important to note that the 
network using Trainoss and Traincgb has almost 
similar performance (assessed by R-value) comparing 
with network using Trainlm. But considering the 
required time for training, it is observed that 
consumed time for Trainoss and Traincgb is about 
three times more than that for Trainlm. So, Trainlm 
can be selected as the best training algorithm.  
After determination of the most effective training 
algorithms, the most appropriate activation functions 
in hidden layers should be determined. A closer look 
to the Trainlm column in Table 5 reveals that all 
combination of activation functions results almost the 
same accuracy, but the highest R-value is related to 
the Radbas and Logsig functions for the first and 
second hidden layer respectively. So it can be 
concluded that the network with two hidden layer 
with 8 neuron in each of them, Radbas and Logsig as 
the activation function in the first and second hidden 
layer using Trainlm can predict the yarn hairiness 
with the highest accuracy (R-valeu = 0.9649).  

Table 5 – Best neural networks structure 

ANN R-value Network structure 

5 Hidden layers (NN5) 0.968 8 – 6 – 8 – 8 – 10 

4 Hidden layers (NN4) 0.967 10 - 2 - 4 - 6 

3 Hidden layers (NN3) 0.966 2 - 6 - 8 

2 Hidden layers (NN2) 0.964 8 - 8 

1 Hidden layer (NN1) 0.91 8 
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The predicted values of the best network versus 
corresponding measured values (test data) are shown 
in Fig. 1. 

 

3.3 Relative Effect of Machine Parameters on Yarn Hairiness 

In order to determine the relative importance of 
each machine parameter on yarn hairiness, the 
obtained best network was considered. There are 
several methods that can give the relative contribution 
and/or the contribution profile of the input factors. 
Partial Derivative (PaD) is one of the most widely 
used methods which computes the partial derivatives 
for the ANN output with respect to the input 
neurons25. For a network with ni inputs, one hidden 
layer with k neurons, and one output (n0=1), the 
partial derivatives of the output yj with respect to 
input xn (with j=1… N and N the total number of 
observations) are as follows: 

 

 
1

1
kn

ji j ho hj hj ih
h

d S w I I w


   …(1) 

 

where Sj is the derivative of output mode with respect 
to its input; Ihj , the response of the hth hidden neuron; 
and who and wih , the weights between the output 
neuron and hth hidden neuron, and between the ith 
input neuron and the hth hidden neuron. The result of 
Pad concerns the relative contribution of the ANN 
output to the data set with respect to an input. It is 
calculated by a sum of the square partial derivatives 
obtained per input variable, as shown below: 

 

 
2

1

N

i ji
j

SSD d


  …(2) 

 

Classification of variables according to their 
relative importance to the output variable could  
be possible with the SSD values. The highest the  
SSD value, the more influential is the input variable 
on output variable. Normalized SSD values are 
calculated for the present study variables and the 
results are 0.42, 0.12, 0.28 and 0.18 for RT, RD, DTN 
and TS respectively. According to results of SSD, 

Table 6 – Obtained R-value of ANN models for evaluation of best training algorithms and activation functions 

Network structure Activation function hidden layer Training algorithms 

8 – 8 (NN2) 

First Second Traingdm Traingdx Traincgb Trainoss Trainlm 

Radbas Radbas 0.7337 0.2483 0.9646 0.9647 0.9626 

Radbas Tansig 0.8104 0.3560 0.9646 0.9622 0.9637 

Radbas Logsig 0.4749 0.5886 0.9632 0.9626 0.9649 

Tansig Radbas 0.5835 0.2617 0.9622 0.9633 0.9626 

Tansig Tansig 0.2803 0.2199 0.9632 0.9627 0.9641 

Tansig Logsig 0.3495 0.2484 0.9619 0.9623 0.9626 

Logsig Radbas 0.7608 0.4175 0.9631 0.9621 0.9628 

Logsig Tansig 0.7634 -0.0782 0.9625 0.9624 0.9630 

Logsig Logsig 0.1389 0.2260 0.9618 0.9639 0.9628 

 Mean R-value  0.5439 0.2765 0.9612 0.9629 0.9632 

 

 
 

Fig. 1 – Predicted hairiness by NN2 and corresponding measured hairiness using Shirley tester (testing group) 
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rotor type has the greatest effect on the hairiness 
followed by doffing-tube nozzle, torque-stop and 
rotor diameter.  

Generally, the rotor with open and deeper groove 
offers better spinning stability but results in yarn with 
more hairiness. T-type rotor have wider and deeper 
groove than G-type rotor, hence T-type rotor leads to 
the yarn with more hairiness. Doffing-tube nozzle is 
the most important factor in increasing and also 
diffusing the false twist into the twist zone in rotor 
groove. It is known that more twist makes the yarn 
with less hairiness. The doffing-tube nozzle has two 
contradictory effects. First, more flutes lead to more 
vibration in yarn during passing from doffing-tube 
nozzle and it doesn’t let the yarn flattened in its 
passing route, so friction results in more hairiness. 
Second, the diffused false twist will increase with the 
increase of flutes and more twist causes less hairiness. 
So, which of these contradictory effects will be 
dominant, it depends on the other parameters and also 
interactions between them. For example by 
considering KN4 and spiral doffing-tube nozzles, in 
some cases using KN4 results more hairiness in the 
same conditions. When the spinning stability is not 
perfectly satisfactory, the assistance of torque-stop is 
needed. With the aid of torque-stop, the twist in  
the yarn between torque-stop and rotor groove is 
increased. Yarn torsional moment is a contributing 
factor in producing belly bands and consequently for 
the hairiness in the rotor yarn. Generally, in a constant 
peripheral speed, decrease in rotor diameter results in 
reduction in yarn torsional moment and increase in 
overlapping fibres at the yarn peel-off point in the 
rotor groove. Due to the overlapping fibres, the 
almost spun yarn is covered by cross wrapping  
and it results in less hairiness. But when the  
spinning conditions vary considerably, since there  
are interactions between machine parameters, and 
existence of nonlinearity between phenomenon,  
as it was demonstrated with both linear and nonlinear 
regressions, each machine parts could influence other 
parts performance and create different impact upon 
resultant yarn properties. According to the results, it is 
of interest to mention that: 

 The most yarn hairiness will be produced by using 
T-type rotor with 40mm diameter, KN8 doffing-
tube nozzle without the aid of torque-stop. 

 Using G-type rotor with 33mm in diameter, KN4 
doffing-tube nozzle and without torque-stop 

applied in the spinning machine, the yarn with the 
least hairiness will be produced. 

 
4 Conclusion 

In this paper, it was attempted to design a model 
for prediction of polyester/cotton blended rotor-
spun yarns from machine parameters. Rotor type, 
rotor diameter, doffing-tube nozzle, and torque-stop 
were used as the input variables. Two models were 
built using ANN and MLR. Unacceptable R-value 
obtained from MLR indicates that linear model is 
not appropriate. Nonlinear regression indicates 
satisfactory performance, but due to numerous 
terms and computational complexity, it is not 
suitable. Furthermore, it is weaker than the worst 
developed neural network. The obtained results 
show that there is significant difference between 
prediction of network with different architectures 
and training algorithms. Regarding R-value, 
consumed time of training and complexity, the 
network with two hidden layers with Levenberg-
Marquardt training function, radial basis and 
logistic sigmoid as the first and second hidden layer 
activation function have the best performance (R-
value = 0.97). The study of the relative importance 
of input variables using Pad method based on the 
efficient network reveals that rotor type has the 
greatest impact on yarn hairiness and rotor diameter 
shows the least effect.  
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