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Regenerated cellulose (RC)/multiwalled carbon nanotube (MWCNTs) composite films have been successfully prepared 
in NaOH/urea aqueous solution by coagulation with H2SO4 solution. The structure and properties of the RC/MWCNTs 
composite films are investigated by Fourier-transform infrared (FTIR) spectra, wide-angle X-ray diffraction (XRD), optical 
microscope (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric 
analysis (TGA) and tensile testing. The results reveal that the MWCNTs disperse well in the cellulose matrix when the 
content of the MWCNTs is less than 1wt%. MWCNTs in the cellulose matrix maintain the original nanocrystalline structure 

and properties, weaken the hydrogen-bond formed between the cellulose, decrease the crystallinity of the composite films, 
but do not apparently reduce the thermal stability of the composite films. Compared to regenerated cellulose films, the 
mechanical properties of the composite films have been improved to some extent. The tensile strength of the composite 
films is bound to be 108 MPa, when the amount of MWCNTs is just 0.2wt %. 
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1 Introduction 
Carbon nanotubes (CNTs) have attracted tremendous 

attention due to their unique physiochemical properties
1-3

. 

Experimental studies and theoretical modeling  

have demonstrated high Young’s modulus, stiffness, 
and flexibility of CNTs

4
. These outstanding properties 

combined with their low density and high aspect 

ratios (up to 1000) make CNTs to be used as an 
excellent reinforcing agents in polymers. It is 

generally recognized that the high performance of 

CNTs in composite strongly depends on the ability to 
homogeneously disperse throughout the matrix, 

interfacial bonding and the content
5
. Producing well-

dispersed CNTs in a composite is difficult due to the 

intermolecular ‘van der Waals interactions’ between 
the CNTs, thus leading to the formation of aggregates. 

Some efforts such as high-energy sonication of the 

CNTs over a prolonged period of time and addition of 
surfactants have been made to obtain uniform 

dispersion of CNTs in a polymer matrix
6
. The more 

flexible way is to introduce various functional groups 

on the surface of CNTs. For instance, by simply 
refluxing CNTs with nitric acid or mixed acids, some 

functional groups, such as carboxylic, carbonyl, and 
hydroxyl groups, can be introduced on MWCNTs

7
. 

With these reactive groups on CNTs, many other 

organic groups can be derived by routine synthesis
8-10

. 

During the past decade, poly(ethylene oxide)
11

, 
poly(vinylidene fluoride)

12
, Polyurethane

13
 and many 

other polymers
14-16

 have been employed to prepare 

CNTs/polymer composite, and the improvement in 
the properties of composite has been noticed

17-19
. 

However, there are still little studies on CNT/natural 

polymer composite
20,21

, particularly on CNTs/ cellulose 
composite.  

Cellulose, one of the most plentiful natural biopolymers, 
is renewable, biodegradable and biocompatible. It is 

expected to become a new industrial material on account 

of its high mechanical stability and inexhaustibility. 

However, cellulose is difficult to process in solution 
or as a melt because of its large proportion of  

intra- and inter-molecular hydrogen bonds, and thus 

only a few composite functional materials based on 
CNTs/cellulose have been reported

22
. Zhang et al.

23
 

prepared regenerated cellulose (RC)/multiwalled 

carbon nanotube (MWCNTs) composite fibres with 
enhanced mechanical properties and thermal stability 

in ionic liquid 1-allyl-3-methylimidazolium chloride. 

Lu et al.
24

 reported the MWCNTs/lyocell composite 
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fibres with increasing mechanical and thermal 

properties, formed by a dry-wet spinning method in 

N-methylmorpholine-N-oxide (NMMO). However, 
CNTs/cellulose composite film prepared from an 

aqueous solution system has not been reported so far. 

Recently, NaOH/urea aqueous solution, precooled  
to -12 °C, has been developed to rapidly dissolve 

cellulose
25

. Moreover, regenerated cellulose films and 

fibres with good structure and properties have been 
prepared successfully from the cellulose dope

26
. 

Encouraged by these findings, in this study the 

composite films from cellulose and MWCNTs have 
been produced in NaOH/urea aqueous solution. 

Structure, morphology and properties of the 

nanocomposite films are investigated by FTIR, X-ray 
diffraction (XRD), optical microscope (OM), 

scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), thermogravimetric 
analysis (TGA) and tensile testing.  
 

2 Materials and Methods 
 

2.1 Materials 

Cellulose (cotton linter pulp) was supplied by 
Hubei Chemical Fiber Group, Ltd., China. Its 
viscosity-average molecular weight was determined 
by viscometry in cadoxen (9.25×10

4
 g/mol). 

MWCNTs (content 95 -98 vol％, diameter 60 - 80 
nm, and length 1 - 2 µm) were purchased from 
Shenzhen Nanometer Gang Co., Ltd., China. Other 
reagents, (analytical grade), were used without further 
purification. 
 

2.2 Preparation of RC/MWCNTs Nanocomposite Films 

A desired amount of MWCNTs was dispersed into 
200 g solution with NaOH/urea/water (7:12:81 by 

weight). The suspension was stirred overnight at  

room temperature and then ultrasonicated for 1 h. 

Finally, the suspension was cooled to -12.3 °C in a 

refrigerator. Cellulose (8.25 g) was immediately 
dispersed into the suspension under vigorous stirring 

(5 min) to obtain a cellulose/MWCNTS solution.  

The well-mixed solution was then poured into a  
glass plate of the thickness 0.5 mm and then 

immediately immersed in a 5.6 wt % H2SO4 aqueous 

solution for 5 min to coagulate. The resulting 
composite film was washed with running water and 

dried in the air. The obtained composite films with 

addition of 0.2, 0.5, 1.0, 2.0 and 4.0% (wt%) 
MWCNTs were named as CN-02, CN-05, CN-10, 

CN-20 and CN-40 respectively. The RC film was 
prepared from pure cellulose in the solution with 

NaOH/urea /water (7:12:81 by weight) using the same 

method. 
 

2.3 Characterization  

Fourier-transform infrared (FTIR) spectra were 

recorded on an FTIR spectrometer (model 1600, 

Perkin-Elmer Co.). The samples were prepared by 
using the KBr disk method. Wide-angle X-ray 

diffraction (XRD) measurement was carried out on 

XRD diffractometer (D8-Advance, Bruker). The XRD 
patterns with Cu Kα radiation (1.5406×10-10 m) at 40 

kV and 30 mA were recorded in the region of 2θ from 

6° to 50°. Transmission electron microscopy (TEM) 
images were taken on a JEOL JEM-2010 (HT) 

electron microscope at an accelerating voltage of 200 

kV. The optical microscopy (OM) of the composite 
films was taken by Olympus B X 60 microscope 

(USA). Scanning electron microscopy (SEM) was 

performed on a FESEM (SEM, SIRION TMP, FEI) 
by using an accelerating voltage of 20 kV. 

The tensile strength (σb) and elongation at break 

(εb) of the composite films were measured by 
universal tensile tester (CMT6503, Shenzhen SANS 

Test Machine Co, Ltd, China) at a speed of 5 mm/min 

respectively
27

. Before testing the mechanical 
properties in dry state, the films were allowed to rest 

for at least one week at 60-63.5% RH (saturated NaBr 

solution at room temperature). Conditioning was 
achieved to ensure the equilibration of the water 

content in the films with that of the atmosphere 

(stabilization of the sample weight). The water 
content of the composite films was about 12-20%. 

The mechanical properties of the films in wet state 

were measured immediately after the film soaking in 
water for 30 min. Each test was repeated at least five 

times and the average value was reported. 
 

3 Results and Discussion 
 

3.1 Characterization 

Figure 1 shows the FTIR spectra of the RC film 

and the RC/MWCNTs composite film. The peaks at 

3418 cm
-1
, 1421 cm

-1
 and 890 cm

-1
 in the spectrum of 

RC film are the characteristic absorption peaks of 

cellulose II
28

. Similar to the RC film, the 

RC/MWCNTs composite films still keep the 
characteristic absorption of cellulose II, but the broad 

peak at 3418 cm
-1

 is shifted to 3440 cm
-1

 and 

gradually becomes narrow with the increase in 
MWCNT content. The bands at around 3418 cm

-1
 and 

3440 cm
-1

 are attributed to intra- and inter-molecular 

hydrogen bonding of cellulose, respectively
29

. This 
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finding suggests that the incorporation of MWCNTs 

in the matrix partially destroy the hydrogen-bond 

between the cellulose, leading to the increase in free 
hydroxyl and the decrease in hydroxyl bonding.  

In addition, the peak at 1239 cm
-1

 is ascribed to C-C 

vibration absorption, which is greatly enhanced due to 
the presence of MWCNTs. 

Figure 2 shows the XRD patterns of MWCNTs, 

RC and RC/MWCNTs composite films. MWCNTs 

present the characteristic diffraction peak at 2θ = 

25.8°, indicating that it has a similar crystal structure 

to highly oriented pyrolytic graphite. The RC film 

exhibits three characteristic diffraction peaks at 2θ  = 

12.4°, 20.2°, and 22.2°, assigned to ( 011 ), (110), and 

(200) planes of cellulose II respectively
30

. Compared 

to the RC film, all the RC/MWCNTs composite films 

show the typical cellulose II crystalline form, but the 

shape of the characteristic diffraction peaks of 

cellulose II becomes broader and the corresponding 

intensity decreases as the MWCNTs content is 

increased. These changes imply that the incorporation 

of MWCNTs has little advancement on the crystalline 

structure of cellulose. The probable reason could be 

attributed to the strong interaction between MWCNTs 

and cellulose chains, which hinders the rearrangement 

of cellulose chains, leading to the decrease in degree 

of crystallinity of cellulose. Meanwhile, as the 

MWCNTs increases in the RC/MWCNTs composite 

films, a little diffraction peak at 2θ = 25.8° ascribed to 

MWCNTs is observed in CN-40 film. The presence of 

the characteristic diffraction peaks of MWCNTs in 

the RC/MWCNTs composite films demonstrates that 

MWCNTs in the cellulose matrix still maintains the 

original nanocrystalline structure.  
 
3.2 Dispersion and Morphology  

Figure 3 shows the dispersity of MWCNTs in the 

cellulose matrix. The carbon nanotubes reflect incident 

light, and the black dots on the image are the MWCNTs. 
The optical images of CN-02 and CN-05 composite 

films show the well-dispersed status of MWCNTs in the 

matrix with slight aggregation. However, the aggregates 
of nanotubes are visible in CN-10 and CN-20 composite 

films. This fact indicates that the MWCNTs are 

uniformly distributed within the cellulose matrix at 
lower loading (< 1 wt %), but there is macrophase 

separation at higher loading.   
 

Fig. 1 — FTIR spectra of RC/MWCNT nanocomposite films 
 

 
 

Fig. 2 — XRD patterns of RC/MWCNT nanocomposite films 

 
Fig. 3 — Optical microscopic images of RC/MWCNT nanocomposite 

films (a) CN-02; (b) CN-05; (c) CN-10 and (d) CN-20 
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TEM was also used to evaluate the dispersion of 

MWCNTs in cellulose matrix. The variations in 

contrast and diameter of the MWCNTs are mainly 
due to difference in electron scattering from different 

depth regions of the section. As shown in Fig. 4, 

MWCNTs are dispersed well within the cellulose 
matrix, and no obvious aggregation is observed  

even in CN-20 composite film. It is interesting to  

find that MWCNTs in cellulose matrix presented 
extreme flexibility and are inter-twined with cellulose. 

Such entanglement between MWCNTs and cellulose 

chains, in combination with the nanostructure 
characteristics of MWCNTs, could provide the 

structural reinforcement to the cellulose matrix. 

Figure 5 shows the fracture surfaces of the 
RC/MWCNT composite films after tensile testing. 

The well-dispersed bright dots and lines are the ends 

of the broken MWCNTs. Due to the traction and 
stretch orientation in preparation process, the carbon 

nanotubes in the fractured sample appear to be 

aligned along one direction. From Figs 5(a) and (b), a 
homogeneous dispersion of MWCNTs is achieved 

throughout the cellulose matrix at 0.5 wt % MWCNTs 

loading, and the fraction surface of CN-05 composite 
film show clear and large layer shape structure.  

With 4.0 wt % MWCNTs loading [Figs 5 (c) and (d)], 

the fraction surface of CN-40 composite film becomes 

small and part of the MWCNTs tends to aggregate. 

These results further prove that MWCNTs is 
compatible with cellulose matrix at lower loading but 

separated from cellulose matrix at higher loading.  
 

3.3 Thermal Stability 

Thermal degradation patterns of the RC and the 

RC/MWCNTs composite films are shown in Fig. 6. 
The RC/MWCNTs composite films have a similar 

thermal decomposition behavior to the RC film,  

and all of them present three obvious steps of 
thermogravimetry. In the first step, a small weight 

loss of about 3.0-6.0 wt % at 50-150
 o

C could be 

assigned to the release of moisture from the samples. 
In the second step, the greatest weight loss, attributed 

to the decomposition of cellulose, is found in the 

temperature range 250-350
 o

C for the RC and the 

RC/MWCNTs composite films. In the third step, the 

 
 

Fig. 4 — TEM images of the RC/MWCNT nanocomposite films. 

(a) CN-02; (b) CN-05; (c) CN-10 and (d) CN-20 

 

Fig. 5 — SEM images of fracture surface of the RC/MWCNT 

nanocomposite films, (a and b) CN-05 and (c and d) CN-40 
 

 

Fig. 6 — TGA curves of the RC/MWCNT nanocomposite films 
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weight loss at 350-550
 o

C is believed to be caused by 

oxidation and carbonization of the samples. At this 
step, it is interesting to observe that the RC/MWCNTs 

composite films show quicker oxidation and 

carbonization rate in comparison with that of the RC 
films. This phenomenon could be explained by the 

high thermal conductivity of the MWCNTs, which 

accelerates the process of the oxidation and 
carbonization in RC/MWCNTs composite films. The 

TGA results indicate that the introduction of 

MWCNTs in cellulose matrix does not apparently 
reduce the thermal stability of the matrix, and 

suggests some extent of miscibility between cellulose 

and nanotubes. 
 

3.4 Tensile Test 

The elongation-at-break (εb) and tensile strength 
(σb) are plotted as a function of MWCNTs content 
(Fig. 7). There is a significant relationship between 

mechanical properties of composite films and the 

MWCNTs content. The incorporation of MWCNTs 
greatly improves the tensile properties of the 

composite films especially with lower MWCNTs 

content. With addition of 0.2 wt % MWCNTs, σb and 

εb increase by about 16.7% and 69.3% in contrast 

with neat RC film. As MWCNTs loading is increased 

to 1.0 wt %, σb and εb are further enhanced by 31.9% 
and 165% respectively. However, the improvement  

in these properties declines when more MWCNTs  

are incorporated (2.0-4.0 wt %). With 2.0 wt% of 

MWCNTs filler, εb is increased slightly, while σb is 

almost kept stable. As the loading level of MWCNTs 

is increased to 4.0 wt%, both σb and εb dramatically 
reduce. In view of the above results, it is concluded 

that the reinforcement effect on mechanical properties 

and tensile properties could be ascribed to the finely 

dispersed high performance MWCNTs nanofillers 

throughout the cellulose matrix. MWCNTs in cellulose 
matrix present extreme flexibility, while the carbon 

nanotubes appear to be aligned along one direction  

for the traction and stretch orientation in preparation 
process. On the other hand, the aggregate of 

MWCNTs within the matrix at higher concentrations 

increases the film defect, thus partially offsetting the 
reinforcement effect.  
 

4 Conclusion 

Regenerated cellulose (RC)/multiwalled carbon 
nanotube (MWCNTs) composite films are successfully 

prepared via a simple and green method. The formed 

composite films are characterized by FTIR, XRD, OM, 
SEM, TEM, TGA and tensile testing. The MWCNTs are 

observed to be homogeneously dispersed throughout  

the cellulose matrix at lower loading (< 1 wt %), but 
separated from cellulose matrix at higher loading.  

For the entanglement between MWCNTs and  

cellulose chains, the incorporation of WMCNTs leads to 
decrease in the degree of crystallinity of cellulose, but 

does not apparently reduce the thermal stability of the 

matrix. As expected, tensile test shows that both the 
mechanical properties and the tensile properties of the 

RC/MWCNTs composite films are greatly improved  

at lower MWCNTs feeding for the effect of nano 
enhancement. However, these reinforcement effects are 

declined due to the aggregate of MWCNTs within the 

matrix at higher concentrations.  
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