

Indian Journal of Natural Products and Resources Vol. 12(4), December 2021, pp. 610-616



# Analysis of a polyherbal galactagogue Batrisu vasanu, an indigenous Indian ethnomedicine

Sanket Charola<sup>1\*</sup>, Bhavesh Tadvi<sup>1</sup>, Susy Albert<sup>1</sup>, B. Suresh<sup>2</sup> and Sirimavo Nair<sup>3</sup>

<sup>1</sup>Department of Botany, <sup>2</sup>Department of Zoology, Faculty of Science, <sup>3</sup>Department of Foods and Nutrition, Faculty of Family and Community Sciences, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India

Received 23 May 2020; Revised 30 October 2021

Batrisu vasanu, katlu or battisa is an ethnobotanically popular polyherbal galactagogue and postpartum remedy in western India. It is only traditionally practised and is not reported scientifically. This study was focused on qualitative analysis of the ingredients added and their variations among marketed Batrisu vasanu products. Samples were collected in Gujarat (India) and from the ingredients mentioned on the pack, their botanical details were analysed using Ayurvedic Pharmacopoeia of India – Part I. Relative frequency of citation (RFC), number of herbs shared ( $N_h$ ) by samples, and Jaccard coefficient was calculated to find the consistency in ingredient. A Cluster dendrogram was prepared to show diversity in sample ingredients. The composition of 16 collected samples showed 24.5±6.33 herbs per sample with a range of 26 herbs. Total 69 medicinal herbs of 64 species, from 58 genera belonging to 38 diverse plant families were reported. Gokshura was the only common herb present among all the samples. Further,  $N_h$  of 12.80±4.62 and average Jaccard coefficient of 0.35 suggests very poor similarity of samples. It is concluded that samples were added with diverse types of herbs, and were having a highly inconsistent polyherbal composition. These findings raise serious concerns about the quality of this ethnomedicinal product.

Keywords: Batrisu vasanu, Ethnomedicine, Galactagogue, Gokshura, Lactation, Postpartum care. IPC code; Int. cl. (2015.01)- A61K 36/00

## Introduction

Physiologically and psychologically child birth is a significant event for women. But it also presents both physical and emotional challenges for her postpartum. During the postpartum period, good care and a balanced nutritious diet are essential for the recovery of the mother and the healthy development of the child<sup>1</sup>. Breast milk is an optimum source of nutrition for new-born<sup>2,3</sup>. It also provides immunity and nutrition to the child. Under various circumstances, namely preterm birth, mother-child separation, indirect lactation, anxiety, and depression, insufficient milk supply is reported<sup>4</sup>. Poor lactation is a major concern of breast lactation failure<sup>3</sup>.

Lactation can be induced by various means, using superfoods, pharmaceutical drugs, herbal medicines, and also sometimes by psychological support and relaxation techniques<sup>3,5</sup>. Galactagogues are herbal or pharmaceutical drugs that initiate, maintain, or augment a sufficient rate of milk production to meet the need of the baby<sup>6</sup>. Owing to multiple concerns of

new mothers to prescription drugs, many women explore complementary and alternative therapies<sup>7</sup>. Ethnomedicinal galactagogues are used in nearly all cultures and are of diverse nature for every society. For such practices, women mostly rely on their cultural knowledge and traditions than medical practitioners<sup>8</sup>.

One of the widely consumed ethnomedicinal galactagogue and traditional supplementary food in Gujarat is Batrisu vasanu<sup>9</sup>. The word 'batrisu' here refers to thirty-two herbs, and 'vasanu' means its preparation. It is also known as Battisa or katlu and is taken during the first three months of lactation<sup>10,11</sup>. It is believed to improve lactation and health while it also boosts the immunity of the mother and the newborn. Due to the popularity of this herbal preparation, it is widely marketed at herbal drug and condiment shops in powder form. However, in absence of reference for this polyherbal mixture, the botanical composition of the marketed product is a serious concern. It was hypothesised that all marketed products follow the common code of medicinal herbs in Batrisu vasanu. Hence this study was aimed to qualitatively analyse the herbal ingredients used in

<sup>\*</sup>Correspondent author

Email: sanket.charola-botany@msubaroda.ac.in

Supplementary table is available online only.

marketed Batrisu vasanu products and identify variations among them.

## **Materials and Methods**

The present study was carried out in Gujarat state (India) from November 2019 to February 2020. Purposively seven districts of Gujarat were selected, and in each district randomly ten shops of condiments and crude herbs (ayurvedic) stores were visited. Each shop was enquired for the marketed product with local popular name Batrisu vasanu or katlu. The products with on-pack information labels about ingredients were included in the study. Loose products without any ingredient information were excluded. Samples were then coded to maintain the confidentiality of the manufacturer for further research. Ingredients listed on packets were noted and redundant names were removed. Names of the herb written in vernacular names were validated using language literature<sup>12</sup>. standard local Further referencing was done with standard Ayurveda books and then Ayurvedic Pharmacopoeia of India (API) -Part I was used for confirming all plant details<sup>13,14</sup>. Additionally, the Food safety and standards authority of India (FSSAI) registration number, manufacturing and expiry dates and nutritional chart details were noted. The data were recorded in Microsoft excel and then statistical analysis and graphics were executed in R programming language<sup>15</sup>. Results are represented as fractions, percentage and mean±SD. Relative frequency of citation (RFC) was calculated for all herbs. To find the average number of herbs shared among all samples, the modified equation of the food pairing principle was used<sup>16</sup>. The mean number of herbs shared  $(N_h)$  was calculated by the following equation for *n* number of samples, where each sample (i) has a set of herbs (H).

$$N_h = \frac{2}{n(n-1)} \sum_{i \neq j} |H_i \cap H_j|$$

Statistically, the mean number of shared herbs  $(N_h)$  will be zero if none of the sample pairs (i, j) shares any herbs.

Hierarchical cluster analysis was performed using binary distance among each sample pair and the cluster dendrogram was prepared. To obtain the Jaccard similarity coefficient, each sample pairs were individually tested for a set of herbs present in it. The average Jaccard coefficient was calculated as the mean of Jaccard coefficients of all sample pairs.

## Results

During the study period, a total of 16 marketed Batrisu vasanu products were collected. The samples were coded as BV01 to BV16 for further study. Only two samples, BV02 and BV05 had FSSAI numbers, manufacturing date and detailed nutrition chart on the packet. Names of the herbal ingredients were found written either in local language (Gujarati), English or botanical name. The number of herbs per sample in BV01 was highest and BV13 was the lowest (Fig. 1). There was a minimum of 10 herbs to a maximum of 36 herbs with range of 26 herbs per sample. Among the samples collected, the average number of herbs added as ingredients was  $24.5\pm6.33$ .

After botanical validation of local and traditional names of the herbs, a total of 69 medicinally important herbs were found from these products. Sample wise distribution of each of these 69 herbs is given in Supplementary Table 1. As shown in Table 1, the list of these plants was made with their scientific name, API name, local name (Gujarati language), common name, family and part used. Botanically this study reports a total of 64 species of plants belonging to 58 important Genera. These medicinal plants belong to 38 diverse families, of which major families were Fabaceae (13.04%), Zingiberaceae (10.14%) and Piperaceae (8.69%). Of these medicinal plants, a total of 16 different parts

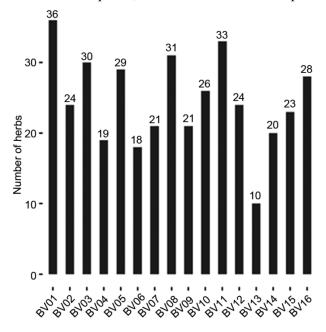



Fig. 1 — Bar plot showing the number of herbs per sample of Batrisu vasanu.

| r.<br>Io. | Botanical name                                         | Family         | API name     | Common name                 | Local Name                   | Part<br>used | RFC  |
|-----------|--------------------------------------------------------|----------------|--------------|-----------------------------|------------------------------|--------------|------|
|           | Abutilon indicum (L.) Sw.                              | Malvaceae      | Atibalaa     | Country mallow              | Balbij, Baladana             | Sd.          | 0.63 |
|           | Acacia nilotica L.                                     | Mimosaceae     | Babbuula     | Babul                       | Bawalgunder                  | Gum          | 0.4  |
|           | Acorus calamus L.                                      | Araceae        | Vacha        | The sweet flag              | Vacha, Vaj,                  | Rz.          | 0.1  |
|           | neorus culumus E.                                      | Indecae        | v acha       | The sweet hag               | Ghodvach                     | ICZ.         | 0.1  |
|           | Alpinia galanga Willd.                                 | Zingiberaceae  | Kulanjana    | Greater galangal            | Panjad, Kulinjan             | Rz.          | 0.4  |
|           | Amomum subulatum Roxb.                                 | Zingiberaceae  | Sthulaila    | Greater or                  | Elacho,                      | Sd.          | 0.1  |
| 5<br>5    |                                                        | U              |              | Nepal cardamom              | Moti Elchi                   |              |      |
|           | Anacyclus pyrethrum DC.                                | Asteraceae     | Akarakarabha | Pellitory                   | Akkalkaro,                   | Rt.          | 0.4  |
|           |                                                        |                |              |                             | Akkalgaro                    |              |      |
|           | Anethum sowa Roxb. ex Flem.                            | Apiaceae       | Satahva      | Indian dil fruit            | Suva                         | Fr.          | 0.3  |
|           | Asparagus adscendens Roxb.                             | Asparagaceae   | Musali       | White musli                 | Safed mushali                | Rt.          | 0.7  |
|           | Asparagus racemosus Willd.                             | Liliaceae      | Satavari     | Asparagus                   | Shatavari                    | Rt.          | 0.8  |
|           | Asteracantha longifolia Nees.                          | Acanthaceae    | Kokilaksha   | Long leaved barleria        | Ekharo                       | Sd.          | 0.4  |
|           | Bambusa bambos Druce.                                  | Poaceae        | Tugaksiri    | Bamboo manna                | Vaskapoor,<br>Vanslochan     | Resin        | 0.4  |
|           | Buchnania lanzan Spreng.                               | Anacardiaceae  | Priyala      | Cuddapah almond             | Charoli                      | kl.          | 0.0  |
|           | Butea monosperma (Lam) Kuntze                          | Fabaceae       | Palasa       | Butea gum                   | Kamarkas                     | Gum          | 0.3  |
|           | Careya arborea Roxb.                                   | Lecythidaceae  | Kumbhika     | Kumbi                       | Vapumbha,<br>Kumbhi          | Fl.          | 0.2  |
|           | <i>Cassia absus</i> L.                                 | Fabaceae       | Chakshushyaa | -                           | Chimed                       | Sd.          | 0.3  |
|           | <i>Cinnamomum tamala</i><br>(Buch. Ham.) Nees & Eberm. | Lauraceae      | Tvakapatra   | Indian cinnamon             | Tamal patra,<br>Tejpatra     | Lf.          | 0.3  |
|           | Cinnamomum zeylanicum Blume.                           | Lauraceae      | Tvak         | Cinnamon bark               | Taj, Dalchini                | St. bk.      | 0.5  |
|           | Corchorus depressus L.                                 | Malvaceae      | Chanchuka    | Bahu phali                  | Bahuphali                    | Sd.          | 0.2  |
|           | Coriandrum sativum L.                                  | Umbelliferae   | Dhanyaka     | Coriander fruit             | Dhana                        | Fr.          | 0.2  |
|           | Curculigo orchioides Gaertn.                           | Amaryllidaceae | Talamuli     | Golden eye grass            | Kali musli,<br>kalirnusali   | Rz.          | 0.5  |
|           | Curcuma anguistifolia Roxb.                            | Zingiberaceae  | Tavkshir     | East Indian arrowroo        | tTavkir,<br>Tavkheer         | Rt.          | 0.0  |
|           | Curcuma longa L.                                       | Zingiberaceae  | Haridra      | Turmeric                    | Haldar                       | Rz.          | 0.2  |
|           | Cydonia oblonga Mill.                                  | Rosaceae       | Amritaphala  | Quince fruit                | Bihidana, Bedaana            | Sd.          | 0.1  |
|           | <i>Dactylorhiza hatagirea</i><br>(D. Doon) Soo         | Orchidaceae    | Hattajari    | Marsh orchids               | Salampanja,<br>Punjabi salam | Rt.          | 0.3  |
|           | Eletteria cardamomum (L.) Mator                        | •              | Sukshmaila   | Cardamom                    | Elaichi                      | Fr.          | 0.6  |
|           | Embelia ribes Burm. F.                                 | Myrsinaceae    | Vidanga      | Embelia                     | Vavding,<br>Vayavadang       | Fr.          | 0.2  |
|           | Foeniculum vulgare Mill                                | Umbelliferae   | Mishreya     | Fannel fruit                | Variyali                     | Fr.          | 0.4  |
|           | Glycyrrhiza glabra L.                                  | Fabaceae       | Yashtimadhu  | Licorice                    | Jethimadh, Mulethi           | Rt.          | 0.0  |
|           | <i>Hedychium spicatum</i> Ham.<br>ex Smith             | Zingiberaceae  | Shati        | Spiked ginger lily          | Kapurkachri,<br>Kapurkachali | Rz.          | 0.0  |
|           | Illicium verum Hook. F.                                | Magnoliaceae   | Takkola      | Star anise of china         | Badiyaan                     | Fr.          | 0.0  |
|           | Indigofera glandulosa Wendl.                           | Fabaceae       | -            | -                           | Vakeriyo                     | Sd.          | 0.3  |
|           | Ipomoea hederacea (L.) Jacq.                           | Convolvulaceae | Krishna bij  | ivy-leaved<br>morning glory | Mughalai                     | Sd.          | 0.2  |
|           | Lepidium sativum L.                                    | Cruciferae     | Chandrasura  | Common cress                | Asaliyo, Aseriya             | Sd.          | 0.2  |
|           | Mesua ferrea L.                                        | Guttifereae    | Nagakesara   | Cobras saffron              | Nagkesar                     | Fl. bd.      | 0.5  |
|           | Mucuna pruriens Baker.                                 | Fabaceae       | Atmagupta    | Cowhage                     | Safed kaucha                 | Sd.          | 0.8  |
|           | Mucuna pruriens Baker.                                 | Fabaceae       | Atmagupta    | Cowhage                     | Kala kaucha                  | Sd.          | 0.0  |
|           | Myristica fragrans Houtt.                              | Myristicaceae  | Jatiphala    | Nutmeg                      | Jaiphala, Jayfar             | Sd.          | 0.6  |
|           | Myristica fragrans Houtt.                              | Myristicaceae  | Jatipatri    | Mace                        | Javintri                     | Aril         | 0.5  |
|           | Nelumbo nucifera Gaertn.                               | Nymphaeaceae   | Kamala       | Sacred lotus                | kamalgatta,<br>kamalkakdi    | Sd.          | 0.1  |
| 10        | Papaver somniferum L.                                  | Papavaraceae   | Khaskhasa    | Poppy seeds                 | Khaskhas                     | Sd.          | 0.5  |
|           |                                                        |                |              |                             |                              |              | (Co  |

| T   | able 1 — Alphabetically ordered list of                 | of herbs with their I | Pelative frequency | v of citation (REC) as us | ed in Batricu vacanu                      | products (C | (ontd) |
|-----|---------------------------------------------------------|-----------------------|--------------------|---------------------------|-------------------------------------------|-------------|--------|
| Sr. | Botanical name                                          | Family                | API name           | Common name               | Local Name                                | Part        | RFC    |
| No. | Botanical name                                          | Panniy                | AIThanic           | Common name               | Local Mallie                              | used        | КГС    |
| 41  | Piper chaba Hunter non-Blume.                           | Piperaceae            | Gajapippali        | Java long pepper          | Gajapipar                                 | Fr.         | 0.06   |
| 42  | Piper longum L.                                         | Piperaceae            | Pippali            | Long pepper               | lindipeepar, Pipali                       | Fr.         | 0.88   |
| 43  | Piper longum L.                                         | Piperaceae            | Pippalimula        | Piper root                | Pipalimool,<br>Ganthoda                   | Rt.         | 0.81   |
| 44  | Piper nigrum L.                                         | Piperaceae            | Maricha            | Black pepper              | Kala mari                                 | Sd.         | 0.88   |
| 45  | Piper nigrum L.                                         | Piperaceae            | Maricha            | Black pepper              | Safed mari                                | Sd.         | 0.75   |
| 46  | Piper retrofractum Vahl.                                | Piperaceae            | Chavya             | Cubeb                     | Chavaka, Chavka                           | St.         | 0.13   |
| 47  | Pistachia vera L.                                       | Anacardiaceae         | Mukuulaka          | Pistachio                 | Pista                                     | Kl.         | 0.06   |
| 48  | Plantago ovate Forssk.                                  | Plantaginaceae        | Snigdhajeerak      | Ispaghula seed            | Isabgol dana,<br>Othamijiru               | Sd.         | 0.25   |
| 49  | Plumbago zeylanica L.                                   | Plumbaginaceae        | Chitraka           | Lead war                  | Chitrak,<br>Chitrakmula                   | Rt.         | 0.13   |
| 50  | <i>Polygonatum verticillatum</i> (L.) All.              | Liliaceae             | Meda               | Solomon's seal            | Salamdana, Salam<br>misri                 | Rt.         | 0.19   |
| 51  | Prunus amygdalus Batsch                                 | Rosaceae              | Vaataama           | Almond                    | Badamgir                                  | Kl.         | 0.06   |
| 52  | Pterocarpus marsupium Roxb.                             | Leguminoseae          | Asana              | Indian kino tree          | Asan, Biyo                                | Ht. wd.     | 0.19   |
| 53  | Pueraria tuberosa DC.                                   | Fabaceae              | Vidarikanda        | Indian kudju              | Vidarikand,<br>Bhonykoru                  | Tub. rt.    | 0.38   |
| 54  | Quercus infectoria Olivo                                | Fagaceae              | Mayyaku            | Oak-gall                  | Mayafal,<br>Maujoophal                    | Gall        | 0.19   |
| 55  | <i>Salmalia malabarica</i> (DC) Schott & Endl.          | Bombacaceae           | Mocarasa           | Silk cotton tree          | Semulmusli,<br>Shaalmali                  | Rt.         | 0.06   |
| 56  | Sida cordifolia L.                                      | Malvaceae             | Bala               | Country mallow            | Bala                                      | Rt.         | 0.06   |
| 57  | Smilax china L.                                         | Liliaceae             | Madhusnuhi         | China root                | Chopcheenee                               | Tub. rt.    | 0.44   |
| 58  | Sphaeranthus indicus L.                                 | Asteraceae            | Mahamundi          | East indian thistle       | Bodiokalara,<br>Mundi                     | Lf.         | 0.13   |
| 59  | Symplocos racemosa Roxb.                                | Symplocaceae          | Lodhra             | Symplocos bark            | Lodhar, Lodhra                            | St. bk.     | 0.13   |
| 60  | <i>Syzygium aromaticum</i> (L.) Merr.<br>And L.M. Perry | Myrtaceae             | Lavanga            | Clove                     | Laving                                    | Fl. bd.     | 0.44   |
| 61  | <i>Trachyspermum ammi</i> (L.)<br>Sprague ex Turril     | Umbelliferae          | Yavani             | Bishop's weed             | Ajwain, Ajmo                              | Fr.         | 0.19   |
| 62  | Tribulus terrestris L.                                  | Zygophyllaceae        | Gokshura           | Caltrops fruit            | Gokharu                                   | Fr.         | 1.00   |
| 63  | Trigonella foenum-graecum L.                            | Fabaceae              | Methi              | Fenugreek                 | Methi                                     | Sd.         | 0.19   |
| 64  | Vitex negundo L.                                        | Verbenaceae           | Renuka             | Five-leaved chaste tree   | Nirgundi,<br>Nagodbiya,<br>Harenu, Renuka | fr.         | 0.25   |
| 65  | Vitis vinifera L.                                       | Vitaceae              | Draksha            | Raisin                    | Draksh                                    | Fr.         | 0.06   |
| 66  | Withania somnifera Dunal.                               | Solanaceae            | Asvagandha         | Wintercherry              | Ashwagandha,<br>Aasandh                   | Rt.         | 0.94   |
| 67  | Zanthoxylum armatum DC.                                 | Rutaceae              | Tumburu            | Winged prickley ash       |                                           | Fr.         | 0.56   |
| 68  | Zanthoxylum armatum DC.                                 | Rutaceae              | Tejohva            | Winged prickley ash       |                                           | St. bk.     | 0.06   |
| 69  | Zingiber officinale Roxb.                               | Zingiberaceae         | Shunthi            | Ginger                    | Sunth                                     | Rz.         | 0.88   |

like flower (Fl.), fruit (Fr.), heartwood (Ht. wd.), leaf (Lf.), root (Rt.), Rhizome (Rz.), seed (sd.), stem bark (St. bk.), stem (St.), tuberous root (Tub. Rt.), kernel (Kl.), floral bud (Fl. Bd.), aril, resin, gall and gum were reported in the study. The major plant part used in products was the seed (26.09%) followed by fruit (18.84%) and root (15.94%). The relative frequency of the herbs ranged from 0.06 being the lowest to 1.00 being the highest. Analysis further showed that there is 14.49% (n=10) herbs with  $\geq$ 0.75 RFC, 13.04% (n=9) herbs with  $\geq$ 0.5 RFC, 34.78% (n=24) herbs with  $\geq 0.25$  RFC and 37.68% (n=26) herbs with  $\geq 0.00$  RFC. Medicinal herbs namely Gokshura, Asvagandha, Pippali, Satavari, Maricha, and Shunthi were the most commonly used in Batrisu vasanu product.

For collected samples, a statistical test was performed to find the average number of herbs shared  $(N_h)$  by them. It was found that all products shared an average of  $12.80\pm4.62$  medicinal herbs in common. Then to test the similarity in ingredients between each pair of samples, a hierarchical cluster dendrogram

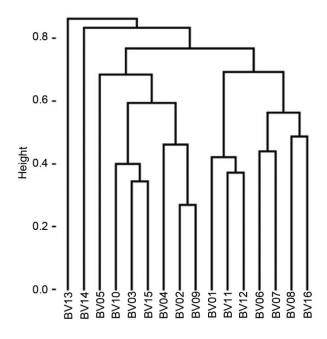



Fig. 2 — Cluster dendrogram showing pairing of BV samples along with their respective height.

was prepared as shown in Fig. 2. It shows two large clusters with a couple of sub-clusters in each of them. There are 5 closely similar pairs in terms of herbs they share. Jaccard coefficient of 0.79 between BV02 and BV09 shows maximum similarity, and 0.13 between BV08 and BV13 shows minimum similarity. Further, the average Jaccard coefficient for all sample pairs was found to be 0.35 ( $\pm$ 0.12), indicating poor similarity for ingredients among samples.

#### Discussion

This is the first systematic study of Batrisu vasanu products sold over the counter in the market. These findings are significantly important to understand the variation of ingredients in it. Although traditionally Batrisu means 32 herbs, the present study shows only  $24.5\pm6.33$  herbs per sample. Also, some samples were having way below this expected number of herbs added. This result indicates the inconsistent numbers of herbs in marketed samples.

The most dominant family Fabaceae agrees with previous studies of the medicinal plants used for women's healthcare<sup>17,18</sup>. Among different reports about postpartum care, root, leaf, and seed are highly referred plant parts<sup>17</sup>. A similar result was obtained as seed, fruit and root are predominately used parts in Batrisu vasanu.

Further, the result of only 19 herbs (27.5%) having RFC more than 0.5 indicated a highly inconsistent

herbal composition. Gokshura was found in all the products analysed, supporting its popularity for postpartum care. Gokshura is used as a diuretic, antiinflammatory, anabolic, cardiotonic and for cough and asthma<sup>19</sup>. It is used as part of herbal decoction given to new mothers<sup>20,21</sup>. Satavari, Mishreya, and Vidarikanda are known for potential galactagogue activity and the treatment of female genitourinary disorders<sup>19,22</sup>. In ethnobotanical studies, tract Kulanjana, Sthulaila, Vidanga and Shunthi are also reported as a tonic in postpartum recovery and as galactagogue<sup>23</sup>. Additionally, Gokshura, Haridra, Methi, Babbuula, Shunthi, Jatiphala, and Yavaniare popular medicinal plants used during postpartum care in India<sup>20</sup>. Many herbs reported in this study are also used in diet therapy during postpartum care $^{21}$ .

Findings of herb sharing showed an average of 12 herbs being shared among samples tested. However, differences in the numbers of herbs per sample might have resulted in poor sharing. This result was hence further strengthened by cluster dendrogram analysis and poor average Jaccard coefficient. Jaccard coefficient and herb sharing data supports the argument that herbs added in products were heterogeneous.

Ayurveda describes many galactagogues, of which 32 plants referred as Stanyajanan and Kseerjanana are botanically reported<sup>24</sup>. The plants reported in the present study like Meda, Draksha, Tugaksiri, Yashtimadhu and Kamala find their reference as a galactagogue in Ayurveda as well<sup>25,26</sup>. Further, the action of Vacha and Satavari like drugs has already been shown as an effective herbal galactagogue, as referred to in the Dravyaguna Vigyaan<sup>27</sup>. An elaborate review on galactagogue reports a significant research gap on clinical research with plant galactagogue as well as reports issues of its efficacy<sup>28</sup>. Meanwhile, a study has reported a positive correlation between milk production and consumption of traditional galactagogue foods<sup>29</sup>. A commercial polyherbal product Lactovedic was also shown to induce proliferation of acini and increased milk secretion<sup>22</sup>. Although it seems promising, clinical research in this area needs more attention as it concerns the health of the child and mother both. In Asia, herbs and polyherbal mixtures for self-treatment and as food supplements can be easily purchased from condimental shops and traditional healers<sup>30</sup>. It often does not follow any standards due to the lack of local regulatory bodies which poses a bigger challenge in addressing safety and quality concerns. Additionally, the quality, pharmacological benefits and side effects of any galactagogue should be thoroughly studied as through lactation it gets exposed to baby also<sup>31</sup>. So, it is understood that postpartum health concerns are intense and requires more attention due to these traditional practices, unscientific diet and ethnomedicine usage.

## Conclusion

In this study, the diverse numbers of medicinal herbs and their inconsistent usage in commercially marketed Batrisu vasanu product are concluded. A large number of herbs reported here confirms the variation in ingredients among marketed products. Further, the uneven number of herbs added per product and their varied types derive the same conclusion. The traditional belief with Batrisu vasanu is as a galactagogue and postpartum healer. However, the reported irregularity in samples signals a serious health concern for new mothers as well as new-born. For the safety of both, it is essential that pharmacokinetics and bioavailability information of this polyherbal product should be studied in detail. Such efforts will not only regularise its quality but will also increase its acceptability as ethnomedicine.

## Acknowledgement

We acknowledge infrastructural and financial support from the DST-FIST (SR/FST/LS1-670 dated 08.03.2018), UGC-DRS (F.3-6/2018/DRS-II(SAP-II) dated 17.07.2018) and Research and Consultancy Cell, The Maharaja Sayajirao University of Baroda.

### **Conflict of Interest**

The authors declare that there is no conflict of interest.

#### References

- Baqui A H, Williams E K, Rosecrans A M, Agrawal P K, Ahmed S, *et al.*, Impact of an integrated nutrition and health programme on neonatal mortality in rural northern India, *Bull World Health Organ*, 2008, **86**, 796–804.
- 2 Liu H, Hua Y, Luo H, Shen Z, Tao X, et al., An herbal galactagogue mixture increases milk production and aquaporin protein expression in the mammary glands of lactating rats, *Evid-Based Complement Alternat Med*, 2015, 2015, 1–6.
- 3 Zuppa A A, Sindico P, Orchi C, Carducci C, Cardiello V, et al., Safety and efficacy of galactogogues: Substances that induce, maintain and increase breast milk production, J Pharm Pharm Sci, 2010, **13**, 162–174.

- 4 Dog T L, The use of botanicals during pregnancy and lactation, *Altern Ther Health Med*, 2009, **15**, 54–58.
- 5 Gbadamosi I and Okolosi O, Botanical galactogogues: Nutritional values and therapeutic potentials, *J Appl Biosci*, 2013, **61**, 4460-4469.
- 6 Academy of Breastfeeding Medicine Protocol Committee, ABM Clinical Protocol #9: Use of galactogogues in initiating or augmenting the rate of maternal milk secretion (First Revision January 2011), *Breastfeed Med*, 2011, 6(1), 41-49.
- 7 Gossler S M, Use of complementary and alternative therapies during pregnancy, postpartum, and lactation, J Psychosoc Nurs Ment Health Serv, 2010, 48, 30–36.
- 8 Barnes L A J, Barclay L, McCaffery K and Aslani P, Complementary medicine products used in pregnancy and lactation and an examination of the information sources accessed pertaining to maternal health literacy: A systematic review of qualitative studies, *BMC Complement Altern Med*, 2018, **18**(1), 229.
- 9 Shastri V J N, *Baa ane Balak*, (Rannade Prakashan, Gujarat), 2014, 228-231.
- 10 Kaushik D and Mathew S, Nutritional composition of traditional supplementary foods consumed by lactating women, *Indian J Nutr Diet*, 1988, **25**(10), 320–324.
- 11 Mulimani G, Sharada G S, Naik R K, Bharati P and Saroja K, Nutritional composition of traditional supplementary foods consumed by Gujarathi lactating mothers, *Indian J Nutr Diet*, 2001, **38**(9), 307–311.
- 12 Thakar J I, Vanaspati sastra ane Barda dungar ni jadibuti, teni pariksha ane upyog, (Gujarati printing press, Bombay), 1910.
- 13 Pade S D and Vyas H B, *Aryabhishak athva Hindustan no Vaidhraj*, (Sastun Sahitya Vardhak Karyalay, Ahmedabad), 2004.
- 14 Dash V B and Kashyap V L, Materia medica of Ayurveda based on ayurveda saukyam of Todarananda (Concept Publishing Company, India), 1980.
- 15 R Studio Team, R Studio: Integrated Development Environment for R, 2021, http://www.rstudio.com/.
- 16 Ahn Y Y, Ahnert S E, Bagrow J P and Barabási A L, Flavor network and the principles of food pairing, *Sci Rep*, 2011, 1, 196.
- 17 Kankara S S, Ibrahim M H, Mustafa M and Go R, Ethnobotanical survey of medicinal plants used for traditional maternal healthcare in Katsina state, Nigeria, *South Afr J Bot*, 2015, **97**, 165–175.
- 18 Gupta U and Solanki H, Herbal folk remedies used in treatment of Gynecological disorders by tribals of Simalwara Region, Dungarpur, Rajasthan, *Int J Pure Appl Sci Technol*, 2013, **17**(1), 100–107.
- 19 Khare C P, *Indian medicinal plants*, (Springer Science & Business media, LLC), 2007.
- 20 Chaturvedi A, Tiwari A K and Mani R J, Traditional practices of using various medicinal plants during postnatal care in Chitrakoot district, *Indian J Tradit Knowl*, 2017, 16, 605–613.
- 21 Jain N, Ramawat K G, Goyal S and Ramawat K G, Evaluation of antioxidant properties and total phenolic content of medicinal plants used in diet therapy during postpartum healthcare in Rajasthan, *Int J Pharm Pharm Sci*, 2011, **3**, 248–253.

- 22 Sumanth M and Narasimharaju K, Evaluation of galactagogue activity of lactovedic: A polyherbal formulation, *Int J Green Pharm*, 2011, **5**, 61–64.
- 23 Lamxay V, de Boer H J and Björk L, Traditions and plant use during pregnancy, childbirth and postpartum recovery by the Kry ethnic group in Lao PDR, *J Ethnobiol Ethnomed*, 2011, 7, 1-15.
- 24 Srikanth N, Manujula, Tewari D, Haripriya N and Mangal A, Plant based Galactagogues in Ayurveda: A promising move towards drug development, *World J Pharm Res*, 2015, 4, 687–705.
- 25 Susrut, Susruta Samhita Part 1, (Chaukhambha Sanskrit Sansthan), 1979.
- 26 Chunekar K C and Hota N, *Plants of Bhava Prakash*, (National Academy of Ayurveda), 1998.
- 27 Sharma P, Dravyaguna Vigyaan, (Chaukhamba Bharati Academy), 1982.

- 28 Kwan S H and Abdul-Rahman P S, Clinical study on plant Galactagogue worldwide in promoting women's lactation: A scoping review, *Plant Foods Hum Nutr*, 2021, 76(3), 257–269.
- 29 Buntuchai G, Pavadhgul P, Kittipichai W and Satheannoppakao W, Traditional galactagogue foods and their connection to human milk volume in Thai breastfeeding mothers, *J Hum Lact*, 2017, **33**(3), 552–559.
- 30 Al Braik F A, Rutter P M and Brown D, A cross-sectional survey of herbal remedy taking by United Arab Emirate (UAE) citizens in Abu Dhabi, *Pharmacoepidemiol Drug Saf*, 2008, **17**(7), 725–732.
- 31 Cuzzolin L and Benoni G, Safety issues of phytomedicines in pregnancy and paediatrics, in *Herbal Drugs: Ethnomedicine* to Modern Medicine, (Springer, Berlin, Heidelberg), 2008, 381-396.