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The pseudo-spin lattice coupled mode model by adding third- and fourth-order phonon anharmonic interactions and extra 
spin-lattice interaction term has been considered for CsH2PO4 (abbreviated CDP) and deuterated CsH2PO4 (abbreviated 
DCDP) crystals. Expressions for shift and width of response function, vibrational normal mode frequency, dielectric 
constant and loss tangent have been evaluated. Double time temperature dependent Green’s function method has been used 
for derivation. Fitting the values of model parameters in expressions, the temperature dependence of soft mode frequency, 
dielectric constant and loss tangent have been calculated. Theoretical results are in agreement with experimental results 
reported by Blinc et al

16. 
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1 Introduction 
There has been considerable interest in the 

investigation of ferroelectric materials. Ferroelectric 
materials show peculiar behaviour. They are used in 
memory devices- as transducers, gas sensing materials, 
electro-optic materials and pyroelectric detectors in 
laser devices etc. Potassium dihydrogen phosphate, 
barium titanate, lithium niobate are examples  
of ferroelectrics. Cesium dihydrogen phosphate 
(CsH2PO4) crystal is a KDP-type ferroelectric. It 
undergoes phase transition at 154 K. The lattice 
parameters of CsH2PO4 are a=7.918Å, b=6.387 Å, 
c=4.885 Å and β=107.60. It is an order-disorder type 
ferroelectric crystal. In this crystal the O-H...O bond 
forms a double well potential. In the paraelectric 
phase each proton or hydrogen ion can occupy either 
of two equilibrium positions along the O-H...O bond, 
but it is ordered in one of them in the ferroelectric 
phase. Proton motion between two potential minima 
along a given O-H...O bond is taken to be via 
tunnelling. This crystal belongs to space group P21/m 
in monoclinic system. The transition temperature 
becomes nearly double when H is replaced by 
deuterium. This is called isotope effect. It shows that 
protons play important role in transition mechanism in 
CsH2PO4 crystal. On deuteration (CsD2PO4) transition 
temperature shifts to 267 K showing large isotope 
effect. Experimental studies on CDP and DCDP 

crystals have been made by many workers. In all 
phosphate group ferroelectric crystals the transition 
temperature have two fold increase when they are 
deuterated (in KDP it becomes 213 K from 123 K,in 
RbH2PO4 it becomes 218 K from 147 K while in case 
of RbH2AsO4 the Tc of its deuterated form shifts  
178 K from 110 K etc.). Blinc1 first suggested that 
isotope effect is due to tunnelling of hydrogen ions in 
double well potential in asymmetric O-H...O bonds  
in these crystals below transition temperature.  
In deuterated crystals since mass of dipole increases 
and so tunnelling diminishes. Due to this transition 
temperature largely increases. Theoretical studies on 
CDP and DCDP crystals were initiated by Ganguli  
et al.

2 who have considered pseudo spin model. They 
have used Green’s function method and obtained 
ferroelectric mode frequency, dielectric constant  
and Tc etc. for these crystals and for similar crystal 
KDP. Extensive experimental studies on CDP and  
its deuterated form (DCDP) have been carried out  
by many experimentalists. Zhang et al.

3 have 
established relationship between dielectric response 
and potential structure in CDP and DCDP crystals. 
Brilingas et al.

4 have measured dielectric constant of 
these crystals at different frequencies and discussed 
relaxational dynamics of these crystals. Schuele and 
Schmidt5 have made NMR study on CDP and DCDP 
crystals. Raman spectra study on these crystals has 
been made by Wada et al.

6, X-ray structure analysis 
study has been made by Hagiwara and Nakamura7. 
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Nakamota et al.
8 have done dielectric measurements on 

CDP crystal at high pressures. Hosseini et al.
9 have 

made study of effect of surfactants in synthesis of 
these crystals as proton conductive membrane. Ahn  
et al.

10 have grown CDP and DCDP crystals and made 
characterization study on these crystals. Schur et al.

11 
have made lattice dynamics simulation study on these 
crystals. Iwata et al.

12 have made neutron diffraction 
study on these crystals. Luspin et al.

13 have made 
elastic properties study on CDP and DCDP crystals. 
Boysen et al.

14 have done study of high- temperature 
behaviour of CDP and DCDP crystals under both 
ambient and high pressure conditions and found the 
result that CDP undergoes a polymorphic phase 
transition at 228±2 °C under atmospheric pressures. 
Kim et al.

15 worked on characterization of the 
dynamics in the protonic conductor CsH2PO4 by 17O 
solid-state NMR spectroscopy and first principles 
calculations: correlating phosphate and protonic 
motion. Earlier researchers2 have not considered 
third-order phonon anharmonic interaction term and 
extra spin-lattice term. They have decoupled the 
correlations at an early stage. So that they could not 
produce better and convincing results. In this paper 
we have considered third-and fourth-order phonon 
anharmonic interactions terms as well as pseudospin 
( x

iS ) and phonon ( kA ) interaction term. In the present 

study we shall fit model values of physical quantities 
in the expressions obtained for CDP and DCDP 
crystals. Temperature dependences of soft mode 
frequency, dielectric constant and loss tangent will be 
calculated for CDP and DCDP crystals. Theoretical 
variation of normal mode frequency has been 
compared with variation obtained by correlating with 
experimental dielectric measurements on CDP and 
DCDP crystal by Blinc et al.16 Theoretical variations 
of dielectric constant and loss tangent have been 
compared with experimental data of Blinc et al.

16 for 
CDP and DCDP crystals. 

 
2 Model Hamiltonian 

For ferroelectric CDP and DCDP crystals, the 
pseudo-spin lattice coupled mode model (earlier used 
by Ganguli et al.

2) by adding third-and fourth order 
phonon anharmonic interactions and other terms. The 
pseudo-spin lattice coupled mode model is expressed 
as: 
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we shall add: 
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where Ω is proton tunnelling frequency between 
double well potential O-H...O bonds, x

iS  is x-
component of the spin variables, 

ijJ  is exchange 
interaction constant, z

iS  is z-component of 
pseudospin variable S, ikV  is spin- lattice interaction 
constant kA  and kB  are position and momenta co-
ordinates. ( )321

3 ,, kkkV  and ( )4321
4 ,,, kkkkV  are the 

third and fourth order phonon anharmonic interactions 
term. The third term in Eq. (2) describes an indirect 
coupling between the tunnelling motion of one proton 
and other proton. This term describes the modulation 
of distance between the two equilibrium sites in the 
O-H...O bonds. This modulates Ω by non polar optic 
phonons. We shall consider the total Hamiltonian for 
our study of CDP and DCDP crystals: 
 

21 HHH +=  ... (3) 
 

3 Green’s Function, Shift and Width 
 The method of statistical double time temperature 

dependent Green’s function was proposed by 
Zubarev19. Accordingly, for any pair of operators,  
this is: 
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where θ is unit step function, θ =1 for t>t′ or zero 

otherwise. 
Differentiating Green’s function Eq. (4) with 

respect to times t and t′, respectively, twice with the 
help of model Hamiltonian Eq. (3), Fourier 
transforming and putting in the Dyson,s Equation 
form, one obtain: 
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where, 
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The Green function (GF) can be now be written as: 
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Solving Eq. (10) we obtain: 
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The second term of Eq. (7) is solved by decoupling 
of higher order Green′s functions >>′<< ji FF , . The 

decoupling is done as follow: 
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We obtain value of ( )ωP of Eq. (11). We resolve 

( )ωP  into real and imaginary parts using formula: 
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The real part is called shift ( )ω∆  and imaginary 
part is called width ( )ωΓ . These are obtained, 
respectively, as:  
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and, 
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where ( )ωkΓ  is the phonon width due to third  

and fourth-order phonon anharmonicities. kω~ and kΓ  

are phonon-frequency and phonon width 
respectively. ( )ωk∆ is phonon shift, these are given as: 
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4 Normal Mode Frequency 

By putting value of ( )ωP in Eq.(9), the value of 
Green′s function (GF) is finally obtained as: 
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Solving Eq.(17) self consistently, we obtain 
renormalized frequency as: 
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The frequency Ω̂  is the normal mode frequency 
which decreases with temperature from below Tc, and 
so is responsible for ferroelectric phase transition. 
 

5 Dielectric Constant and Tangent Loss 

The response of crystal to electric field is expressed 
by electrical susceptibility which using Zubarev′s17 
formalism is expressed as: 
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 . .. (19) 

 

where, N is no of dipoles having dipole moment µ in 
the sample using relation πχε 41 += . The 
expression for dielectric constant with the help of Eq. 
(17) and Eq. (19) can be expressed as: 
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The dissipation of power can conveniently be 
expressed in dielectrics as tangent loss (tanδ) as: 
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Using Eq. (21) one obtains: 
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At microwave frequencies Ω<< ˆω , above Eq. (22) 
reduces to: 
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6 Results and Discussion 

By using model values2 of various physical 
quantities in expressions from literature, temperature 
dependence of normal mode frequency, width, shift 
and dielectric constant for CDP and DCDP crystals 
have been calculated and have been shown in Figs 1-6 
and corresponding values are listed in Table 1. 

 
 

Fig 1 – Temperature dependence of soft mode frequency Ω̂ (cm-1) in 
CDP crystal (— present calculation, ♦ correlated values with experimental 
values of Blinc et al.

16) 
 

 
 
Fig 2 – Temperature dependence of dielectric constant ( ε ) in CDP 
crystal (—present calculation, ♦ correlated with experimental values of 
Blinc et al.

16) 
 

 
 
Fig 3 – Temperature dependence of loss tangent (tanδ ) in CDP crystal 
(—present calculation, ♦ correlated with experimental values of Blinc et al.

16) 
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The theoretical variations of normal mode frequency 
with temperature are compared with values obtained 
by correlating the experimental results of Blinc et al

16. 
The calculated dielectric constant versus temperature 
and loss tangent versus temperature curves agree with 
experimental data of Blinc et al

16. Earlier workers2 

have decoupled the correlations functions at an  
early stage. Therefore some important interactions 
disappeared from their results. Equations (15), (17) 
and (18) show that if third-order phonon anharmonic 
interactions terms and extra spin-lattice interactions 
terms are neglected, our expressions reduce to the 
expressions of earlier authors2. The width and shift 
are contributions of present work. Equation (18) 
shows that soft mode frequency Ω̂  decreases from 
below Tc becoming very small at transition temperature, 
then increases. Thus confirming Cochran′s suggested 
behaviour. The dielectric constant first increases from 
below Tc becoming large near Tc then decreases. 
Similarly loss tangent shows its behaviour.  

 
7 Conclusions 

Present study shows that the modified 
pseudospin-lattice coupled mode model along  
with third- and fourth-order phonon anharmonic 
interactions and extra spin-lattice interactions  
terms explains well the temperature dependence of 
normal mode frequency, dielectric constant and loss 
tangent in CDP and DCDP crystals. Earlier authors1 
did not consider terms which we have considered. 
Hence our results are much better and convincing, 
which agree with experimental results of Blinc  
et al

16. Present results may also be useful to other 
similar crystals RbH2PO4, KH2AsO4, RbH2AsO4 
and CsH2AsO4. 
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