Analysis of volume dependence of Grüneisen ratio of Forsterite

M Panwara,b, S K Sharmab & S Panwara
aDepartment of Physics, MMEC, Maharishi Markandeshwar University, Ambala 133 207, India
bDepartment of Physics, Shivalik Institute of Engineering & Technology, Aliaspur, Ambala 133 206, India

Received 29 February 2016; revised 25 December 2016; accepted 29 December 2016

The purpose of the present paper is to derive a new empirical relationship for the volume dependence of Grüneisen ratio (γ) by using simple and straightforward approach. The results thus obtained for Forsterite (Mg2SiO4) from the two different methods are identical to each other. Consistency of calculated values with those values compiled by Cynn H, Carnes J D, Anderson O L, J Phys Chem Sol, 57 (1996) 1593 reveals the validity of the formulation. It is also found that the heat capacity does not influence the change in (γ) with the volume ratios in the studied range.

Keywords: Grüneisen ratio, Anderson-Grüneisen parameter, Thermoelastic properties, Forsterite

1 Introduction

Grüneisen ratio (γ) is a very important parameter used to quantify the relationship between thermal and elastic properties of solids. The Grüneisen ratio (γ) can be considered as a measure of the change of pressure resulting from the increase energy density at constant volume. Grüneisen ratio (γ) is useful to investigate the anharmonic property of materials. There is a long standing interest in the behaviour of the Grüneisen ratio (γ) at high pressure or compression because of its importance in geophysics, thermodynamics and condensed matter physics. The Grüneisen ratio (γ) has both a microscopic and macroscopic definitions. Vibrational Grüneisen ratio (γv) may be defined as the logarithmic volume derivative of phonon frequency, ωv, i.e.:

\[\gamma_v = -\frac{\partial \ln \omega_v}{\partial \ln V} \quad \text{... (1)} \]

and the thermodynamic Grüneisen ratio (γth):

\[\gamma_{th} = \frac{\alpha K_T V}{C_V} \quad \text{... (2)} \]

where α is volume thermal expansivity, K_T is the isothermal bulk modulus, V is volume and C_V is the heat capacity at constant volume. So many researchers have reported the relationships for Grüneisen ratio (γ) by using different approaches.

In the present study we have extended the work of Kumar et al.14 by using the concept that C_V changes with increase in compression or pressure. We have tested the validity of present formulation to Mg2SiO4. It is known that Mg2SiO4 is an important material as well as geophysical mineral. It is one of the few materials for which sufficient data of its properties are available. The wide range of stability in temperature-pressure space and the fact that it is regarded as a major component of the earth layer mantle make Mg2SiO4 attractive for the study. Forsterite-rich olivine (Mg2SiO4) is the most abundant mineral in the Earth’s mantle above depth of about 410 km, where P≈14 – 15 GPa. Also, laboratory-synthesized nano-crystalline forsterite has been considered as a possible successor to calcium phosphate bioceramics, due to its exceptionally high fracture toughness. The geophysical importance of forsterite as well as its possible application in medicine justify, in general, a work on the volume dependence of its Grüneisen ratio (γ), since γ is an important parameter in thermodynamics, geophysics, and solid state physics.

2 Method of Analysis

Stacey and Davis21 have given the following identity:

\[q = \delta_T - K_T^f + 1 - \left(\frac{\partial \ln C_V}{\partial \ln V} \right)_T \quad \text{... (3)} \]

where \(\delta_T, K_T^f, C_V \) and \(q \) are respectively the isothermal Anderson-Grüneisen parameter, first order
pressure derivative of isothermal bulk modulus and heat capacity at constant volume and second Gr"uneisen parameter. All these parameters are defined as:

\[
\delta_T = -\frac{1}{\alpha K_T} \left(\frac{\partial K_T}{\partial T} \right)_p \tag{4}
\]

\[
K_T = \left(\frac{\partial K_T}{\partial T} \right)_T \tag{5}
\]

in which \(K_T \) is the isothermal bulk modulus, defined as:

\[
K_T = -V \left(\frac{\partial K_T}{\partial P} \right)_T \tag{6}
\]

and

\[
q = \frac{\partial \ln \gamma}{\partial \ln V} \bigg|_T \tag{7}
\]

Sharma and Sharma22 have generalised the isothermal Anderson-Gr"uneisen parameter in the following manner:

\[
\delta_T = \delta_T + (\delta_{T_0} - \delta_T) \left(\frac{V}{V_0} \right)^m \tag{8}
\]

where \(\delta_{T_0} \) and \(\delta_{T_\infty} \) are respectively the values of isothermal Anderson-Gr"uneisen parameter at zero and infinite pressure, \(m \) is a dimensionless adjustable parameter.

Srivastava and Sinha23 have reported the expression:

\[
K'_T = K_{\infty} + (K_0 - K_{\infty}) \left(\frac{V}{V_0} \right)^{K_{\infty}} \tag{9}
\]

where \(K'_T \) and \(K_{\infty} \) are the values of first order pressure derivative of isothermal bulk modulus at zero and at infinite pressure. Using Eqs (3, 7–9) we get:

\[
\left(\frac{\partial \ln \gamma}{\partial \ln V} \bigg|_T \right) = \delta_T + (\delta_{T_0} - \delta_T) \left(\frac{V}{V_0} \right)^m
- \left[K_{\infty} + (K_0 - K_{\infty}) \left(\frac{V}{V_0} \right)^{K_{\infty}} \right] + 1 - \left(\frac{\partial \ln \gamma}{\partial \ln V} \right)_T \tag{10}
\]

On integration of the above equation, we can get the following equation:

\[
\frac{\gamma}{\gamma_0} = \left(\frac{V}{V_0} \right)^{\delta_{T_0} - \delta_T} \times \frac{C_T}{C_{T_\infty}} \exp \left[A \left(\frac{V}{V_0} \right)^m - B \left(\frac{V}{V_0} \right)^{K_{\infty}} \right] \tag{11}
\]

where \(C_{T_\infty} \), \(\gamma_0 \) are respectively the values of specific heat and Gr"uneisen parameter at zero pressure and \(A \) and \(B \) are temperature dependent parameter:

\[
A = \left(\frac{\delta_{T_0} - \delta_T}{m} \right) \tag{12}
\]

\[
B = \left(\frac{K_0 - K_{\infty}}{K_0} \right) \tag{13}
\]

3 Results and Discussion

At infinite pressure, i.e., \(P \to \infty \) or \(V \to 0 \), Eq. (3) becomes:

\[
\delta_{T_\infty} = K_{\infty} + q_{\infty} - 1 + C_{T_\infty} \tag{14}
\]

Since at infinite pressure, i.e., \(P \to \infty \) or \(V \to 0 \), \(q_{\infty} \) tends to zero21 and \(C_{T_\infty} \) tends to zero23, now Eq. (14) takes the following form:

\[
\delta_{T_\infty} = K_{\infty} - 1 \tag{15}
\]

Following Thomas-Fermi theory21, 25-28, i.e., \(K_{\infty}' = 5/3 \) Eq. (11) results \(\delta_{T_\infty} = 2/3 \). The values of \(\delta_{T_\infty} \) for both models21,25-28 satisfy the constraint29 0/\(\delta_{T_\infty} \leq K_{\infty} \). We have proposed a simple method to investigate the volume dependence of the Gr"uneisen ratio (\(\gamma \)) at high temperatures of Mg\textsubscript{2}SiO\textsubscript{4} down to a range of volume ratio 0.90.

Using Eq. (15) in Eq.(11) we get:

\[
\frac{\gamma}{\gamma_0} = \frac{C_T}{C_{T_\infty}} \exp \left[A \left(\frac{V}{V_0} \right)^m - B \left(\frac{V}{V_0} \right)^{K_{\infty}} \right] \tag{16}
\]

where all the parameters are having their as usual meaning.

Recently, Kumar et al.14 reported the following relation for the volume dependence of Gr"uneisen ratio (\(\gamma \)) by using the concept that \(C_T \) remains constant1:

\[
\frac{\gamma}{\gamma_0} = \exp \left[\left(\frac{\delta_{T_0} - \delta_T}{m} \right) \left(rac{V}{V_0} \right)^m - 1 + \left(\frac{K_0 - K_{\infty}}{K_0} \right) \left(rac{V}{V_0} \right)^{K_{\infty}} - 1 \right] \tag{17}
\]

where all the parameters are having their as usual meaning.
The values of input parameters used in present study are cited in Table 1. The values of C_T are taken from reference 30. We have investigated the values of volume dependence of the Grüneisen ratio (γ) through Eqs. (16) and (17) for Forsterite. The results obtained through Eqs (16) and (17) are compared with those values calculated by Cynn et al.30 of γ in Table 2. It is found that the results obtained through Eqs (16) and (17) are almost identical to each other and are compatible with those values of γ compiled by Cynn et al.30. For direct vision we have also plotted the graph for the dependence of Grüneisen ratio (γ) on T at different values of V/V_0 in Fig. 1. Figure 1 reflects that as the temperature increases the values of Grüneisen ratio (γ) decrease and show good agreement with those values of γ compiled by Cynn et al.30 which supports the validity of the present model. It has also been seen that γ changes monotonically above 800 K temperature. It is pertinent that the present paper proposes only a small correction to Eq. (16) from the paper of Kumar et al.14. This correction is reduced to the C_{T_P}/C_T multiplier on the right side of Eq. (16) from the present study. It is readily seen from Table 2 of Cynn et al.30 that C_T practically does not vary with pressure. Therefore, the multiplier $C_{T_P}/C_T \sim 1$ and does not influence the change of γ/V_0 with V/V_0 in the studied range of compression ratios. Also, V/V_0 influences the results very slightly because of the very

<table>
<thead>
<tr>
<th>T(K)</th>
<th>δ_T</th>
<th>K_0</th>
<th>γ_0</th>
<th>$C_{T_0} (J/gK)^{30}$</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>5.940</td>
<td>5.370</td>
<td>1.290</td>
<td>0.8324</td>
<td>2.380</td>
</tr>
<tr>
<td>400</td>
<td>5.580</td>
<td>5.400</td>
<td>1.210</td>
<td>0.9760</td>
<td>2.240</td>
</tr>
<tr>
<td>500</td>
<td>5.490</td>
<td>5.440</td>
<td>1.180</td>
<td>1.0482</td>
<td>2.210</td>
</tr>
<tr>
<td>600</td>
<td>5.480</td>
<td>5.470</td>
<td>1.170</td>
<td>1.0929</td>
<td>2.190</td>
</tr>
<tr>
<td>700</td>
<td>5.490</td>
<td>5.500</td>
<td>1.160</td>
<td>1.1244</td>
<td>2.140</td>
</tr>
<tr>
<td>800</td>
<td>5.470</td>
<td>5.540</td>
<td>1.150</td>
<td>1.1480</td>
<td>2.100</td>
</tr>
<tr>
<td>900</td>
<td>5.460</td>
<td>5.570</td>
<td>1.150</td>
<td>1.1669</td>
<td>1.980</td>
</tr>
<tr>
<td>1100</td>
<td>5.460</td>
<td>5.630</td>
<td>1.140</td>
<td>1.1972</td>
<td>1.660</td>
</tr>
<tr>
<td>1200</td>
<td>5.490</td>
<td>5.670</td>
<td>1.150</td>
<td>1.2095</td>
<td>1.270</td>
</tr>
<tr>
<td>1300</td>
<td>5.440</td>
<td>5.700</td>
<td>1.150</td>
<td>1.2205</td>
<td>1.240</td>
</tr>
<tr>
<td>1600</td>
<td>5.400</td>
<td>5.800</td>
<td>1.140</td>
<td>1.2489</td>
<td>1.240</td>
</tr>
</tbody>
</table>

Fig. 1 – Values of Grüneisen ratio (\gamma) of Mg$_2$SiO$_4$ as a function of temperature at different volume ratios calculated here with Cynn et al.30
narrow range, it varies in. Thus the Eq. (16) is an asymptotic approximation of Eq. (17) in the limit of $P \rightarrow \infty$ or $V \rightarrow 0$.

4 Conclusions

We have proposed a simple and straightforward empirical relationship to estimate the values of volume dependence of Grüneisen ratio (γ) for Mg$_2$SiO$_4$ down to a range of volume ratio 0.90. It is found that the results obtained through Eq. (16) are in good agreement with those values of γ compiled with Cynn et al. 30. Compatibly of results obtained in the present study with values of γ compiled by Cynn et al. 30 shows the validity of the present model. Results thus obtained through Eqs (16) and (17) are identical to each other. Henceforth, the Eq. (16) is an asymptotic approximation of Eq. (17). There is no significant effect of heat capacity on Grüneisen ratio (γ). However, this requires further investigations that heat capacity influences the values of volume dependence of Grüneisen ratio (γ). It may be studied in future for those materials that have data on C_V and γ at high temperatures and high pressures.

References

3 Grüneisen E, Ann Phys, 39 (1912) 257.
6 Irivno R D & Stacey F D, Phys Earth Planet Int, 11 (1975) 157.
7 Barton M A & Stacey F D, Phys Earth Planet Int, 98 (1996) 65.
21 Stacey F D & Davis P M, Phys Earth Planet Int, 142 (2004) 137.