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Single walled carbon nanotubes (SWCNT’s) doped cholesteric liquid crystal composite has been prepared and 
characterized for their electrical responses. Also theoretically, an artificial neural network (ANN) approach has been trained 
for predicting the effective electrical conductivity of these composites. The ANN models are based on a feedforward 
backpropagation (FFBP) network with such training functions as the adaptive learning rate (GDX), gradient descent with 
adaptive learning rate (GDA), gradient descent (GD), conjugates gradient with Powell-Beale restarts (CGB), one-step secant 
(OSS), and Levenberg–Marquardt (LM), and training algorithms run at the uniform threshold transfer functions-Tangent 
sigmoid (TANSIG) and pure linear (PURELIN) for 1000 epochs. Our modeling confirms that the expected effective electrical 
conductivity by different training functions of ANN is in higher agreement with the experimental results of SWCNT doped 
CLC composites. 
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1 Introduction 
In recent decades, Liquid crystals (LCs) have 

received much attention onto dispersed nanomaterials, 
such as carbon nanotubes (CNT’s), carbon dots, 
quantum dots (QD’s), nanorods and various shaped 
nano colloids for their ability to transfer their long 
range orientational order1-5. CNT’s are usually well 
characterized for their extremely high anisotropy and 
electrical conductivity. So the dispersion of CNT’s into 
liquid crystal provides a fascinating composite system 
that involves an anisotropic colloidal dispersion in an 
anisotropic medium material with improved intrinsic 
electrical conductivity6,7. Novel electro-optic liquid 
crystal devices based on this novel material have been 
developed in the display market where the control of 
alignment of CNTs is highly demanded8-12. It was 
earlier reported that the alignment of CNTs can easily 
drive by LC reorientations under an external stimulus. 
Various research groups over the globe focused on the 
control of alignment of CNTs and improved electrical 
behavior of composite materials10-14. It was predicted 
experimentally that the surface anchoring along with a 
binding energy of about ~ 2 eV for π-π electron 

stacking between chiral nematic and CNT’s is 
responsible for a strong interaction in SWCNT’s doped 
chiral nematic liquid crystal and hence enhanced 
electrical conductivity.  

Yet lots of experimental evidence has been reported 
on the improved behavior of electrical conductivity of 
CNT doped liquid crystals, but the prediction of 
electrical conductivity of these composites using an 
algorithm is still challenging in the field of ongoing 
research in liquid crystals. An artificial neural network 
(ANN) seems a potential candidate to simulate electrical 
properties of a variety of complex liquid crystals.  

Since the early 1990s, ANNs have been of interest 
for many researchers and they applied it successfully 
to almost every problem in geotechnical and in thermal 
engineering. ANNs are thus well suited for modeling 
the complex behavior of polymer composite. Recently, 
Therdthai et al.15 measured the electrical conductivity 
of recombined milk by artificial neural network 
(ANN). Ali et al.16 predicted the electrical 
conductivities of ternary systems involving ionic 
liquids by the applicability of artificial neural network. 
In the last few years, many researchers17-20 used 
artificial neural network approach to predict the 
conductivity of different composites. 
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Presently in this paper, we have tried to set up a 
nonlinear relationship between the experimentally 
calculated electric conductivity and theoretically 
predicted value during the training process of ANN 
network. In reality, SWCNT doped cholesteric liquid 
crystal forms a complex inner structure. Therefore, its 
complex geometry encountered large difference in the 
electrical conductivity along with its constituents. It 
makes very tedious task to predict the effective electrical 
conductivity of SWCNT doped CLC composites. For 
this reason we have developed an artificial neural 
network to find out the effective electrical conductivity 
of SWCNT doped CLC samples. 
 

2 Experimental Details 
A room temperature nematic liquid crystal ZLI-

4151 (E. Merck, UK) and an active chiral dopant CB15 
(E. Merck, Dermstadt, Germany) was used to make 
chiral nematic liquid crystal mixture. A series of 
SWCNT doped chiral nematic mixtures was formed by 
dispersion of Octadecylamine (ODA)-functionalized 
SWCNTs [M/s Sigma Aldrich], having diameter ≈ 2–
10 nm and length ≈ 0.5–2 μm with doping 
concentrations 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 
and 0.4 weight % into chiral nematic mixture. The 
ODA Functionalization of SWCNT’s was confirmed 
with the help of Fourier transform infrared (FTIR) 
spectra in ethanol (Fig. 1). The spectra were studied by 
using IR spectrophotometer [Model-Perkin Elmer BX–
II; Waltham, MA, USA]. The dip correspond to 
1046.49 cm−1 confirms C–N stretching; whereas dip 
correspond to 1381.76 cm−1 confirms simple bending 
vibrations of C–H bonds. The confirmation of 
asymmetric and symmetric vibrations of C-H bond was 
given by dips at 2908.74 and 2842.10 cm−1. The 
signature of O-H stretch of vibration was confirmed by 
the broad dip at 3439.96 cm−1 whereas the dip at 
1589.99 cm−1 corresponds to C=O stretch, this clearly 
indicate introduction of long-chain ODA to SWCNTs. 
Again the size Octadecylamine (ODA)-functionalized 
SWCNTs has been confirmed of the order ≈ 2–10 nm 
with TEM micrograph (shown in Fig. 1(b)). 

These composite mixtures of ODA functionalized 
SWCNT’s doped CLC were sandwiched into the 5 µm 
thin antiparllel planer aligned indium tin oxide (ITO) 
coated glass substrates. Then cells were sealed by 
Norland optical adhesive epoxy glue. Electrical 
contacts with conducing ITO substrate were made by 
using indium solder to record the electrical responses 
of SWCNT doped chiral nematic cells. The dielectric 
responses of these were investigated by recording 

capacitance in frequency range 50 Hz to 1 MHz with 
Fluke LCR bridge (Model PM6306) and further 
effective electrical conductivity was calculated 
experimentally with the help of complex permittivity. 
 

3 Theoretical Approach of Neural Network 
ANNs are electronic models that are based on the 

brain’s neural structure. The experience are helpful for 
the brain to learn. This brain modeling also promises a 
less technical way to the development machine 
solutions. The ANNs are new approach to computing 
the data and also provide a more graceful degradation 
during system overload. In the computing industry the 
biologically inspired methods play an important role for 
computing. Animal brains are capable of functions that 
are not possible by computers. Computers performs 
complex math. But computers have not capable 
recognizing simple patterns and much less efficiency 
those patterns of the past into actions of the future.  

 
 

 
 
Fig. 1 — (a) FTIR spectra and (b) TEM micrograph of ODA 
functionalized SWCNTs. 
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It should also be reiterated here that the designed 
models are “statistical” models, i.e., they are not based on 
any physical complex theory. Because of this, the highest 
precision of the predictions is expected when there are 
immense numbers of input data for the materials.  

In a simplified mathematical model (Fig. 2) of the 
neurons, the effects of the synapses are represented by 
connection weights that modulate the effect of the 
associated input signals, and the non-linear 
characteristic exhibited by neurons is represented by a 
transfer function. The neuron impulse is then computed 
as the weighted sum of the input signals, transformed 
by the transfer function21. The learning capability of an 
artificial neuron is achieved by adjusting the weights in 
accordance to the chosen learning algorithm. It 
stimulates the results among homologous series of 
ANN algorithms without need for theoretical formulas. 
It is based on feed-forward back propagation (FFBP) 
network with training functions: adaptive learning rate 
(GDX), gradient descent with adaptive learning rate 
(GDA), gradient descent (GD), conjugates gradient 
with Powell-Beale restarts (CGB), one-step secant 
(OSS), and Levenberg–Marquardt (LM). Training 
algorithm for neurons and hidden layers for given 
different FFBP networks for 1000 epochs runs at the 
uniform threshold tangent sigmoid-pure linear transfer 
function. During training the network, calculations 
were carried out from input of network toward output 
and error was then propagated to prior layers. Output 
calculations were conducted layer to layer so that the 
output of each layer was the input of next one. 

Rumelhart et al.22 presented the neural network 
model as a three-layer feed forward neural network. 
Each layer is fully connected to the succeeding layer 
through the connection weights (Fig. 2). The electrical 
conductivity and volume fractions of the constituents 
respectively are the input parameters to predict the 
effective electrical conductivity of SWCNT’s doped 
chiral nematic liquid crystals. The activation 
(threshold) functions used for the network are: 

(i) Pure linear transfer function (PURELIN):  
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 … (1) 

 
and (ii) A tangent sigmoid trandfer function 
(TANSIG), which is a non-linear function: 
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The following relation is used for the mean square 
error (EMSE), which can minimize the training error: 
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where kA and kT  are the network (actual) and target 

outputs at thk output unit; N is the number of output 
neurons. To find a set of weights that minimizes this 
function, a gradient descent method was implemented. 
The weight change is proportional to the negative of 
the derivative of the error with respect to each weight. 
This can be expressed as: 
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Essentially, the determination of the weight change is a 
recursive process, which starts with the output units. 
For a weight that is connected to a unit in the output 
layer, its change is based on the error of the output unit. 
It is given by: 
 

   jkjkkkkkj AAATAAw δ1 
  … (5)  

 

where kjw is the weight of the connection between the 
thk  and thj  unit. kδ  referred as the error signal in the 
thk output unit. The output error signals are then back 

propagated to the units in the hidden layer. The change 
of the weight in the hidden layer is determined by the 
relation: 
 

  ijikj
k
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 … (6) 

 

In order to increase the speed of the training procedure 
without any oscillations, the adaptive learning rate and 
momentum are used during the training process. The 
Eqs (5) and (6) are then reformatted as follows: 

 
 

Fig. 2 — Three layer artificial neural network. 



 KUMAR et al.: CARBON NANOTUBES DISPERSED CHIRAL NEMATIC LIQUID CRYSTALS  809 
 
 

   1αξδ  nwAnw kjjkkj   … (7) 
 

   1αξδ  nwAnw jiijji   … (8)  
 
where n, ξ and α represent the training epoch number, 
learning rate and the momentum, respectively. The 
momentum allows the previous weight change, which 
has a continuing influence on the current weight 
change. The gradient correlation of the present weight 
error derivatives with the previous weight error 
derivatives indicates whether the gradient is staying 
relatively stable or shifting. According to it, the 
learning rate and momentum automatically change the 
number of epochs and kept as large as possible. The 
following function is the mean square error which 
minimized the training error:  
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where E is the mean square error, ikS  is the network 

output in thi  neuron and thk  pattern, ikT  is the target 

output at thi  neuron and thk  pattern; N is the number 
of output neurons and M is the number of training 
patterns. Thus, the outputs are determined for each 
epoch, the mean square error is then calculated and the 
weights updated till a user specified epoch goal is 
reached successfully.  
 
4 Results and Discussion 
4.1 Electro-optic switching analysis 

Figure 3 depicts the electrical switching behavior of 
SWCNTs doped and undoped chiral nematic liquid 
crystals. The morphology in “Switch OFF and Switch 
ON state” was investigated at 100X magnification 
through crossed polarizers in Carl Zeiss polarizing 
optical microscope (Model-Scope A1) interfaced with 
charge coupled device (CCD) detector. At E=0 V/µm 
in undoped sample, Grandjean texture (Fig. 3(a)) was 
observed where the chiral nematic director is confined 
parallel to the glass plate in multi-domains. At 6 V/μm, 
the helical axes of CLC molecules completely aligned 
along the direction of applied electric field and 
perpendicular to the substrate. Therefore dark 
homeotropic state appears (Fig. 3(b)) under crossed 
polarizers. The threshold voltage of these samples 
depends upon the cell thickness (d), pitch (p), chiral 

concentration (C), dielectric anisotropy (Δɛ) and 
helical twisting power (HTP) as described by well 
known Eq. (10):  
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whereas in case of doped SWCNT samples, the 
observed electro-optic switching behavior was predicted 
to analogous with undoped samples under the restriction 
of SWCNT network. The optical texture (Fig. 3(c)) of 
SWCNT doped CLC shows that SWCNTs affects the 
morphological response in ‘Switch OFF’ state (0 V/μm). 
At E=4.8 V/μm, the unwinding of helical structure 
takes place and the network of SWCNT clearly visible 
under crossed polarizers (Fig. 3(d)). The brightest lines 
in the homeotropic texture signatures the distribution 
of SWCNTs network due to anisotropic coupling of 
SWCNT with chiral doped nematic liquid crystals. 
Figure 4 clearly provides the hypothetical modeling for 
the electro optic switching in the corresponding optical 
textures (Fig. 3) of undoped and 0.4 wt% SWCNT’s 
doped CLC samples. When an electric field is applied, 
the molecules trigger electrically from ‘Switch OFF’ to 
‘Switch ON State’23. The liquid crystal molecules 
aligned perfectly perpendicular to the glass substrate 
along the direction of applied electric field and the 
SWCNT’s network is clearly visible in this state over 
the transparent ITO substrate in the SWCNT doped 
CLC sample when viewed under optical polarizing 
microscope. 

 
 
Fig. 3 — Polarized optical microscopy textures of (a) switch off
state, (b) switch on state of undoped sample, (c) switch off state and
(d) switch on state of SWCNT’s doped CLC sample. 
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We believe that the interaction between surface 
anchoring, CLC molecules and π−π electron stacking 
contributes to the ac conductivity of the CNT doped 
samples. Therefore, ac conductivity acσ  of all samples 

are calculated by using experimental data of the 
imaginary part of the complex permittivity  "ε , which 
was calculated by recording capacitance in the 
frequency range 50 Hz to 1 MHz by using LCR meter 
(Model Fluke). Hence ac conductivity can be 
computed experimentally by relation: 
 

`
0ac  ωε"εσ    … (11) 

 

where, 0ε is permittivity of the free space, ε"  is the 

imaginary part of permittivity (recorded experimentally) 
and ω is the angular frequency. Figure 5 clearly hints 
the enhancement in conductivity at the interface 
formation by CNTs in liquid crystal matrix which 
contributes to the electrical response of the doped 
material. Also an increase in the conductivity normally 
associated with the capacitor character of the liquid 
crystal cell. This highest concentrated sample of 
SWCNT (0.4 wt%) doped CLC is probably very close 
to percolation with SWCNT clusters present. These 
aggregates in the cell can act as an array of capacitors 
and hence enhancement in the AC conductivity was 
predicted. These experimental results were again 
revivified with the help of theoretical modeling of 
electrical conductivity of these SWCNT doped CLC 
sample by using artificial neural network approach. 

For this, we have used six training functions 
(TRAINGDX, TRAINGDA, TRAINGD, TRAINCGB, 
TRAINOSS, and TRAINLM) and feedforward 

backpropagation (FFBP) network is used for mapping 
between inputs and output patterns. A three-layer 
feedforward network is created for the prediction of 
effective electrical conductivity of SWCNT’s doped 
samples over a wide concentration of dispersed phase of 
SWCNT in CLC between 0 to 0.40 wt%. 

The effective electrical conductivity of SWCNT’s 
doped chiral nematic composites as filler SWCNT’s 
(wt%) is plotted in Fig. 5 with concentration of 
dispersed phase (filler) over the range between 0 to 
0.40 wt%. It is observed that effective electrical 
conductivity of these composites get enhanced by the 
addition of SWCNT’s. The maximum value of 
effective electrical conductivity 6.8595 Ω-1cm-1 
(TRAINOSS) are achieved for SWCNT’s doped chiral 
nematic LC composites. The enhancement in the 
effective electrical conductivity of these composites is 
expected, as the electrical conductivity of the SWCNT 
is significantly higher than that of chiral nematic system. 

Figure 6 depicts the comparison of experimental and 
predicted values of effective electrical conductivity of 
different SWCNT’s doped chiral nematic LC 
composites by using different training functions. All 

 
 
Fig. 4 — Hypothetical model of electro-optic switching (a) switch
off state, (b) switch on state of undoped sample, (c) switch off state
and (d) switch on state of SWCNT’s doped CLC sample. 

 
Fig. 5 — Comparison of experimental and theoretical results of
electrical conductivity of SWCNT’s doped chiral nematic liquid
crystals by using artificial neural networks with trained function (a)
TRAINGDX, (b) TRAINGDA, (c) TRAINGD, (d) TRAINCGB,
(e) TRAINOSS and (f) TRAINLM. 
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the predictions of FFBP, results of all the training 
functions TRAINCGB, TRAINLM, and TRAINOSS 
are close to each other and also closely match with the 
experimental results. As it is clear that all the training 
functions are based on feedforward backpropagation, 
therefore, slight variation in effective electrical 
conductivity is observed. Better results are obtained 
and the average percentage deviation (Table 1) is least 
if we use TRAINLM as training function in all the 
SWCNT doped CLC composites. Figure 7 shows 
regression plot which support the data in Fig. 6. In case 
of TRAINGD, maximum epoch has been reached 
(Fig. 7(f)) during training algorithms run at the uniform 
threshold transfer functions- Tangent sigmoid 
(TANSIG) and pure linear (PURELIN) for 1000 
epochs. Hence performance and goal were not met the 
required condition whereas in another case it can be 
achieved successfuly.  
 

5 Conclusions 
We have sucessfully investigated the electrical 

switch behavior of SWCNT’s doped CLC samples. 
The coupling between LC molecules and CNT’s 
created a promising novel electrical properties aiming 
at the invention of novel soft materials at the molecular 

level. Our experimental results show the simplest 
agreement with the theoretical modeling of electrical 
conductivity by using artificial neural network 
approach. It’s ended that completely different training 
functions of artificial neural networks exhibit the 
potential to predict electrical conductivity of 
SWCNT’s doped CLC materials which might have 
potential applications in liquid crystal display 
technology. The interest of this work is additionaly self 
addressed to liquid crystal device wherever trade 
demands high electrical conductivity. Hence it claims 
that different models of ANN can be used to predict the 
effective electrical conductivity of these complex 
liquid crystal structures composites.  
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