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The stability analysis of steady boundary layer stagnation-point flow over a stretching/shrinking cylinder using 
Buongiorno model has been numerically studied. Using similarity transformations the governing partial differential 
equations have been transformed into a set of nonlinear differential equations and have been solved numerically using a 
shooting method in Maple software and a bvp4c method in Matlab software. These nanofluid model have been used which 
are taking into account the effects of Brownian motion and thermophoresis. The influences of the governing parameters 
namely the curvature parameter γ, Prandtl number Pr, Lewis number Le, Brownian motion parameter Nb and 
thermophoresis parameter Nt on the flow, heat and mass transfers characteristics have been presented graphically. The 
numerical results obtained for the skin friction coefficient, local Nusselt number and local Sherwood number have been 
thoroughly determined and presented graphically for several values of the governing parameters. From our investigation, it 
has been found that the non-unique (dual) solutions exist for shrinking cylinder and a unique solution exist for stretching 
cylinder. Otherwise, it has been observed that as curvature parameter increases, the skin friction coefficient, heat and mass 
transfer rates increase. Moreover, the stability analysis shows that the first solution is linearly stable, while the second 
solution is linearly unstable. 
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1 Introduction 
In fluid dynamics, one of the most significant 

current discussions in the literature is the study of 
boundary layer stagnation-point flow. Stagnation-
point is defined as a point in a flow field where the 
local velocity of the fluid is zero (rest). The 
stagnation-point flow over a stretching/shrinking 
sheet has been investigated by many researchers. This 
is due to its applications in engineering area such as 
cooling, nuclear reactor, electronic and many 
hydrodynamics processes. The preliminary work on 
the two-dimensional stagnation-point flow over a 
plate was undertaken by Hiemenz1. Then, this work 
was then extended by Homann2 where he examined 
the axysimmetric stagnation-point flow. It is worth 
mentioning that Crane3 was the first to consider the 
steady boundary layer flow past a stretching sheet. 
Next, Chiam4 investigated the stagnation-point flow 
over a stretching sheet. The magnetohydrodynamic 
stagnation-point flow towards a stretching sheet is 
discussed by Mahapatra and Gupta5. In another study, 

Mahaparta and Gupta6 also reported the heat transfer 
in stagnation-point flow towards a stretching sheet. 
The several physical effects of the stagnation-point 
flow towards a stretching sheet were discussed by 
Ishak et al.7, Layek et al.8 and Bachok et al.9. 
Furthermore, the investigation of the flow past a 
shrinking was first carried out by Miklavčič and 
Wang10. Wang11 then proceed to study the stagnation-
point flow past a shrinking sheet. He concluded that 
the non-unique solutions (dual) exist in the some 
range of suction. After that, the stagnation-point flow 
due to shrinking sheet in a micropolar fluid was 
studied by Ishak et al.12. Lok et al.13 investigated the 
MHD stagnation-point flow towards a shrinking 
sheet. Other studies that related to the stagnation-
point flow over a shrinking sheet are Bhattacharyya 
and Layek14, Bhattacharyya and Pop15 and 
Bhattacharyya et al.16. 

The flow over cylinders is considered to be two-
dimensional of the body radius is large compared to 
the boundary layer thickness. Besides, the radius of 
the thin or slender cylinder may be of the same order 
as that of the boundary layer thickness. Therefore, the 
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flow may be considered as axisymmetric instead of 
two-dimensional as studied by Datta et al.17 and 
Kumari and Nath18. There are some applications on 
the flow over a stretching or shrinking cylinder in 
industrial and engineering processes. Simal et al.19 
developed a sample shrinkage model, which is useful 
for the simulation of the drying curves of broccoli 
stems at different air drying temperatures and sample 
lengths, thus can predict the 1668 drying times and 
end-point of a drying process. They also insisted that 
their model could be applied to simulate the drying 
curves of different biological and cylindrical products. 
The study of steady flow in a viscous fluid over a 
stretching cylinder has been investigated by Wang20. 
Ishak et al.21 examined the effects of uniform 
suction/blowing on the flow and heat transfer due to a 
stretching cylinder. Again, Ishak et al.22 discussed the 
MHD flow and heat transfer analysis over a stretching 
cylinder. Wang and Ng23 investigated the slip flow 
due to a stretching cylinder. Meanwhile, Wang24 

proposed the study of natural convection on a vertical 
stretching cylinder. Next, the unsteady viscous flow 
over a shrinking cylinder with mass transfer is 
analyzed by Wan Zaimi et al.25. The steady 
stagnation-point flow of a viscous and incompressible 
fluid over a permeable shrinking circular cylinder was 
discovered by Lok and Pop26. Then, Mat et al.27 

presented the study of the stagnation-point slip flow 
and heat transfer towards a shrinking/stretching 
cylinder over a permeable surface. 

Nanofluid is a fluid that contains nanometer-sized 
particles, which called nanoparticles. The term 
“nanofluid” was first proposed by Choi28. The 
nanofluid are potential to increase thermal 
conductivity and consequently, enhances the heat 
transfer characteristics. Abel et al.29 mentioned that 
nanofluids potentially used in microelectronics, fuel 
cells, pharmaceutical processes, hybrid-power engine, 
engine cooling, domestic refrigerator and chiller. 
Buongiorno30 was the first who introduced the  
model for convective transport in nanofluids with the 
effects of Brownian diffusion and thermophoresis. 
Yet, very few studies examined the flow over 
stretching/shrinking cylinder using this nanofluid 
model. Rasekh et al.31 have analyzed the flow and 
heat transfer over a stretching cylinder in a nanofluid. 
Moreover, Noghrehabadi et al.32 researched the MHD 
flow on the boundary layer, heat and mass transfer of 
nanofluids over a stretching cylinder. Later, Tiwari 
and Das33 introduced the nanofluid model that 

considers the effect of nanoparticle volume fraction. 
Gorla et al.34 studied the melting heat transfer in a 
nanofluid boundary layer on a stretching circular 
cylinder. Then, Omar et al.35 examined the stagnation 
point flow over a stretching/shrinking cylinder in a 
copper-water nanofluid. Recently, Sulochana and 
Sandeep36 investigated the stagnation point flow and 
heat transfer behaviour of copper-water nanofluid 
towards horizontal stretching/shrinking cylinder. 

This present study is an extension of the work 
reported earlier by Bachok et al.37 to the case of 
stretching/shrinking cylinder, which using the 
Buongiorno30 nanofluid model. The study explores the 
effect of the Brownian motion and thermophoresis as 
well as curvature parameter on the flow, heat and 
mass transfer rates behaviours. Besides, the stability 
solution solutions have been carried out since we 
expect that the dual solutions can be obtained.  
The work on stability analysis can be found in the 
paper of Merkin38, Weidman et al.39, Harris et al.40, 
Najib et al.41 and Bakar et al.42 for different cases. 
 
2 Mathematical Formulation 

Consider a steady stagnation-point flow towards a 
stretching/shrinking cylinder with radius R placed in 
incompressible nanofluid of constant temperature Tw. 
It is assumed that the free stream velocity is U∞ = cx/L 
and the stretching/shrinking velocity is Uw = ax/L 
where a and c are constant with c > 0 corresponds to 
stretching constant, c< 0 corresponds to shrinking 
constant, x is the coordinate measured along the 
cylinder and L is the characteristics length. The 
physical model for stagnation-point flow in cylinder is 
presented in Fig. 1. The boundary layer equations35,37 
can be written as:  

 
 

Fig. 1 — Physical model for stagnation-point flow in cylinder. 
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where x and r are the coordinates measured along the 
surface of the cylinder and in the radial direction, 
respectively, with u and v being the corresponding 
velocity components. Next, T is the temperature in the 
boundary layer, C is the nanoparticle concentration in 
the boundary layer, ν is the kinematic viscosity 
coefficient, DB is the Brownian diffusion coefficient, 
DT is the thermophoresis diffusion coefficient, 

  fck   is the thermal diffusity of the fluid and 

    fp cc   is the ratio between the effective heat 

capacity of the nanoparticle material and heat capacity 
of the fluid with f is the density of the fluid, p is the 

density of the particles and c is the volumetric volume 
expansion coefficient. The boundary conditions are: 
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We look for similarity solutions of Eqs (1) to (4), 
subject to boundary conditions Eq. (5) by introducing 
the similarity transformations35: 
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where  is the similarity variable and ψ is the stream 

function defined as yru   1  and 

xrv   1 which identically satisfies Eq. (1). By 

defining  in this form, the boundary conditions at  

r = R reduce to the boundary conditions at 0 , which 
is more convenient for the numerical computations. 

Substituting Eq. (6) into Eqs (2), (3) and (4), we 
obtain the following nonlinear ordinary differential 
equations:  
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subjected to the boundary conditions (5) which 
becomes: 
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where ca is stretching/shrinking parameter, with 

0 corresponds to stretching sheet and 0
corresponds to shrinking sheet. In the above 
equations, prime denote differentiation with respect to 
η and the other parameters are defined by: 
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where Pr is the Prandtl number, Le is the Lewis 
number, Nb is the Brownian motion parameter, Nt is 
the thermophoresis parameter and γ is the curvature 
parameter. 

The physical quantities of interest are the skin 
friction coefficient fC , local Nusselt number xNu  

and local Sherwood number xSh defined as: 
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where the wall shear stress w , the local heat flux wq

and the local mass flux mq  as follows:  
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with   and k are the dynamic viscosity of the 
nanofluids and the thermal conductivity of the 
nanofluids, respectively. 

Using the similarity variables (6), the reduced skin 
friction coefficient, local Nusselt number and local 
Sherwood number are: 
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where xUx Re is the local Reynolds number. 
 

3 Stability Analysis 
The numerical results obtained show that for a 

certain range of ε, there exist two branches of 
solutions for different values of γ. In order to 
determine which of these solutions are stable, a 
stability analysis is performed. According to 
Weidman et al.39 and Rosca and Pop43, it is shown 
that the upper branch solutions are stable (physically 
realizable), while the lower branch solutions are 
unstable (not physically realizable). We consider the 
unsteady form of Eqs (2)-(4) and introducing the new 
dimensionless time variable39 τ. The new variables for 
the unsteady problem are: 
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The governing Eqs (2)-(4) become 
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subject to boundary conditions 
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To test the stability of the steady flow solution  
f(η) = f0(η), θ(η) = θ0(η) and ϕ(η) = ϕ0(η)  
satisfying the boundary-value problem (2) - (4),  
can be written as: 
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where ϖ is an unknown Eigen value, and  
F(η,τ), G(η,τ) and H(η,τ) are small relative  
to f0(η), θ0(η) and ϕ0(η), respectively. The solution of 
the Eigen value problem (16)-(18) give an infinite 
set of Eigen values ϖ1 <ϖ2 < …; if the smallest Eigen 
value is negative, there is an initial growth of 
disturbances and the flow is unstable; but when ϖ1 is 
positive, there is an initial decay and the flow is 
stable. By introducing (20) into (16) - (18), followed 
by setting τ = 0, and hence substituting F=F0(η), 
G=G0(η) and H=H0(η), the linearized problem is 
given by: 
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It should be mentioned that for particular values γ 
and ε that involved, the corresponding steady flow 
solutions f0(η), θ0(η) and ϕ0(η), the stability of the 
steady flow solution is determined by the smallest 
eigenvalue ϖ1. According to Harris et al.40, the range 
of possible Eigen values can be determined by 
relaxing a boundary condition on F0'(η) ,G0(η) or 
H0(η). For the present problem, we relax the condition 
F0'(η)→0 as η→∞ and for a fixed value of ϖ, we 
solve the system (21) - (23) along with the new 
boundary condition F0''(0) = 1. 
 
4 Results and Discussion 

The nonlinear ordinary differential Eqs (7)-(9) 
subject to the boundary conditions (10) were solved 
numerically using a shooting method. This well-
known method is an iterative algorithm which 
attempts to identify appropriate initial conditions for a 
related initial value problem (IVP) that provides the 

solution to the original boundary value problem 
(BVP). The dual solutions are obtained for shrinking 
cylinder by setting different initial guesses for the 
missing values of the reduced skin friction coefficient 

 0f  , the reduced local Nusselt number  0  and 

the reduced local Sherwood number  0 , where all 
profiles satisfy the boundary conditions (10) 
asymptotically but with different shapes. These 
methods have been used by the previous researchers 
such as Bachok et al.44, Bakar et al.45, Najib et al.46 

and Zaimi et al.47 to solve the boundary layer 
problems with various cases. The physical significant 
of different involved parameters, namely curvature 
parameter γ, Brownian motion parameter Nb, 
thermophoresis parameter Nt, stretching/shrinking 
parameter  , Prandtl number Pr and Lewis number 
Le on the fluid velocity, temperature and nanoparticle 
concentration distributions as well as on the skin 
friction coefficient, the heat and mass transfer rates at 
the wall are analyzed and presented graphically in 
Figs 1 to 16. The Prandtl number Pr equal to 1 is 
chosen because of the fact that both, thermal diffusion 
and momentum diffusion, changes occur at the same 
rate. Only results for a Prandtl number of 1, that is, 
effectively the value for air. The comparison of the 
present results with the existing numerical results is 
given in Table 1 to show the validity and it is found to 
be in excellent agreement. 

The variations of the reduced skin friction 
coefficient  0f  , the reduced local Nusselt number 

 0  and the reduced local Sherwood number

 0 number with stretching/shrinking parameter ε 

Table 1 — The values of reduced skin friction coefficient  0f   for some values of   and γ. 

  
Bachok et al.37 Present results 

0  0  2.0  4.0  

2 -1.887307 -1.8873066 -1.9778420 -2.0654420 
1 0 0 0 0 

0.5 0.713295 0.7132949 0.7629071 0.8100575 
0 1.232588 1.2325876 1.3378738 1.4366790 

-0.5 1.495670 1.4956697 1.6705694 1.8307523 
-1 1.328817 1.3288169 1.6297671 1.8836184 
 [0] [0] [0] [0] 

-1.15 1.082231 1.0822312 1.4850036 1.7911525 
 [0.116702] [0.1167021] [-0.0401373] [-0.1382953] 

-1.2 0.932473 0.9324735 1.4106103 1.7423618 
 [0.233650] [0.2336498] [0.0015211] [-0.1165670] 

[ ] second solution   
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for several values of the curvature parameter  are 
presented in Figs 2, 3 and 4, respectively, when 1Pr 
, 2Le , 1.0Nb  and 1.0Nt . The chosen value of 
curvature parameter   is 4.0 and 2.0 ,0 , where 

0  corresponds to the flat plate. The dual solutions 

are found to exist for c  , where c  is the critical 

value of   for which the solutions exists. Based on 
our computations, the values of c  for  = 0, 0.2 and 

0.4 are c  = -1.24657, -1.38090 and -1.49351, 

respectively. Further, the solution is unique when 

c   and no solution occurs when c  . From  

Fig. 2, it is clearly seen that the value of the reduced 
skin friction coefficient  0f   decreases when   

increases, but it has the higher value when   
increases. The opposite trends are found in Figs 3 and 
4 where the values of the reduced local Nusselt 
number  0  and the reduced local Sherwood 

number  0  increase as   increases, however it 

has the higher value for the greater value of  . The 
first solutions in all figures are higher compared to the 
second solution. The range of  for which the 
solution exists is larger for 0  (cylinder) compared 

to 0  (flat plate). This demonstrates that a  
cylinder increases the range of existence of the 
similarity solutions to the Eqs (7)-(9) compared  
to a flat plate. In addition, the boundary layer 
separation is delayed for a cylinder. 

Figures 5 and 6 exhibit the variations of the local 

Nusselt number 21RexNu and the local Sherwood 

number 21RexSh with Brownian motion parameter 

Nb for several values of the curvature parameter  , 
respectively. From Fig. 5, it is observed that the local 
Nusselt number is a decreasing function of the 
Brownian motion parameter Nb. As it was mentioned, 
the increase in Brownian motion parameter Nb tends 
to decrease temperature gradients in the boundary 
layer and hence decreases the local Nusselt number. 
Moreover, it also seen in the figure that the local 
Nusselt number is a increasing function of the 

 
 
Fig. 2 — Variation of  0f   with   for some values of γ when
Pr = 1, Le = 2, Nb = 0.1 and Nt = 0.1. 
 

 
 
Fig. 3 — Variation of  0  with   for some values of γ when
Pr = 1, Le = 2, Nb = 0.1 and Nt = 0.1. 

 
 
Fig. 4 — Variation of  0  with   for some values of γ when 
Pr = 1, Le = 2, Nb = 0.1 and Nt = 0.1. 
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curvature parameter  . It is worth mentioning that, 
the shrinking cylinder is able to increase the heat 
transfer rate. Next in Fig. 6, the local Sherwood 
number decreases when Brownian motion parameter 
Nb increases for cylinder shrinking ( 4.0 and 2.0 ) 
but oppositely, when the flat plate is considered, the 
local Sherwood number is a increasing function of the 
Brownian motion parameter Nb. However, the values 

of both the local Nusselt number and local Sherwood 
number for the first solution is higher compared to the 
second solution. There were no significant differences 
in both local Nusselt number and local Sherwood 
number for the second solution when the value of the 
curvature parameter   is increases. 

On the other hand, the variations of local Nusselt 
number with thermophoresis parameter Nt for some 
values of Brownian motion parameter Nb is depicted 
in Fig. 7, while the corresponding local Sherwood 
number is presented in Fig. 8. Figure 7 reveals that 
there has been a slight decrease in the value of the 
local Nusselt number when thermophoresis Nt 
increases. However, when thermophoresis parameter 
reduces, the local Nusselt number also decreases.  
The results for local Sherwood number with 
thermophoresis parameter Nt for several values of 
Brownian motion parameter Nb in Fig. 8 is similar to 
that the results obtained in Fig. 7. This phenomenon is 
may be due to the enhancement of the collisions 
between particles that results from the increasing of 
thermophoresis Nt and Brownian motion parameter 
Nb and hence increase the thermal and nanoparticle 
concentration boundary layer thicknesses. Thus, 
reduce the local Nusselt number and local Sherwood 
number as well as heat and mass flux rates from the 
surface. The second solution for both the local Nusselt 
number and local Sherwood number is much lower to 
the first solution. As shown from these figures, the 

 
 

Fig. 5 — Variation of 21Re 
xxNu  with Nb for some values of γ

when Pr = 1, Le = 2,   = -1.2 and Nt = 0.1. 

 

 
 

Fig. 6 — Variation of 21Re 
xxSh  with Nb for some values of γ

when Pr = 1, Le = 2,   = -1.2 and Nt = 0.1. 
 

 
 
Fig. 7 — Variation of 21Re 

xxNu  with Nt for some values of Nb 

when Pr = 1, Le = 2,   = -1.2 and  = 0.2. 
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local Nusselt number and local Sherwood number for 
the second solution are not significantly sensitive to 
the Brownian motion parameter Nb. 

Figures 9, 10 and 11 are presented to show the 
effect of the curvature parameter   on the velocity, 
temperature and nanoparticle concentration profiles, 
respectively, for shrinking cylinder case ( 2.1 ). It 
is seen that there exist two different profiles for a 
certain value of  , but with different shapes and 

boundary layer thickness, which support the existence 
of dual solutions that illustrated in Figs 2, 3 and 4. In 
these figures, as curvature parameter  increases, the 
velocity, thermal and nanoparticle concentration 
boundary layer thicknesses for the first solution 
decreases. In addition, increasing the curvature 
parameter   is to decrease the fluid velocity, 
temperature as well as nanoparticle concentration 
inside the boundary layer and in consequence increase 
the velocity, temperature and nanoparticle 
concentration gradient at the surface of the cylinder. 

 
 

Fig. 8 — Variation of 21Re 
xxSh  with Nt for some values of Nb

when Pr = 1, Le = 2,   = -1.2 and  = 0.2. 

 

 
 
Fig. 9 — Effect of the curvature parameter γ on the velocity
profile when Pr = 1, Le = 2,   = -1.2, Nb = 0.1 and Nt = 0.1. 
 

 
 

Fig. 10 — Effect of the curvature parameter γ on the temperature
profile when Pr = 1, Le = 2,   = -1.2, Nb = 0.1 and Nt = 0.1. 

 

 
 

Fig. 11 — Effect of the curvature parameter γ on the nanoparticle
concentration profile when Pr = 1, Le = 2,   = -1.2, Nb = 0.1 and 
Nt = 0.1. 
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Hence, it enhances the skin friction coefficient, heat 
transfer rate and mass transfer rate. Physically, the 
presents of curvature parameter   is able to restrict 
the fluid motion at the surface of the cylinder, heat 
and mass flux from the surface of cylinder. The 
opposite trend is found for the second solution where 
the boundary layer thickness is thicker when 
curvature parameter   increases. 

The effect of Brownian motion parameter Nb on 
the temperature and nanoparticle concentration 
profiles for shrinking cylinder case ( 2.1 ) with 
other fixed parameters are provided in Figs 12 and 
13, respectively. It is apparent from both figures that 
increasing of Brownian motion parameter Nb may 
cause the increasing of thermal and nanoparticle 
concentration boundary layer thicknesses as well as 
decrease the temperature and nanoparticle 
concentration gradient in the boundary layer. This 
phenomenon leads to decrease the local Nusselt 
number and local Sherwood number. Physically, 
Brownian motion effect tends to move the 
nanoparticle from higher concentration to lower 
concentration and able to warms the fluid in the 
boundary layer. This motion moves the nanoparticle 
away from the surface of the shrinking cylinder 
which are then reduce the thermal and nanoparticle 
concentration boundary layer thicknesses for both 
the first and second solution. It is worth mentioning 
that for the small value of Brownian motion 
parameter Nb provides important effect on the 
temperature and nanoparticle concentration. 

Figures 14 and 15 preserve the effect of 
thermophoresis parameter Nt on the temperature and 
nanoparticle concentration profiles, respectively, 
when all parameters are fixed for shrinking cylinder. 
It is observed in Fig. 14 that the thermal boundary 
layer thickness increases as thermophoresis parameter 
Nt increases for both the first and second solution. 
However, the nanoparticle concentration boundary 
layer thickness for the first solution in Fig. 15 reduces 

 
 
Fig. 13 — Effect of the Brownian motion Nb on the nanoparticle 
concentration profile when  = 0.2, Pr = 1, Le = 2,   = -1.2 and 
Nt = 0.1. 
 

 
 
Fig. 14 — Effect of the thermophoresis Nt on the temperature 
profile when  = 0.2, Pr = 1, Le = 2,   = -1.2 and Nb = 0.1. 

 
 
Fig. 12 — Effect of the Brownian motion Nb on the temperature
profile when  = 0.2, Pr = 1, Le = 2,   = -1.2 and Nt = 0.1. 
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when thermophoresis parameter Nt increases, but 
reversely for the second solution. As we increases the 
thermophoresis parameter Nt, the temperature 
gradient decreases and reversely the nanoparticle 
concentration gradient in the boundary layer 
increases. Hence, it may lead to decrease the heat 
transfer rate and increases the mass transfer rate. In 
nanofluids, thermophoresis effect acts opposite to the 
temperature gradient and consequently reduces the 
diffusion of nanoparticles as well as tends to move 
nanoparticle from hot to cold regions which warm the 
fluid in the boundary layer. 

Further, the temperature profile for some values of 
Prandtl number Pr for shrinking cylinder is illustrated 
in Fig. 16. It is found in the figure that the thermal 
boundary layer thickness increases as Prandtl number 
Pr increases. Hence, the local Nusselt number 
decreases. It is worth mentioning that we cannot 
logically predict sensible change in the thermal 
boundary layer thickness for Pr > 5. The Prandtl 
number controls the thickness of momentum and 
thermal boundary layers. When Prandtl number Pr is 
smaller, the heat diffuses more quickly. Next, the 
effect of Lewis number Le on the nanoparticle 
concentration profile is depicted in Fig. 17. It is seen 
that nanoparticle concentration profile increase as the 
Lewis number Le increases, which resulting an 
increasing of the nanoparticle concentration boundary 
layer thickness and consequently reduces the local 
Sherwood number. When Lewis number Le is higher, 

the mass diffusivity is slower, and then increases the 
nanoparticle concentration boundary layer thickness. 
As shown from Fig. 17, the nanoparticle 
concentration profile is not significantly different for 
the increasing of the Lewis number Le. It is worth 
mentioning that for all Figs. 9-17 presented into our 
discussion, the velocity, temperature and nanoparticle 
concentration profiles are satisfy the far field 
boundary conditions (10) asymptotically, which 
support the validity of the numerical results obtained. 

 
 
Fig. 15 — Effect of the thermophoresis Nt on the nanoparticle
concentration profile when  = 0.2, Pr = 1, Le = 2,   = -1.2 and
Nb = 0.1. 
 

 
 
Fig. 16 — Effect of the Prandtl number Pr on the temperature
profile when  = 0.2, Le = 2,   = -1.2, Nb = 0.1 and Nt = 0.1. 

 

 
 
Fig. 17 — Effect of the Lewis number Le on the nanoparticle 
concentration profile when  = 0.2, Pr = 1,   = -1.2, Nb = 0.1 
and Nt = 0.1. 
 



INDIAN J PURE & APPL PHYS, VOL. 57, FEBRUARY 2019 
 
 

116

Table 2 — Smallest Eigen values   for selected values of γ and ε. 

    

Upper branch Lower branch 

0 -1.246 0.0622 -0.0614 
 -1.24 0.2121 -0.2036 
 -1.2 0.3398 -0.3185 

0.2 -1.38 0.0314 -0.0306 
 -1.35 0.4742 -0.4461 
 -1.3 0.7744 -0.6997 

0.4 -1.493 0.0601 -0.0597 
 -1.49 0.1579 -0.1553 
 -1.45 0.2245 -0.2134 

 

The system of linearized problem (21) - (23) along 
with the new boundary conditions (24) has been 
applied into bvp4c in Matlab software to perform 
stability analysis. The smallest Eigen value ϖ for 
some values of ε are displayed in Table 2. It is seen 
that as the selected value of ε is closer to εc, the Eigen 
value ϖ will approaching zero (ϖ → 0). As can be 
seen in Table 2, the value of ϖ is positive (stable 
solution) for the first solution, while negative value of 
ϖ (unstable solution) is obtained for the second 
solution. The solution is stable solution when there 
only slight disturbance on the flow system that does 
not affect the flow characteristics, while the unstable 
solution is stated when there existed initial growth of 
disturbance that affect the flow system. Thus, the first 
solution is stable and thus can be realized physically 
whereas the second solution is not. 
 

5 Conclusions 
The two-dimensional stagnation-point flow over a 

stretching/shriking cylinder using Buongiorno model 
is investigated numerically by using shooting method 
with an application of the Maple software and bvp4c 
codes in Matlab software. The model used 
incorporates the effects of thermophoresis and 
Brownian motion. The governing partial differential 
equations are transformed into ordinary differential 
equations by means of similarity transformation.  
The effects of governing parameters such as the 
curvature parameter, Brownian motion parameter, 
thermophoresis parameter and stretching/shrinking 
parameter on the flow, heat and mass transfer 
characteristics are graphically shown and discussed. 
Our results show as the curvature parameter increases, 
the skin friction coefficient, the local Nusselt number 
and the local Sherwood number increase which 
represent the heat transfer and mass transfer rates, 
respectively. Moreover, the increasing of the 

Brownian motion parameter and thermophoresis 
parameter, consequently decreases the heat transfer 
rate at the cylinder surface. Meanwhile, when the 
Brownian motion parameter decreases and 
thermophoresis parameter increases, the mass transfer 
rate increases. The dual solutions exist for the 
shrinking cylinder, while an unique solution is 
obtained for the stretching cylinder. Lastly, the 
performing of stability analysis shows that the  
first solution is linearly stable, while the second 
solution is linealy unstable. 
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