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Nodal admittance matrix (NAM) expansion method for systematic synthesis of seven-OTA Wien oscillators is given. 

The paper presents 32 Wien oscillators using OTAs by means of NAM expansion method. Each oscillator employs seven 

OTAs and two grounded capacitors, it is easy to be integrated and the oscillation condition and frequency can be tuned 

electronically, linearly and independently through tuning bias currents of OTAs. The circuit analysis and computer 

simulation results are in agreement with theory and then the realizability of the derived circuits is verified. 
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1 Introduction 

 Recently, nodal admittance matrix (NAM) 

expansion method for systematic synthesis of linear 

active circuits has been reported in the literature
1-17

. 

According to this method, the literature
17

 presents not 

only 32 NAM equations for Wien oscillators, but also 

four different classes of the oscillators, namely the 

class I oscillators employing three OTAs, the class II 

oscillators employing four OTAs, the class III  

oscillators employing five OTAs, and the class IV 

oscillators employing six OTAs. Unfortunately, the 

class V oscillators have been missed. Therefore, the 

work of this paper is an addendum to the literature
17

. 

Based on 32 NAM equations of Wien oscillators, 32 

OTA-based Wien oscillators are obtained by using the 

NAM expansion method. Each oscillator has 128 

different forms of expanded matrixes and 128 nullor–

mirror realizations, but employs only seven OTAs and 

two grounded capacitors. Having used canonic 

number of components, the circuits are easy to be 

integrated and the oscillation condition and frequency 

can be tuned electronically, linearly and 

independently through tuning bias currents of OTAs. 

Finally, the realizability of the derived oscillators has 

been verified through the use of circuit analysis and 

MULTISIM 11.0 software simulation and the results 

are in agreement with theory. 

 

2 Systematic Synthesis of Seven-OTA Wien 

oscillators 

 Starting from the port admittance matrix Eq. (2a) in 

the literature17
 and taking into account the oscillators 

with ten nodes, the first step in the NAM expansion 

method is to add seven blank rows and columns,  

and then use a first nullator to link columns 1 and 4 

 to move G1 to the position 1, 4, then a first  

norator is connected between rows 1 and 4 to move 

G1 from the position 1, 4 to the position 4, 4, as 

described next: 

 

 
 

 …(1) 

 
 A second nullator is connected between columns  

2 and 5 to move –G1 to the position 1, 5, then a first 

current mirror is connected between rows 1 and 5 to 

move –G1 to be G1 at the position 5, 5, as shown in 

Eq. (2). 
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 …(2) 

 A third nullator is connected between columns 1 

and 6 to move –G1 to the position 3, 5, then a second 

current mirror is connected between rows 3 and 6 to 

move –G1 to be G1 at the position 6, 6, as shown in 

Eq. (3). 
 

 

 …(3) 

 A fourth nullator is connected between columns 2 

and 7 to move G1 to the position 3, 7, then a second 

norator is connected between rows 3 and 7 to move 

G1 to the position 7, 7, as shown in Eq. (4). 

 A fifth nullator is connected between columns 2 

and 8 to move G2 to the position 2, 8, then a third 

norator is connected between rows 2 and 8 to move 

G2 to the position 8, 8, as shown in Eq. (5). 

 A sixth nullator is connected between columns 3 

and 9 to move –G3 to the position 2, 9, then a third 

current mirror is connected between rows 2 and 9 to 

move –G3 to be G3 at the position 9, 9, as shown in 

Eq. (6). 

 

 …(4) 

 

 

 …(5) 
 

 

 …(6) 
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 At last, a seventh nullator is connected between 

columns 3 and 10 to move –G4 to the position 3, 10, 

then a fourth current mirror is connected between 

rows 3 and 10 to move –G4 to be G4 at the position 

10, 10, it follows that the NAM with the added nullor-

mirror elements represented by bracket notation is 

obtained, as shown in Eq. (7). 
 

 

 …(7) 
 

 In Eq. (7), G1 denotes the admittance between 

nodes 4, 5, 6, 7 and ground, G2, G3, and G4 are the 

admittance connected to nodes 8, 9, and 10 and 

ground, respectively. 

 After adding the two capacitors C1 and C2 at nodes 

1 and 2, respectively, Eq. (7) is represented in Fig. 1, 

which is a nullor–mirror equivalent circuit of the 

oscillators described by the NAM. It can be seen that 

this equivalent circuit contains seven different pairs of 

pathological elements, two grounded capacitors, and 

seven grounded admittances. 

 Again, starting from the port admittance matrices in 

Eq. (2a) in the literature
17

, and applying all possible 

combinations of the added nullor-mirror elements will 

yield 128 different forms of the expanded matrix, 

resulting in 128 different forms of the equivalent 

nullor–mirror realizations for the oscillator. At last, 

using the mullor–mirror descriptions for OTA
11-12, 14-17

, 

only one equivalent OTA-based realization can be 

achieved, as shown in Fig. 2.  

 It is clear that the circuit of Fig. 2 has a larger and a 

smaller feedback loops, the dc gain of the larger 

feedback loop is negative, whereas one of the smaller 

feedback loop is positive. 

 Similarly, starting from the port admittance 

matrices in Eq. 2 (b-d) and Table 1 in the literature
17

, 

31 equivalent OTA-based realizations for oscillators 

can be obtained by means of NAM expansion, the 

remaining implementations are omitted. Of course, 

readers can also obtain them by changing local 

feedback polarity of OTA 2, 4, 6 and amplifier 

polarity of OTA 1, 3, 5, 7 with the aim to provide 

negative larger feedback gains and positive smaller 

feedback gains, as shown in Table 1. 

 In Table 1, if OTA 1, 3, 5 and 7 take positive 

polarity, the corresponding amplifiers are non-

inverting ones; on the contrary, the corresponding 

ones are inverting ones. If OTA 2, 4, 6 take positive 

polarity, the corresponding OTAs form local positive 

feedback loops; on the contrary, ones form local 

negative feedback loops. Note, however, that 32 

possible polarity combinations for OTAs must ensure 

that the dc gain of the larger feedback loop is 

negative, whereas one of the smaller feedback loop is 

positive. 
 

3 Circuit Analysis 

 For Fig. 2 circuit, routine circuit analysis leads to 

the following characteristic equation: 
 

2 2 1 6 2 1 3 1 4

1 2

2 6 1 3 6 4 3 5 7 4

1 2

/

/ /
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+ =

  …(8) 

 
 

Fig. 1 — Nullor–mirror equivalent circuit described by the NAM in Eq. (7) 
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Table 1 — Polarity of OTAs in 32 Wien oscillators 
 

OTA number DC loop gain 

1 2 3 4 5 6 7 
 

LG1 LG2 

– – + + + – + – + 

– – – – + – + – + 

+ + + + – – + – + 

– + + – + – + – + 

+ + – – – – + – + 

+ – – + – – + – + 

+ – + – – – + – + 

– + - + + – + – + 

– – + + + + – – + 

– – – – + + – – + 

+ + + + – + – – + 

– + + – + + – – + 

+ + – – – + – – + 

+ – – + – + – – + 

+ – + – – + – – + 

– + – + + + – – + 

– – + + – + + – + 

– – – – – + + – + 

+ + + + + + + – + 

– + + – – + + – + 

+ + – – + + + – + 

+ – – + + + + – + 

+ – + – + + + – + 

– + – + – + + – + 

– – + + – – – – + 

– – – – – – – – + 

+ + + + + – – – + 

– + + – – – – – + 

+ + – – + – – – + 

+ – – + + – – – + 

+ – + – + – – – + 

– + – + – – – – + 

 

 From Eq. (8), letting C1=C2=C, 

G7=G6=G5=G2=G1=G and noting that Gi=IBi/2VT, 

where i=1, 2, 3, 4, 5, 6, 7, the oscillation condition 

and frequency of the oscillator can be obtained as: 

 
 

Fig. 3 — Waveforms for nodes 1 and 2 in Fig. 2 

 

B3 B42I I≥   …(9) 

 

B

T4
o

I
f

V Cπ
=   …(10) 

 

 It is seen that adjusting IB can turn the oscillation 

frequency, whereas adjusting IB3 or IB4 can turn the 

oscillation condition. Thus, an attractive feature of 

this circuit is independent linear current control of the 

oscillation frequency and the condition.  

 For sinusoidal steady state, the voltage transfer 

function from Vo1 to Vo2 can be readily derived as: 

 

1 5

2 1 6

o

o

V G

V sC G
=

+
  …(11) 

 

 Considering C1=C2=C, G7=G6=G5=G2=G1=G, and 

using Eq. (9), Eq. (11) simplifies to: 

 
o451

2

1

2

jo

o

V
e

V

−
=   … (12) 

 

 It follows that the circuit can provide two voltage-

outputs with a relative phase shift of 45°. 

 
4 Simulation Verification  

 In order to verify the performances of the derived 

circuits, the OTAs in Fig. 2 employed LM13600 of 

the analog device library from NI MULTISIM 11.0 

software, and then Fig. 2 was simulated with ±5V 

power supplies. Let C1=C2=1nF, IB7=IB6=IB5=IB4 

=IB2=IB1=100 µA, then IB3=204 µA, the circuit  

will oscillate. From Eq. (10), the design value for  

fo is 0.306 MHz.The simulation result is shown in  

Fig. 3. Using the pointer in MULTISIM yields  

the actual values for fo as 296 kHz and the 

corresponding deviation for fo is –3.3%. It is seen that 

MULTISIM simulations have verified the theoretical 

results. 

 
 

Fig. 2 — One of 32 equivalent OTA-based realizations for Wien 

oscillators, where G7=G6=G5=G1, IB7=IB6=IB5=IB1 
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5 Conclusions 

 This paper deals mainly with synthesis method of 

Wien oscillators employing seven OTAs by means of 

the NAM expansion. The derived oscillators include 32 

novel circuits using seven OTAs and enjoy not only the 

features of independent control of the oscillation 

frequency and condition but also ones of OTA circuits, 

such as, use of grounded capacitors, no externally 

connected resistors, etc. This study also shows that a 

circuit designer who understands NAM expansion 

method well has great versatility in generating new 

circuits and controlling their properties. 
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