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Considering a quadratic Anharmonic model Hamiltonian and using double time temperature dependent Green's 

function method and Dyson's equation treatment, expression for polarizablity in the frequency response for mixed perovskite 

type ferroelectrics has been obtained. Using the experimentally observed temperature dependent dielectric constant, loss 

tangent, soft mode frequency and width for Na1−x KxNbO3 (where x = 0, 0.4 and 0.5), the polarizablity has been calculated 

for these samples at 10 and 100 kHz. 
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1 Introduction  

 A model Hamiltonian has been proposed by Pytte
1
 

for understanding the structural phase transition in 

perovskite ferroelectrics, the phonon frequency, shift 

and width have not been explicitly calculated by 

them, because of early decoupling of correlation 

functions. The soft mode frequencies are determined 

for arbitrary temperature by calculating the equations 

of motion using the Model Hamiltonian and 

determining the required correlation functions by 

means of self-consistency conditions. The occurrence 

of ferroelectricity in perovskite type ceramics such as 

Na1-xKxNbO3 has been established both theoretically 

and experimentally
2-5

 with the existence of an optic 

mode of lattice vibration soft mode having wave 

number zero and a frequency, which is anomalously 

low and temperature dependent. Microscopic theories 

of displacive phase transitions have been based on a 

perturbation expansion of harmonic basis. Since the 

harmonic soft-mode frequencies are imaginary, the 

contribution of these modes in the anharmonic terms 

was neglected. A self-consistent model of the soft 

mode frequencies was first given by Boccara and 

Samara
6
 by employing the renormalized phonon 

basis. Their formal treatment represented (the lowest 

order of) what is now called the self-consistent 

phonon approximation
7
 (SPA). This approximation 

has been very successful in describing the anharmonic 

rare-gas solids, including the quantum crystals of 

solid helium. 

 Numerical calculations have shown that the SPA 

gives a first - order transition for a model ferroelectric 

containing only fourth order anharmonic interactions
8
. 

This result is surprising because the 

phenomenological Landau (Devonshire) theory 

predicts the transition to be second order, when only 

terms up to fourth order in the polarization are 

included
9-11

. Polarizability factor for Na1-xKxTaO3 

ceramics have already been study by the author
4
. 

Present result has been obtained by using our previous 

experimental results
12-14

 with theoretically derived 

expression for polarizability 

 

2 Theory 

 To illustrate the essential features of the SPA and to 

understand a first-order transition, it is instructive to 

consider a simple model Hamiltonian with a single 

degree of freedom: 
 

2 2 2
0 1 1 11

11 / 2 (1) (1) 1 / 2
2

a

H P Q= + Ω −� � �
 

4
1 1 1 1(11') (1) (1 ) 1/ 2 (1)V Q Q Q′ ′ + Γ �   

…(1) 
 

where Q1, is a localized normal mode coordinates 

describing the ion displacements in cell 1 and P(1) is 

the canonical conjugate momentum: 
 

[ ]1 1 11,Q P iδ′ =  …(2) 

 

We set Q1 = Q0 + U1, where the thermal average  

Q0 = Q1 <Q1> measures the distortion from the high 
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temperature structure, while U1 describes the average 

values. In SPA the free energy F = <H> - TS is 

obtained by using a harmonic trial density matrix
2
. 

The distortion Q0 and the effective harmonic force 

constants are determined by minimizing the free 

energy. For the Hamiltonian given by Eq. (1) the 

extremum condition 0/ 2 =∂∂ QF  takes the form:  

 

2 2
0 0 1 0[ (0) 3 ] 0Q V QΩ − + Γ + Γ∆ =  …(3) 

 

where (0) ( )IIV V II ′= Σ  and ∆  is defined below. The 

effective force constants determine the self-consistent 

normal mode frequency. For this mode, it is given by: 
 

2 2 2 2 2[ (0) ( ) ~ ]q v v q a qω = Ω + − Ω +  …(4) 
 

where 
 

2 2 2
0 1 0 1[ (0) 3 3 ]v r Q rΩ = Ω − + + ∆  …(5) 

 

Or in the distorted phase, using Eq. (3):  
 

2 2
1 02r QΩ = ; …(6) 

 

 The correlation function ∆  = <UiUj> is determined 

with the help of the fluctuation dissipation theorem
6
: 

 
1 11/ 2 coth1/ 2q q qN ω βω− −∆ = Σ , …(7) 

 

for simplicity, we consider the limit / 1,q kTω << ∆  

may be approximated by the Ornstein-Zemike form: 
 

1 2 2 2 1( )qkTN a q
− −∆ = Σ Ω +  …(8) 

 

Evaluating the summation in the Debye-

approximation, we obtain: 
 

0 t∆ = ∆ − ∆  …(9) 

 

where 

2
0 3 / dkT ω∆ =  and 

1
0 ( ) tan ( / )T d dω−∆ = ∆ Ω Ω  

On substituting in Eq. (9), we get: 
 

2 1
03 / ( / ) tan ( / )d d dkT ω ω ω−∆ = − ∆ Ω Ω  

2 2 2 13 / 3 / [ / ( / ) tan ( / )]d d d d dkT kTω ω ω ω ω−= − Ω Ω Ω  

2 13 / [1 ( / ) tan ( / )]d d dkT ω ω ω−− Ω Ω  …(10) 

where ,d D Daq qω = being the Debye wave vector. 

T∆  denotes the contribution to ∆  due to long 

wavelength fluctuation. For 0 0Q ≠  Eq. (9) may be 

written as: 

 
2

1 0 1( ) 3 0c Ta T T r Q r− + − ∆ =  …(11) 

 

where  

 
2

19 /B da r K ω= , …(12) 

 
1 2

0[ (0) ]cT a v
−= − Ω  

 

and 
2
0(0) cv T a

+
−= Ω  …(13) 

 Because T∆  is linear in Ω  as 0Ω → , it follows 

from Eqs (6) and (11) that transition is first order. 

However, it is important that the linear term giving 

rise to the first order transition is entirely due to the 

long wavelength fluctuations. 

 On substituting Eqs (6,7,13) in Eq. (5), we get the 

expression as:  

 
2 2 1
0 9 / [ (1 / tan / ) ]B d c d dQ K T Tω ω ω−= − − Ω Ω  

 …(14) 

 

On substituting the experimental results of soft 

frequency (Ω), natural frequency of the system (ωd) 

for 
2

1 x x 3Na K NbO (x=0,0.4 and 0.6)−  we get the 

variation of 
2
0Q  with temperature in Tables 1 and 2 

and have been plotted in Figs 1 and 2, respectively.  

 
 

Fig. 1 — Variation of polorizability factor (Q0
2)×10−50 with 

temperature for Na1-xKxNbO3 system at 10 kHz 
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Fig. 2 — Variation of polorizability factor (Q0
2)x10-50 with 

temperature for Na1-xKxNbO3 system at 100 kHz 

 
Table 1 — Variation of polarizability factor with temperature 

for Na1−xKxNbO3 system at 10 kHz 

 

Temp Q
2

0 (Eq.14) 

(K) NaNbO3  

(×10-50) 

Na0.6K0.4NbO3  

(×10-50) 

Na0.5K0.5NbO3  

(×10-50) 

 

423 954.895 962.714 1056.414 

443 904.904 844.019 976.681 

463 852.924 783.587 852.924 

468 835.296 688.712 838.053 

483 795.972 823.544 897.129 

503 738.568 776.852 829.465 

523 682.972 815.001 802.164 

543 622.856 723.200 750.817 

563 565.904 617.903 695.447 

583 510.850 555.869 634.879 

603 463.300 483.549 570.107 

623 370.992 381.849 515.551 

643 284.823 196.032 405.398 

653 263.154 145.408 324.038 

663 243.402 113.768 177.184 

673 223.966 106.400 126.017 

683 203.671 096.366 124.345 

693 182.924 073.992 101.700 

703 160.912 054.014 090.128 

713 137.814 031.730 077.608 

 

3 Results and Discussion 

 Using our experimental
8
 results for temperature and 

frequency dependence dielectric constant, tangent loss 

and width for NaNbO3, Na0.6K0.4NbO3 and 

Na0.5K0.5NbO3, Polarizability factors obtained by first 

order phase transition in the self-consistent phonon 

approximation by using the formula obtained by 

Pytte
9
, have been calculated for these mixed systems 

in continuation with our previous paper
7,8

. The 

polarizablity factor at 10 and 100 kHz frequency has 

been shown in Tables 1 and 2 and Figs 1 and 2, 

respectively. It is observed that polarizablity tends to 

decrease up to the first transition temperature 

(orthorhombic-tetragonal) thereafter, it increases and 

then tends to zero up to second transition temperature 

(tetragonal cubic). In the temperature range 465±20°C 

and 665±20°C anomalous behaviour has been 

observed due to phase transition. It can be understood 

that the polarization mode is temperature dependent.  
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