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The present investigation is dedicated to the study of propagation characteristics of electron acoustic (EA) waves and 

double layers in the quantum plasma system containing inertialess hot electrons and inertial cold electrons with stationary 

ions forming the charge neutralizing background. It is assumed that hot electrons follow κ-deformed Kaniadakis distribution 

as governed by the parameter κ. Using the appropriate stretched coordinates and reductive perturbation method (RPM) the 

Korteweg-de Vries (KdV) and modified KdV (mKdV) equations have been derived. For the sake of analysis, a limit of 

range of deformation parameter (κ) has been set as -0.4≤κ≤0.4. For the defined range, it has been observed that plasma 

system supports rarefactive solitary structures. The amplitude and width of KdV soliton have been significantly affected by 

the quantum effects and remains unaffected by the deformation parameter (κ). The analysis was further extended to the 

derivation of mKdV equation to investigate the existence of small amplitude double layers (DLs). Only negative potential 

DLs are found to exist whose dynamics significantly depends on deformation parameter (κ), quantum effects (H) and hot to 

cold electron density ratio (α). The outcome of the present discourse may be helpful to understand the use of generalized 

entropies in the environment of plasma physics. 

Keywords: Electron acoustic waves, κ-deformed Kaniadakis distribution, Reductive Perturbation Method, Korteweg-de 

Vries equation, Modified Korteweg-de Vries equation, Double layers. 

1 Introduction 

The exploration of various features of quantum 

plasma have received immense assiduity in last few 

years by virtue of its far reaching applications in high 

density astrophysical environments such as white 

dwarfs, neutron stars etc1,2. The signatures of quantum 

plasma are encountered not only in laser produced 

plasmas3, semiconductor devices4,5, quantum dots and 

nanowires6, quantum wells and diodes7,8 but also in 

biophotonics 9 and cool vibes10. It may be mentioned 

that the study of quantum plasma becomes significant 

when de-Broglie wavelength associated with the 

charged particles becomes comparable to or greater 

than interparticle distance of the system and plasma 

acts like Fermi gas and hence quantum mechanical 

effects become crucial11-13. To describe the dynamics 

of quantum-scale plasma particles, quatum 

hydrodynamic (QHD) model is certified which is the 

generalization of the classical fluid model with the 

inclusion of a correction term pronounced as "Bohm 

Potential‖, which subsequently describes the new 

aspects of collective interactions at the nanoscale14. 

Quantum   effects   play   crucial  role  in  the  various 

features of nonlinear quantum wave structures as 

reported by a several authors13,15-20. The electron 

acoustic (EA) wave is a small amplitude wave that 

occurs in plasma with two distinct populations of 

electrons, referred as ―cool‖ and ―hot‖21 and its 

presence can be witnessed in the electron-ion plasmas 

containing ions hotter than electrons. EA wave is 

actually an electrostatic wave within which the cool 

electrons provide the momentum and the restoring 

force comes only from the hot electrons22. The ions 

play the part of the neutralizing background, i.e. their 

dynamics do not affect the EA waves since the 

frequency of the EA wave is much greater than the 

frequency of plasma ion. In order to avoid damping of 

the wave, the phase speed of the EA wave should be 

intermediate between the thermal hot and cold 

electron speeds23. The EA waves occur in the 

laboratory as well as in space plasmas, for example, 

in the bow shock of the Earth, within auroral 

magnetosphere24 and in a geomagnetic tail.  

Various particle distributions enhance the 

bountifulness of variety of the wave motions in 

plasma through their significant contribution in 

describing the physics of nonlinear wave 

structures.  
—————— 
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Also, they considerably influence the requisite 

conditions for the creation of solitons and double 

layers. Several observations illustrate the inability of 

Maxwellian distribution of particles to describe the 

non-equilibrium attribute of the plasma. For such 

considerations, non-Maxwellian distribution functions 

present good approximations. In 2001, Kaniadakis25 

proposed a new one parameter deformation of 

exponential function known as κ-deformed distribution 

and proved that it could accommodate the traditional 

Maxwell-Boltzmann as well as the non-extensive 

distribution. He further suggested that such a  

κ-deformed distribution could be seen as the result of a 

more simplified statistics known as superstatistics. The 

Kaniadakis non-Gussian statistics is elaborated by  

κ-entropy which occurs naturally in the infrastructure 

of so-called kinetic interaction theory, which 

describes nonlinear kinetics in the particle systems26. In 

the framework of this principle, the expression of 

Fokker–Planck equation depicting the kinetic evolution 

of system gets modified by imposing the generalized 

entropy associated with the system. The fabulous 

similitude of structures of κ-deformed statistics with 

that of special relativity reflects its relevance self 

consistent formulation of relativistic statistical 

theory25,27 and relativistic Boltzmann kinametics28. The 

various applications of κ-deformed emanating from 

Kaniadakis entropy include the relativistic flux 

distribution of cosmic rays27, formation of quark-gluon 

plasma26, nonlinear kinetics29, kinetics of interacting 

atoms and photons30. Other relativistic contexts such as 

nuclear kinetics31, gas in an electromagnetic field32 and 

wave particle interactions33 also find an important role 

of κ-deformed Kaniadakis distribution. Lourek  

and Tribeche34 employed the Sagdeev approach to 

investigate the features of ion-acoustic (IA) solitary 

waves and double layers in unmagnetized electron-ion 

plasma using κ-deformed Kaniadakis distribution. 

They observed that κ-deformed parameter slightly 

changes the IA structures. Ourabah and Tribeche35 and 

Ourabah et al36 explored the blackbody radiation and 

quantum entanglement within the background of  

κ-deformed distribution arising out of Kaniadakis 

entropy. Gougam and Tribeche37 examined the effects 

of this distribution on small amplitude EA double 

layers. Saha and Tamang38 investigated positron-

acoustic waves in four component plasma consisting  

of static positive ions, mobile cold positrons and 

Kaniadakis distributed hot positrons and electrons. 

They observed that κ-deformed parameter has no  

effect on the solitary wave solution of KdV equation 

whereas it influences the solution of mKdV equation. 

Abul-Magd et al39 proposed the non-Gaussian 

deformations (κ0) of the conventional orthogonal and 

unitary ensembles of random matrices. Khalid et al40 

used the κ-deformed Kaniadakis distribution of 

electrons in the context of arbitrary amplitude  

IA solitary waves in two fluid magnetized plasma. 

They discussed the effect of various parameters such as 

Mach number, strength of magnetic field and 

obliqueness on the soliton dynamics. In order to join 

hands with the flourishing studies engrossing the 

generalized entropies in nonlinear waves, we give 

consideration to the rational use of κ-deformed 

Kaniadakis entropy. In the present investigation, we 

intend to study the nonlinear EA waves in quantum 

plasma with κ-deformed Kaniadakis distributed 

electrons. The main aim of this work is to check the 

quantum effects in the framework of κ-deformed 

Kaniadakis entropy on the physical structures  

and existence conditions of EA waves and  

double layers. To illustrate this work, we will  

derive the Korteweg-de-Vries (KdV) and modified 

KdV (mKdV) equations by using reductive 

perturbation technique in sections 3 and 4 respectively. 

The analysis is further extended to derive the  

solution of small amplitude double layers. A detailed 

discussion of numerical results is presented in section 5 

and finally the conclusion is given in section 6. 
 

2 Basic Equations and Dispersion Relation  

The nonlinear characteristics of the propagation of 

EA waves in three component unmagnetized quantum 

plasma system containing inertialess hot electrons, 

inertial cold electrons and stationary ions is 

considered here. The stationary ions provide the 

charge neutralizing background and the hot electrons 

are assumed obey by κ-deformed Kaniadakis 

distribution. Further, the wave phase velocity lie 

between thermal velocities of hot and cold electrons 

and ion plasma frequency is assumed to be much 

smaller than wave frequency. For such a plasma 

system, the normalized equations executing the 

dynamics of EA waves are given as  
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where the various quantities are normalized as 

follows: the number densities of cold and hot 

electrons cn  and hn  by their equilibrium densities, the 

cold electron velocity cv by 
efe mEC  , the 

value of electrostatic wave potential  by eE f / , the 

space (x) and time coordinates by Debye length of 

electron ( D ) and inverse of the plasma frequency of 

cold electron 
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em  is the mass of the electron and magnitude of 

electron charge is ‗ e ‘, The nondimensional quantum 

parameter H measures the effects of quantum 

diffraction and is defined as 
2

/ eepc CmH  where 

2/h  and ‗h‘represents the Planck‘s constant. 

To explain the motion of electrons, the  -deformed 

Kaniadakis distribution is followed. A detailed 

description of this distribution is presented by 

Kaniadakis25, Gougam and Tribeche37 and Khalid et al40 

in their studies. The statistics of Kaniadakis are based 

on a κ-deformed exponential25 defined as  
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where κ is the strength of deformation and the 

acceptable value of κ must satisfy 4.0  . It is 

mentioned that the function )(exp x  reduces to the 

standard exponential in the κ→0 limit, i.e. it 

has property )exp()(exp 0 xx  . Its behavior is 

similar to the standard exponential for 0x . It is 

interesting that the Taylor expansion's first three terms 

are the same as the standard exponential: 
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Further, the normalized number density of hot 

electron with κ-deformed Kaniadakis distribution is 

written as: 
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To linearize the set of basic equations (1)-(3), we 

take the following perturbation expansions of various 

field quantities about their equilibrium value:

 11 cc nn  ,  1

cc vv  , 1   and 11 hn . Now 

it is assumed that these field variable vary as the 

)exp( tkx    and we get linear dispersion relation:  
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From this relation it is clear that, the wave 

frequency )(  is the function of propagation constant 

)(k  and density ratio of hot to cool electrons )(  . 

Therefore, the wave velocity is a function of these 

parameters. It also becomes clear from equation (4) 

that  is independent of deformation parameter (κ). It 

is further mentioned that the wave frequency )(  

relies on quantum parameter (H) via parameter α, 

where the quantum parameter H is calculated as 
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The above equation gives the mathematical relation 

of quantum parameter (H) with different parameters 

such as mass of electron )( em , electron charge (e), 

cold electron density )( 0cn and  .  
 

3 Korteweg-de Vries (KdV) Equation and its 

Solution 

A nonlinear theory is established regarding EA 

waves to investigate solitary structures in the given 

quantum plasma system by using reductive 

perturbation technique. This will result in scaling of 

independent variables by stretched coordinates in the 

space (X) and time (T) as:  txX   2/1
, 

tT 2/3 . Here  is a small parameter and is phase 

velocity of the wave. The expansion of perturbed 

quantities cn , cv and   about their equilibrium 

values are given as: 
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and hn is distributed by κ-deformed Kaniadakis 

distribution is given by  
 

......
6

1

2
1

3

1

2

213

3

2

1
2

2

1 





















 















 





hn

 
 ...(7) 



INDIAN J PURE APPL PHYS, VOL. 59, AUGUST 2021 

 

 

580 

Using the expansion (6) of the perturbed quantities 

into equations (1) to (3) and picking the lowest order 

terms of ε we get the phase velocity and first order 

quantities as  21 , 
 

1

1 cn , 
 

1
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.
 

Now by picking the next higher order terms of ε we get 
 

          
0

11212






















X

un

X

u

T

n

X

n ccccc   ...(8) 

 

   
 

   
 

   

3

1321

1

2

2

1

1

12

4
22

X

nH

X

n
n

X

n

XX

u
u

T

u

X

u cc

c

cc

c

cc


































 




  

 
...(9) 

 

 22

122

1

2 1

2

1
cn

X 








  ...(10) 

 

Eliminating  2

cn ,  1

cn ,  2

cu
 

 1

cu
 

and 2  from 

equations (8) to (10), we get the required KdV 

equation after replacing  1  as given below 
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Here A and B respectively represents the 

nonlinearity and dispersion coefficients. To find the 

stationary solution of equation (11), we transform the 

independent variables X and T into one variable 

MTX  , where M is the constant velocity of the 

solitary wave. By applying the appropriate boundary 

conditions such as 0
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Here AM /30  represents the amplitude and 

MBWs /4  represents the width of the soliton.  
 

4. Modified Korteweg-de Vries (mKdV) Equation 

and Double Layer Solution

 In order to analyze the nonlinear propagation of EA 

waves and to derive the modified KdV (mKdV) 

equation in quantum plasma, we need some equations 

containing higher order coefficients to interpret such 

system properly. To derive mKdV equation, the 

stretched coordinates used are  txX   , 
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For higher order of ε we will get 
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Now, using equations (14)-(17) we get required 

mKdV equation as 
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where A and B are given by equation (12) and S is 

cubic nonlinearity coefficient given by 
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It is mentioned that the mKdV solitons exist only 

for positive values of S, i.e. S > 0. We have calculated 

numerically that for -0.4 ≤ κ ≤ 0.4 and 1 , the 

cubic nonlinearity coefficient S is negative thereby 

indicates that mKdV solitons doesn‘t exist in the 

present study. Furthermore, relative to the solitons, 

the double layer (DL) is a higher nonlinear structure. 

While interacting with such structure in the nonlinear 

progression equation, one is to preserve the term A as 

well. Here, we introduce the DL solution 

corresponding to the mKdV equation in this section 

and discuss the circumstances under which double 
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layers can be created. When A→0 but A≠0 then 

equation (18) reduces to the form as given below 
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On using41 212  DA 
, equation (20) becomes 

the required mKdV equation. In order to acquire the 

solution the independent variables X and T are 

transformed to single variable MTX 
. 

Therefore equation (20) is transformed to 
 

  0
2

1
1

2

1 












V

d

d
  ...(21) 

 

where V(ϕ1) is the Sagdeev potential and is given 

by: 
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and width and amplitude of DLs is given by 
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The above relations for the amplitude and width of 

DLs equation clearly describe that with the increase in 

the values of amplitude of the wave, width and 

velocity of the DLs change.  

5 Results and Discussion  

In this paper, the different characteristics of EA 

waves in quantum plasma have been discussed in the 

environment of κ-deformed Kaniadakis distributed 

hot electrons. In previous sections, derivations of 

KdV and mKdV equations with the double layers 

solutions have been discussed. This section is devoted 

to the numerical analysis of the effects of various 

parameters such as hot to cold electron number 

density (), quantum parameter (H) and deformation 

parameter ( ) on the soliton and DL dynamics. As 

mentioned earlier, the dispersion relation (4) indicates 

that the wave frequency )(  is independent of 

deformation parameter (κ) and is a function of 

quantum parameter (H) via parameter α (equation 

(5)). Fig. 1 represents a plot drawn between wave 

frequency (ω) and wave number (k) for three different 

values of hot to cold electron density ratio ( ). As α 

is always greater than 1, so values of α are taken as 

2.0, 3.0 and 4.0 and are shown by solid, dotted and 

dashed lines respectively. A linear relationship 

between  and k is observed and the wave frequency 

is found to increase with the rise in hot to cold 

electron density ratio ( ). It is further revealed that 

the value of quantum parameter (H) varies with 

change in . Hence, quantum effects also influence 

the wave frequency as depicted in Fig. 2. A similar 

kind of disposition was observed by Chandra et al42 in 

their research. Fig.2 displays a plot of wave frequency 

( ) and quantum parameter (H) at three different 

values of cold electron density (nc0) as shown 

respectively by solid ( 333

0 102.1  mnc
), dotted  

( 333

0 105.1  mnc
) and dashed lines  

( 333

0 107.1  mnc
). It is observed that the wave 

frequency (ω) increases with the increase in quantum 

effects (H) as well as cold electron density ( 0cn ).  

 
 

Fig. 1 ― Plot of dispersion relation at three different values of 𝛼. 
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It is worth mentioning that the nature and 

magnitude of the nonlinear coefficient A and 

dispersion coefficient B determine the characteristics 

of the soliton structures. From equation (12), we see 

that coefficient A depends on α only, whereas B 

depends upon both density ratio (α) and quantum 

parameter H. As we know the coefficient H is a 

function of α, hence the nonlinear coefficient A is also 

influenced by this factor. Solving equation (11) for 

B=0, we get H=2.0. Hence for existence of soliton 

solution given by equation (13), M must be positive 

for the range 2H0  whereas for the range H˃2, the 

soliton should have negative velocity (M). Hence 

these conditions of quantum parameter and the sign of 

coefficient A determine the occurrence of rarefactive  

(ϕ0˂0) or compressive (ϕ0 >0) soliton. However, for  

H >2 and positive value of soliton velocity M, the 

square root term in the expression of B (equation 

(12)) becomes imaginary and one can assume periodic 

potential structures. It is pertinent to mention that in 

congruent with the earlier observations37,42, only 

rarefactive solitons are reported in the present 

research problem. It is obvious from the expression of 

amplitude ϕ0  and width Ws of solitary wave that these 

are independent of deformation parameter κ stating 

thereby that this parameter has no influence on the 

properties of KdV solitons. However, other 

parameters such as quantum effects and density ratio 

influence the soliton dynamics. Fig. 3 portrays the 

variation of rarefactive KdV soliton potential (ϕs) with 

respect to space coordinate (X) at three different 

values of quantum parameter. Here solid, dotted and 

dashed lines correspond respectively to H=1.15, 

H=1.12 and H=1.1 along with nc0=1.7×1033m-3
 and 

M=0.1. It shows that with the increase in quantum 

effects, the amplitude of the solitons increases. To 

show the impact of electron number density ratio  on 

the soliton profile, Fig. 4 depicts the variation of ϕs  vs 

X at three different values of  as indicated by solid 

(=2.2), dotted (=3) and dashed (=4) lines. The 

other parameters are taken as nc0=1.2×1033m-3, 

H=0.588 and M=0.1. It becomes clear from the plot 

that the amplitude of negative potential structures 

decreases with increase in electron density ratio 

while the width gets decreased. It is pertinent to 

mention that a similar kind of behaviour has been 

observed by Zhu et al43 in their research.  

The analysis is further extended to explore the 

dynamics of modified KdV solitons using appropriate 

stretched coordinates and perturbation relation (6). In 

the process, mKdV equation (18) is derived, followed 

by the appearance of an additional term containing a 

cubic nonlinearity coefficient S. The value of S is 

found to be negative indicating thereby the non-

existence of mKdV solitons in the present case. 

Hence, we preceded towards the exploration of small 

 
 

Fig. 2 ― Wave function (w) as a function of quantum parameter 

(H) at different values of nc0. 
 

 
 

Fig. 3 ― Variation of KdV solitons potential ϕs with respect to 

space coordinate (X) for three different values of H with 

33
0 107.1 cn  and M=0.1. 

 

 
 

Fig. 4 ― KdV solitons potential ϕs
 

as a function of space 

coordinate (X) at different density ratios  with M=0.1. 
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amplitude double layer (DL) dynamics by employing 

the mKdV equation (18) and obtained the double 

layer solution (24). In agreement with Gaugam and 

Tribeche37 and Sahu44 only negative potential double 

layers are obtained on which the effect of various 

parameters will be discussed. To investigate the 

impact of deformation parameter   on the  

DL dynamics, Fig. 5 depicts the variation of  

DL-amplitude (ϕdl) of EA wave with quantum 

parameter H for the range of deformation parameter 

(κ) as 04.0   . Here solid line is  for 4.0 ,  

dotted line is for 3.0 and dashed line is for 

0.0  with 33

0 102.1 cn  and M=0.1. It is clear 

that, the amplitude of EA-DL increases with the 

increase in quantum parameter H. Further, at a fixed 

value of H, the DL-amplitude is found to increase 

with deformation parameter. The corresponding plot 

for the range 4.00    is shown in Fig. 6. It is 

observed that in this range, at a given value of H, the 

DL-amplitude decreases with the increase in 

deformation parameter κ as is clear from solid  

( 0.0 ), dotted ( 3.0 ) and dashed ( 4.0 ) 

curves. The analogous plots for width are represented 

by Figs. 7 and 8 respectively which depict that the 

quantum effects decrease the DL-width. However at a 

particular value of H, for the deformation range

04.0   , the DL-width increases whereas it 

shows a decrease for the range 4.00   (see Figs. 

7 and 8). In Fig. 9, we have plotted Sagdeev potential  

( )(V ) shown by equation (22) as a function of dl  

for three different values of electron density ratio 

2  (solid line), 3  (dotted line) and 5.3  

(dashed line) with M=0.1, 333
0 107.1  mnc  and

4.0 . It is evident that the peak amplitude of DLs 

increases with the increase in density ratio . It worth 

mentioning that consistent scenario was observed by 

Sahu44 in his research findings. In order to understand 

the effect of cold electron density ( 0cn ) on the DL 

profile, a plot of Sagdeev potential )(V as a function 

of dl is shown in Fig. 10 at three values of 

333

0 102.1  mnc
 (solid line), 333

0 105.1  mnc
 

(dotted line) and 333

0 107.1  mnc
 (dashed line) 

with M=0.1 and H=1.12 and κ=0.4. From the graph, it 

is obvious that the peak amplitude of EA-DLs 

increases with the increase in cold electron density

0cn . It is pertinent to mention that the deformation 

parameter (κ) has no effect on KdV soliton but it 

affects the DL dynamics significantly. A similar kind 

of behaviour has been observed by Saha and 

Tamang38. 

 
 

Fig. 5 ― For the range -0.4≤κ≤0, plot of DL-amplitude  

(ϕdl) vs quantum parameter (H) for there different values of κ 

with M=0.1.  
 

 
 

Fig. 6 ― For the range -0.4≤κ≤0.4, plot of DL-amplitude  

(ϕdl) vs quantum parameter (H) for there different values of κ 

with M=0.1.  

 
Fig.7 ― For the range 04.0   , plot of DL-width ( dlW ) 

vs quantum parameter (H) for there different values of  with 

M=0.1.  
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Fig. 8 ― For the range -0.4≤κ≤0.4, plot of DL-width (Wdl) vs 

quantum parameter (H) for there different values of  with 

M=0.1.  
 

 
Fig. 9 ― For DLs, plot of Sagdeev potential (V(ϕ)) vs ϕ at three 

different values of  with nc0=1.7×1033 with M=0.1 and κ =0.4. 
 

 
Fig. 10 ― For DLs, plot of Sagdeev potential (V(ϕ)) vs ϕ at three 

different values of nc0 with H=1.12, M=0.1 and κ =0.4. 

 

6 Conclusion 
The propagation characteristics of EA waves and 

double layers are analysed in quantum plasma system 

consisting of κ-deformed Kaniadakis distributed hot 

electrons. The wave frequency  is a function of 

parameters such as electron density ratio , quantum 

parameter H and cold electron density nc0. The 

frequency is found to increase with  , H and 0cn . 

Using the conventional reductive perturbation method 

and appropriate stretched coordinates, nonlinear 

differential equation KdV equation is derived. Only 

negative potential solitary structures are observed in 

the present case for which the amplitude (width) 

increases (decreases) with quantum effects H and cold 

electron density 0cn . The study is further extended to 

explain the dynamics of DLs through the derivation of 

mKdV equation. Only negative potential EA-DLs are 

obtained that significantly depend on deformation 

parameter (κ), quantum parameter (H) and hot to cold 

electron density ratio (α). The DL-amplitude (width) 

increases (decreases) with quantum parameter H. 

However for the range of deformation parameter 

04.0    ( 4.00   ), the DL-amplitude and 

width increase (decrease) with  . DL-amplitude 

increases with both  and 0cn . The deformation 

parameter (κ) has no effect on KdV soliton but it 

affects the DL dynamics. The findings of the present 

investigation are consistent with those of Gaugam et 

al37, Chandra et al42, Sahu43and Saha and Tamang44. 

The present investigation may be helpful to 

understand the study of nonlinear waves in the 

laboratory and astrophysical situations.  
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