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The screening effects in a chromodynamic vacuum which act as dual superconductor in the background of the magnetic 

condensation, have been studied. The colour charge and colour electric flux screening mechanism have been investigated 

and these screening effects are shown to be responsible for the colour confinement in dual QCD. It is also demonstrated that 

with the transition from the type-II to type-I in dual QCD vacuum at strong coupling constant 0.5sα ≈ , there exist n-vortex 

solutions with Bogomol’nyi-Prasad-Sommerfeld (BPS) conditions. 
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1 Introduction 

 The Bardeen-Cooper-Schrieffer (BCS) theory of 

conventional superconductivity has played an 

influential role in bringing the spontaneous symmetry 

breaking to the elementary-particle physics 

community in diversified ways
1,2

. In particular, it has 

a direct analogue in QCD which explains various non-

perturbative features
3
. In fact, the striking parallelism 

of QCD vacuum with the conventional super-

conductivity, where the condensation of magnetically 

charged objects
3-5

 (viz. monopoles and dyons), plays 

an important role in a way analogous to the Cooper 

pair condensation of electric charges is of prime 

importance in QCD to explain various issues 

especially related to the confinement and 

deconfinement (i.e. formation of quark-gluon 

plasma
6
) scenario

3,4
. As such, in naive QCD 

Lagrangian, the monopoles do not appear as 

dynamical variables, and thereby it is quite necessary 

to have these configurations as macroscopic variables 

in order to impart the chromomagnetic 

superconducting features to the QCD vacuum
3-19

. In 

fact, the superconducting nature of QCD vacuum is 

basically due to the coherent plasma of monopole or 

dyon pairs and leads to a covariant description of 

QCD vacuum as a magnetic superconductor
9,11,15

. In 

magnetic superconductors
3,9-16

, the dual potentials 

coupled to a field operator similar to a complex scalar 

field corresponding to a monopole or dyon 

field
4,17,20,21

 are the natural variables to describe the 

large-distance response of QCD vacuum. In such dual 

superconductor models
3
, the topological interaction is 

spanned over at the different vacuum expectation 

values of the monopole or dyon field for various 

length scales in the spontaneously broken phase of 

symmetry. On the other hand, in view of the brilliant 

insights of the Abelian gauge fixing techniques
18

 and 

lattice QCD calculations in maximally Abelian (MA) 

gauge
19

, it is quite reasonable to pay due attention 

over the Abelian component which dominates in the 

non-Abelian gauge theories at large-distances and 

there has been a growing impetus
22

 to speculate the 

Abelian dominance in QCD to study the colour 

confinement in QCD. Moreover, the physical vacuum 

with a non-Abelian gauge theory like QCD appears 

analogous to the ground state of an interacting many-

body system and leads to the possibility of vacuum 

screening currents
23

. A non-vanishing vacuum 

expectation value (VEV) of the scalar field in the 

ground state of such vacuum then leads to the mass 

acquisition of the dual gauge field which pushes the 

QCD vacuum in superconducting phase. Further, such 

models are also renormalisable
24

. It is, therefore, 

imperative to further investigate the screening effects 

and vortex configurations
25,26

, in dual QCD. 

 In the present paper, the screening effects led by 

the magnetic condensation of the QCD vacuum to 

investigate their enlightening impacts on the 

confinement scenario, have been studied. The novel 

element of this work is the inclusion of quarks 

together with the monopoles or dyons into the 

effective Lagrangian for the dual QCD 
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phenomenologically and it is an extension of our 

previous work related to the screening current and 

dielectric parameters
10

 in dual QCD.  

 

2 Screening Effects and Confinement 

 The model with the effective Abelian field which 

describes the strong interaction in QCD (in presence 

of quarks) with the complex scalar monopole field 

can phenomenologically be considered by the 

Lagrangian
9, 28

 in the following form: 
 

21
( )

4

( ) ( )

L G G i g C

i g C m V

µν
µν µ µ

µ
µ µ

φ

ψ γ ψ ψψ φφ∗

= − + ∂ +

+ ∂ + − −

� � ��

��

 …(1) 

 

where G C Cµν ν µ ν µ= ∂ − ∂� � �  is the field strength tensor 

corresponding to the dual gauge field Cµ
� , φ is the 

scalar field with the magnetic charge / ( 4 )g g=� π  

and Ψ is the quark field with m as the free quark 

mass. Here g is related to the strong coupling 

constant
9-11

 defined as 2 / (4 )s gα π= . The effective 

potential with correct field-theoretic description of the 

monopoles from phenomenological view point
9,10

 to 

incorporate the notions of symmetry breakdown given 

in Eq.(1) is then given by: 
 

2 2( ) ( )V φφ φφ η∗ ∗= Ω −  …(2) 

 

where 2

0η ϕϕ ∗= � �  represents the VEV of complex 

scalar monopole field (φ) and 23 / sλ αΩ =  which is a 

constant
9
. The potential given by Eq. (2) at φ η=  

gives the ground-state field configuration which 

captures the essential physics for the symmetry 

breakdown and thereby resulting the features 

corresponding to a particular theory. The field 

equations corresponding to the dual gauge, monopole 

and quark fields are then derived respectively in the 

following form: 
 

2( ) 0 0G i g g m C
ν

µν µ µ µϕ ϕ ψ γ ψ∗∂ + ∂ − − =
�

� �� � �  …(3) 

 
22 2( ) 2 ( ) 0i g Cµ µ φ φ η φ∂ + − Ω − =��  …(4) 

 

( ) 0i g C m
µ µ

µ µγ γ ψ∂ − − =��  …(5) 

 

where 1/2(8 / )sm π α η=
�

 is the mass acquired by the 

dual gauge field as an immediate consequence of the 

symmetry breakdown. The total colour charge from 

Eq. (3) may then be calculated as follows: 
 

3 3

0cQ d x C g d x †ψ ψ= +� �� � �  …(6) 

 

 Since all the observed hadrons are colour singlets, 

the total colour electric charge given by Eq. (6) on a 

quark system must vanish. In order to find the axial 

symmetric confined solution around z-axis for the 

field equations of the present model, let us first 

consider the following cylindrically symmetric 

ansatz
11,29

: 
 

0C e ( ) 0 ( ) ( )exp( )C C inθ ρ φ ρ χ ρ θ= − = =� � �  …(7) 

 

where n = ±1,±2,±3, ·  ·  ·  ·  ·  · , which measures the 

magnitude of the colour electric flux. In asymptotic 

regime for large �, the complex scalar field |�| = � 

with � � � plays the role of an order parameter like 

the Cooper wave function does in the Ginzburg-

Landau (GL) theory of conventional 

superconductivity
29,30

. However, we consider the 

following form of � for the stationary solution to the 

bound quark
28

: 
 

( , , )
exp( )

( , , )

u z
i t

v z

ρ θ
ψ ε

ρ θ

� �
= − � �

� 	
 …(8) 

 

where u(�) and v(�) � 0 as � � �. Utilising ansatz in 

Eqs (7) and (8) for the total colour charge screening, 

the temporal gauge degrees of freedom of the dual 

gauge field must decay faster than 1ρ −  in view of the 

Gauss law, which results in the total colour charge as 

given by expression given in Eq. (6). The temporal 

gauge degrees of freedom for a single quark system 

(i.e. 
3

d x�  �†� = 1) then leads to the following 

necessary condition for the total charge screening at 

large distances (cf.
28

), 
 

2

0m C g †ψ ψ>>�� �  …(9) 

 

this, therefore, puts a constraint on a quark system. 

0C�  thus plays a role of screening potential
28

. Such 

QCD vacuum having non-zero equilibrium values 

cannot be achieved by using the perturbative 

techniques where the equilibrium values of all the 

fields are considered to be zero, which in turn will 

lead to 0m =� . Further, it is only possible to generate 

a vacuum screening current in the non-perturbative 

sector of QCD having the non-vanishing VEV of the 
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complex scalar field with the condition given by Eq. 

(9). The vacuum screening current with the massive 

dual gauge field then quickly leads to a desired onset 

for the colour confinement where a superconducting 

ground state of QCD vacuum is established as a 

coherent plasma of the magnetic charges
10,12

. 

 In fact, in the present formulation of dual QCD 

vacuum, the dual field-strength tensor vGµ
�  has its 

field contents in terms of the colour electric ( E� ) and 

magnetic ( H� ) fields
10

. The field Eqs (3) and (4) in 

view of the ansatz given in Eq. (7) then acquire the 

form as given below: 
 

'
2 2

2

2
0

C C ng
C m Cχ

ρ ρ ρ
′′ + − − − =

� � �
� ��  …(10) 

 

20
0 0 0

C
C m C

ρ

′
′′ + − =

�
� ��  …(11) 

 

2 2

0

2 2 22 ( ) 0

n
g C g C

χ
χ χ χ

ρ ρ

χ η χ

′ � �
′′ + − + +� �

� 	

+ Ω − =

� �� �
 …(12) 

 

with the following boundary condition for the spatial 

part of the dual gauge field at large distances in 

addition to the Eq. (9) responsible for the colour 

charge screening: 

 
2 22 ( )m C ng †ρ ς ρ ψ γψ+ >>�� �  …(13) 

 

 In Eqs (10)-(13), prime (�) denotes the 

differentiation with respect to ρ . The electric and 

magnetic fields in the Eqs (10) and (11) are defined 

respectively as follows:  

 

0

1
( )E C H Cρ

ρ
′′= − =� �� �  …(14) 

 

 Eqs (10)-(12) have the structural similarity with the 

equations those are derived for a GL-type 

superconductor and would,therefore, lead to similar 

consequences. With Eq. (14), the Eqs (10) and (11) 

can also be re-casted in terms of the colour electric 

and magnetic fields,respectively. The solution of the 

Eqs (10) and (11) is exponentially approachable in the 

asymptotic limit
11,31

. For instance, the colour electric 

field at a particular coupling evolves generally for  

� � � as follows: 

exp( ) + non-leading terms
n

E C m ρ
ρ

→ −� �  …(15) 

 

where C is a constant. Eq. (15) depending on the 

gauge field mass clearly indicates that the colour 

electric flux screens out in the dual QCD vacuum up 

to a finite depth 1
mλ −=� � which determines the 

magnitude of the dual Meissner effect (DME) 

responsible for the confinement of the quarks
10-12

. 

Indeed, the colour electric flux leaks into the 

superconducting QCD vacuum a bit over λ�  which 

may be well determined by the competition between 

the energy in the colour electric field and the mass 

gained by the dual gauge field. The penetration depth 

λ�  is basically the thickness of the surface layer over 

which the colour electric flux falls to zero. The mass 

acquisition of dual gauge field as well as the 

screening potential (i.e. the temporal degrees of 

freedom of the dual gauge field) conclusively leads to 

the colour flux screening and hence, the confinement 

of quarks. This can also be understood in terms of the 

supercurrent whose magnitude is given as 
2( / )J g n g Cρ η= − �� � � , which enforces the colour 

electric field lines to form a flux tube in a small 

region and has a close relationship with the colour 

electric flux quantisation
16

. This may be seen through 

the kinetic energy term |Dµφ|
2
 where D i g Cµ µ µ≡ ∂ + ��  

in the Lagrangian given in Eq. (1) which, in turn, 

leads to the corresponding energy per unit length with 

ansatz given in Eq.(7) as follows: 
 

2
2

2

0 0

1
. .

d
K E d d g C

d

π ϕ
ρ ρ θ η

ρ θ

∞ � �
= −� �

� 	
� � ��  …(16) 

 

 In fact, the phase of the complex scalar field is 

associated with the local centre-of-mass momentum 

of the monopole pairs and the oscillations in this 

superconducting phase of QCD vacuum correspond 

physically to the plasma oscillations
16

, which 

consequently defines the mode to which the 

longitudinal part of the dual vector potential is 

coupled. It is clear from the ansatz made for the 

complex scalar field that one of its degrees of freedom 

(the phase) is transferred to the dual gauge field to 

impart it the mass while the other degree of freedom 

(the modulus) is lost at particular coupling as it 

becomes a constant entity
2
. The minimisation of the 

kinetic energy given by Eq. (16) in superconducting 

phase of QCD vacuum i.e. η ≠ 0 therefore, gives the 
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quantisation of the colour electric flux in terms of the 

condition 2 /n g C d C dlπ ρ θ= = ⋅� �� ��  . Now 

considering the line integral C dl⋅� �  around the 

circle S
1
 at infinity, the Stokes theorem then leads to 

the total colour electric flux enclosed in the following 

form: 
 

E
( ). . eC dS E dS n QΦ = ∇ × = =� ��

� �  …(17) 

 

where / 2eQ g= can be interpreted as the colour 

electric charge of a quark
12

. This quantisation 

condition is valid with the requirement that the 

complex scalar monopole field be continuous along 

any closed path in the dual superconducting QCD 

vacuum which encircles the colour electric flux. Such 

behaviour with a DME advocates a flux tube structure 

between a quark and anti-quark. 

However, it still remains to see the n-vortex solutions 

and behaviour of multi-flux vortices
32

 for such 

confined solutions in the present model of dual QCD 

vacuum. 

 

3 Multi-flux Vortices and Energy Configuration 

 In view of such screening effects as discussed, the 

dynamics of confinement scenario given by the 

Lagrangian given in Eq.(1) is also derivable from the 

following Lagrangian in the absence of quarks in a 

equally capable manner
9-12

: 
 

21
( )

4
L G G D V

µν
µν µφ φφ∗= − + −� �  …(18) 

 

 Let us consider, the cylindrically symmetric 

monopole field in two dimensions in the broken phase 

of symmetry. In fact, the vortices are invariant under 

translations along any fixed axis and therefore, they 

can be viewed as finite energy solutions in two 

dimensions
33

. The free energy per unit length 

associated to them in two dimensions with the 

suppression of the temporal gauge degrees of freedom 

of the dual gauge field (i.e. 0 0C =� )
11

 is then derived in 

the following form: 
 

2 2 2 2 21
( )

4
ij kE d x G D φ φφ η∗
 �

= + + Ω −� 
� �� �  …(19) 

 

 In view of the screening constraints on the 

Lagrangian given in Eq. (1) and upon symmetry 

breaking, the free energy from Eq. (1) or Eq. (19) then 

contains a term 2 2

im C��  which is precisely what we 

need to have the DME
13

 as presented by Eq. (15) in 

the last section. The DME guarantees the confinement 

in dual QCD vacuum followed by a flux tube 

structure where the energy increases with the 

separation between quark and anti-quark
12

. However, 

the total energy contents can be re-written in terms of 

the following squared quantities by using 

Bogomol’nyi’s trick
34

, 
 

2 2 2

12 1 22 2

2 2

1

2

( )

G D D
E d x d x

φ φ
ε

φφ η∗


 �
+ +� 
= =

� 

+ Ω −� 
� �

� �
�

 …(20) 

 

where 12 2 1 1 2G C C= ∂ − ∂� � � . The integrand of the 

energy functional given by Eq. (20) can further be 

restructured in the form given below by using the 

Stokes theorem with the elimination of some terms 

along-with the necessary boundary condition for the 

monopole field at large distances for finite energy 

configurations: 
 

22 2 2

1 2 12

2 2 2 2

1
( ) ( )

2

(2 ) ( )
E

D iD G g

g g

φ φφ η
ε

φφ η η

∗

∗


 �
+ + + −� 
= � 

+ Ω − − + Φ� 
� ��

� �

� �

 …(21) 

 

 The boundary of the type-I and type-II 

superconducting dual QCD vacuum 

 is of particular interest and if we set a condition g
2
 = 

6� then it automatically restricts the GL parameter � 

to its unit value as follows: 
 

1 1

2 23 6

2 s

λ
κ

πα λ


 � 
 �
= =� 
 � 
� �� �

 …(22) 

 

 In fact, the superconducting behaviour of QCD 

vacuum gradually changes with the running strong 

coupling constant along with the change in the 

characteristic mass/length scales from one type to 

other and the GL parameter is a physically important 

parameter to account the changes in chromomagnetic 

superconducting vacuum at different couplings. The 

GL parameter as given in the Eq. (22) is defined as 

the ratio of scalar mass mode to vector mass where 

the inverse of the scalar mass mode leads to the 

coherence length which sets the typical distance scale 

necessary for dual superconductivity to get 

established in dual QCD vacuum. The GL parameter 

may, therefore, be either � > 1 or � < 1 which 

correspond to the type-II and type-I superconducting 



NANDAN et al.: SCREENING MECHANISM IN DUAL QCD VACUUM 

 

 

275 

regimes of QCD vacuum respectively
10,11

. However, 

the unit value of the GL parameter for the present 

model itself represents a transition from type-I to 

type-II QCD vacuum at a coupling 0.4778sα =   

(� = 1). With the condition given by Eq. (22), the 

energy contents now read as: 
 

2

1 2
2

2
2 2 2

12

( )

1
( )

2
E

D iD

E d x
G g g

φ

φφ η η∗


 �+
� 


= � 

+ + − + Φ� 
� �

�
�

� � �
 …(23) 

 

With the vanishing of the squared entities in above 

expression (i.e. Bogomol’nyi case), 
 

1 2( ) 0D iD φ+ =  …(24) 

 
2 2

12 ( ) 0G g φφ η∗+ − =� �  …(25) 

 

one can obtain the minimum energy of the system 

which corresponds to the last term in Eq. (23) as 

follows by using the quantisation condition given in 

Eq.(17): 

 
22nE πη=  …(26) 

 

Eq.(26) indicates the linear increase in the energy as 

the amount of flux increases and the vortices may, 

therefore, coalesce into macroscopic regions of colour 

electric field. Such condition only appears due to the 

typical balance of the propagation range of the dual 

gauge field and complex scalar monopole field in 

vacuum. However, it is believed that the type-I 

regime of a superconductor has analogies with bags 

while the type-II favours the flux tubes
35

. 

 
4 Results and Discussion 

 The total colour charge screening and colour 

electric flux exclusion in dual QCD vacuum 

necessarily demands the existence of the DME in the 

background of magnetic condensation. These 

screening effects as given in terms of the Eqs (9) and 

(15), in turn, guarantees the confined states of a quark 

system and the formation of vortices in QCD vacuum. 

In fact, the screening phenomenon of the total colour 

charge by the monopole scalar field paves the way for 

the colour electric flux screening responsible for the 

confined states of quarks. The energy for n-vortex 

configurations is obtained at the boundary of the  

type-I and type-II superconducting zones of the 

present dual QCD vacuum as given by Eq. (26). It 

indicates that at the transition point 0.5sα ≈ , the 

quark system belongs to the multi-vortex solutions 

having a Bogomol’ny bound on the energy contents. 

Thus, the multi-vortices essentially exist at the border 

of two types of superconducting regimes of QCD 

vacuum, and they lost their individuality with the 

transition from one to other superconducting regime. 

However, it still remains to see the evolution of the 

interaction energy among vortices for different 

couplings/GL parameter (i.e. in the near and far 

Bogomol’nyi’s regime) in both the superconducting 

zones of dual QCD to investigate the exact process of 

how the vortices attract/repel each other. 
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