
Indian Journal of Pure & Applied Physics
Vol. 60, May 2022, pp. 407-414

Implementation of Quantum Support Vector Machine Algorithm Using a
Benchmarking Dataset

Gurmohan Singha*, Manjit Kaura, Mandeep Singha & Yadwinder Kumarb
aCentre for Development of Advanced Computing, Mohali, Punjab - 160 071 India

bYadwindra College of Engineering, Talwandi Sab, Punjabi University, Patiala, Punjab - 151 302 India

Received 15 February 2022; accepted 19 April 2022

The evolution of quantum computers and quantum machine learning (QML) algorithms have started demonstrating
exponential speed-ups. In machine learning problems, the efficient handling and manipulation of linear algebra subroutines
defines the complexity of the task to be performed. Quantum computers handle big datasets in the form of vectors and matrix
operations very efficiently. In this paper, quantum support vector machine (QSVM) algorithm is used to solve a classification
problem using a benchmarking MNIST dataset of handwritten images of digits. Quantum SVM variational and kernel matrix
algorithms are implemented to analyze quantum speedup on quantum simulator and physical quantum processor back-ends. The
study compared classical and quantum SVM algorithms in terms of execution time and accuracy. The results explicitly prove
quantum speed-up achieved by quantum classifiers on quantum back-ends for machine learning applications.

Keywords: Dirac notation; Hilbert space; Inner product; Machine Learning; Quantum bit; Principal Component Analysis;
Support Vector Machine

1 Introduction
Continued developments in patternability of silicon

transistors to nanoscale empowered modern computers
to handle and manipulate large amounts of data. The
contemporary complex applications require big data
sets to be efficiently handled and manipulated by
classical computers1. The growing size of data has
started creating big challenges for classical computers
in terms of performance and computing resources. The
growing trend of big data has driven the need for a new
computing architecture or approach to handle
complicated big data problems2. The advancements in
development of quantum computer and quantum
inspired machine learning algorithms are promising to
offer quantum speed-up over their classical
counterparts3. In fact, even before the arrival of actual
quantum computers researchers have started coming up
with quantum machine learning algorithms that offer
considerable time speed-up over the corresponding
classical machine learning algorithms4-6. All these
examples clearly bring out the fact that the quantum
machine learning algorithms have the potential to offer
considerable speedups over the corresponding classical
algorithms. It is anticipated that quantum computing
paradigm will facilitate handling of big datasets and
offer solution for many intractable problems. It is also

predicted that quantum computers are capable of
searching unsorted big datasets7, factorizing integers8
and rapidly extracting the desired patterns. They have
capability of searching for multiple data items
concurrently and discovering pattern of importance
only. The machine learning, artificial intelligence, big
data analytics, financial modelling, molecular
modelling etc. applications would get immensely
benefitted from quantum computing revolution much
before fully quantum solutions came into reality9-10.
Quantum inspired algorithms are enabling a boost to
machine learning and data analytics11. It is anticipated
that machine learning is going to benefit most from
developments in quantum computing field12. The way
to success hides behind mapping the real-world
problems to quantum space.

Artificial intelligence systems produce precise
results provided machine learning algorithms employed
for training supplied with bigger datasets. AI systems
perform efficiently based upon how accurately the data
is classified according to its particular attributes or
features13. Quantum computers have capability to
extract computationally complicated attributes of data
which could reveal new conceptions hidden till now.
The researchers have demonstrated that quantum
supremacy is arriving faster than anticipated14.
Machine learning is generally used in instances when
there is no solution or formula for solving intricate

—————
*Corresponding author: (E-mail: gurmohan@cdac.in)

INDIAN J PURE APPL PHYS, VOL. 60, MAY 2022

408

problems and big datasets with multiple variables are
involved. Machine learning evolved as a key tool to
handle larger datasets for solving problems in different
areas such as computational finance, computational
biology, computer vision and image processing, and
natural language processing etc. The ML algorithms
learn natural patterns from data to generate greater
perception facilitating in improved decision making
and predictions. The use of quantum computation in
machine learning is just not limited to the academic
community but also the industry is looking forward
towards it with hopes and aspirations. The day is not
far when the quantum machine learning applications
will be used to provide more efficient solutions to the
common machine learning problems.

The paper is structured in following sections as:
Section 2 presents preliminaries of quantum
computing. Section 3 enumerates quantum machine
learning and quantum support vector machine
algorithm. Section 4 presents details of experiments
conducted and a comparison of classical and quantum
machine learning approaches. Section 5 concludes the
paper.

2 Preliminaries
Quantum computers manipulate information

encoded in form of quantum bits (Qubit). A qubit is
most basic entity of quantum information or a
quantum counterpart of a binary bit12. A qubit can be
described as a two-state quantum-mechanical device
which strictly follows rules of quantum mechanics
with two-states labelled as |0⟩ and |1⟩ described by a
two-dimensional (2D) vector space over the complex
numbers C2.

A qubit can be either in |0⟩ and |1⟩ state or in a
random quantum state generally denoted as|𝛹⟩. The
random quantum state |𝛹⟩ may be any superposition
of |0⟩ and |1⟩ basis vectors computed using (1) as

|𝛹⟩ 𝛼 |0⟩ 𝛽 |1⟩ (1)

where, 𝛼 and 𝛽 are two complex numbers having
probability of |𝛼| |𝛽| 1. On measuring a qubit
always collapses to classical values of 0 or 1 with
probabilities of |𝛼| or |𝛽| ; respectively. A qubit
with phase can be represented using (2) as

|𝛹⟩ 𝑝 |0⟩ 𝑒 1 𝑝 |1⟩ (2)

where, 𝑝 is probability of a bit being in 0 state with
limits 0 𝑝 1, and quantum phase is 0 𝜑 2𝜋.

The unitary transformations cause a change in qubit
or qubit-based systems. The unitary transformation of
a qubit is equivalent to a quantum gate (𝑄-gate)
operation12. The Hadamard (𝐻) gate is a fully
quantum gate extensively used in all quantum
computations. It performs superposition operation
which is one of the most basic requirements of all
quantum computations transforming finite quantum
state of qubits to superposition state to leverage their
full quantum capability. The controlled-NOT
(C-NOT) gate is used to realize entanglement
operation in quantum computing.

Researchers are exploring various physical
implementations of qubits. The photon polarization,
an ion’s discrete energy levels, an electron’s spin,
nuclear spin states of an atom, and superconducting
Josephson junction etc. are being investigated for
physical qubit realizations. The qubits in quantum
computers need to be coupled amongst them-selves
for a meaningful quantum operation. The stringent
requirements are that qubits must be disengaged from
outer environment with exception of only control,
readout and writing accessibility. Most of existing
qubit implementations are microscopic like nuclei or
electron spin, atoms or ions etc. However, the
superconducting qubits are macroscopic. The two
most important parameters are coherence and
quantum noise associated with any qubit
implementation and present several new research
areas for further exploration.

3 Quantum Machine Leaning
Quantum computers process the information using

sub-atomic level particles based on quantum
mechanical principles12. The intersection of machine
learning and quantum computing gives birth to a field
popularly known as quantum machine learning
(QML). In QML, the data is processed on a quantum
machine taking advantage of quantum mechanical
properties. The quantum algorithms may offer great
enhancement in computing speed for many intractable
problems still remaining unrealistic for classical
supercomputing machines till date. It is important to
note that quantum advantage is not applicable in all
cases. The quantum computing leverages from the
immense data encoding capability of quantum bits
due to physical properties of sub-atomic particles and
their interactions i.e. superposition property. Quantum
computations experiences slowdown as qubits are
entangled and extracting their final state is a complex
task. But, due to super-dense coding property,

SINGH et al.: IMPLEMENTATION OF QUANTUM SUPPORT VECTOR MACHINE ALGORITHM

409

quantum computers are excellent in handling and
executing big data sets and significantly minimizing
the space/time contemplations especially in case of
machine learning.

A quantum algorithm generally involves encoding
of classical or quantum data in quantum space,
applying unitary transformation operations on input
qubit sets, and finally measuring the qubit(s) state to
extract a classical output. Many researchers have
demonstrated experimental and theoretical
implementation of quantum support vector machine
(QSVM) machines using qubits to find solution of
machine learning problems. J. Biamonte et al.4
exemplified relationship between quantum
computation and machine learning. Machine learning
can harness advantages offered by quantum algorithms
using quantum principles to overcome computational
complexity problems. They have highlighted quantum
speedup that could be achieved using Bayesian
inference, online perceptron, quantum PCA, and
quantum SVM. Ciliberto et al.15, discussed that
increase in computational complexity and data
availability have transformed machine learning
algorithm leading to remarkable results. They have also
discussed about computational costs associated with
use of linear algebra, neural networks, sampling and
optimization. Dunjko et al.10 discussed different
quantum algorithms such as quantum SVM and
quantum PCA which have been mathematically proved
to be providing quantum speed-up in machine learning
and artificial intelligence applications. Schuld et al.16
explained quantum machine learning algorithms for
handling big data in machine learning. They have
further discussed classical machine learning types,
quantum gates, and various quantum machine learning
algorithms. Havlicek et al.17 demonstrated
implementation of two quantum machine learning
algorithms for classification problems on real time
noisy intermediate scale quantum (NISQ)
superconducting processors. Kerenidis & Prakash18
have proposed a quantum machine learning algorithm
for the recommendation system and have achieved
polylogarithmic speedup. Inspired by their work on
recommendation systems E. Tang6 designed a QML
based recommendation algorithm that can achieve an
exponential improvement.

Support vector machine is the most widely used
algorithm in supervised machine learning due to its
simplicity, high accuracy, and lesser computational
resource requirements19. In this algorithm, the main

aim is to identify a hyper plane in n-dimensional space
which explicitly segregates feature vectors into two
classes. This hyper plane acts as delineating line
between two classes as depicted in Fig. 1. The finding
of a plane with maximum margin (distance) among
feature vectors of two classes is the main target. The
reason behind choosing maximum margin is to keep
some space for classifying future feature vectors with
higher accuracy. The number of input feature vectors
decides the dimensions of the hyperplane. For a
2-dimensional feature space, a hyperplane is a line and
for a 3-dimesional feature space, a hyperplane becomes
a 2-dimensional plane. The feature vectors close to the
hyperplane are called support vectors as shown in
Fig. 1. The orientation and position of hyperplane is
mainly decided by the support vectors. The maximum
margin can be optimized using support vectors. The
classes in SVM are labelled with output ‘1’ and ‘ 1’
in accordance with output of a linear function. The
margin is determined by threshold values of ‘ 1’ and
‘1’ in SVM.

A SVM algorithm learns from a similarly scattered
and independent training
data   𝑥 , 𝑣  𝑥 , 𝑣   , here 𝑣 ∈

1,  1 are two classes with respective threshold values
of ‘-1’ and ‘1’. A hyperplane is mathematically
represented using (3) as

𝑤  𝑥 𝑏 0 (3)

where, 𝑤 represents vector normal to hyperplane
and 𝑏 is bias parameter which decides hyperplane
offset from origin. It is assumed that data classes are
linearly separable. The margin between two planes is

given by .

By minimizing 𝑤, maximum margin could be
achieved. Mathematically, the output of linear SVM is
determined using (4) as

Fig. 1 ⸻ Concept of hyperplane and support vectors.

INDIAN J PURE APPL PHYS, VOL. 60, MAY 2022

410

𝑣     𝑠𝑔𝑛   𝑤 𝑥 𝑏 (4)

where, 𝑥 is the 𝑖 instance of training data. The
data items falling out of margin are 𝑤 𝑥 𝑏 1 for
𝑣 1 and 𝑤  𝑥 𝑏  1 for 𝑣 1. Both the
above conditions can be written jointly as (5)

𝑣   𝑤  𝑥 𝑏 1 for1.𝑁 (5)

The hyperplane with maximum margin can be

attained within these conditions is 𝑎𝑟𝑔𝑚𝑖𝑛
. 

‖𝑤 ‖.

This is valid for linear formulation of linear time
complexity solution. In dual formulation [20], the aim
is to maximize the function using Kuhn-Tucker
multipliers (𝛼), the expression modifies to (6) as

𝐿 �⃗�     𝑣  𝛼  
1
2

𝛼  𝛼  𝐾  

,

 6

with conditions ∑ 𝛼   0 and 𝑣  𝛼    0. The
hyperplane parameters b and 𝑤 can be computed as
𝑏  𝑣   𝑤 𝑥 and 𝑤   ∑ 𝛼  𝑥 . Here, the
𝐾   �⃗�  , �⃗� �⃗�   ∗   �⃗� introduces a concept of kernel
matrix21 with kernel function𝑘  𝑥 , 𝑥 . The classical
support vector machine algorithm produces binary
classifier9 for new data vector �⃗� as described in (7)
as

𝑣  �⃗� 𝑠𝑔𝑛   𝛼  𝑘  �⃗�  , �⃗�   𝑏 7

where, the 𝑠𝑔𝑛   function is

𝑠𝑔𝑛  
1, 𝑓𝑜𝑟 �⃗�   0

1 𝑓𝑜𝑟 �⃗�   0

In quantum SVM with kernel matrix, it is assumed
that oracles to train the data return quantum vectors
|�⃗� ⟩ 1

|�⃗� |∑ �⃗� |𝑘⟩. The normalized kernel

matrix is computed9-10 using (8) as

K
 

∑ x⃗ x⃗, |x⃗ | x⃗ |i⟩⟨j| 8

where,

𝑁  ∑ |�⃗� |and |𝜒⟩  1
𝑁

∑ |�⃗� | |𝑖⟩|�⃗� ⟩

To compute matrix inverse (𝐾) quantum
mechanically, the operation 𝑒     must be
computed very efficiently. It is observed that

operation 𝑒     computationally correct with an
error of 𝑂 𝛥𝑡 10, 21. With introducing slack variable
𝑒 and replacing inequality constraint with equality
constraints as described by (9) as

𝑣 �⃗� �⃗� 𝑏 1  → 𝑤 �⃗� 𝑏 𝑣 𝑣  𝑒 9

Further, the application of implied Lagrange

function produces an additional term 𝑒 .
This term is defined by user and calculates training

error relative weightage and responsible for overall
aim of SVM. The least square approximation of
problem could be solved using (10) as

𝐹  𝑏
�⃗�

 ≡   0 𝐼
𝐼 𝐾  𝛾 𝐼

  𝑏
�⃗�

  0
v⃗

 (10)

where, 𝐼 is unit matrix and �⃗� denotes training data
labels. The parameters 𝑏 and �⃗� decides the value of
SVM classifier. A new data point �⃗� can be
categorized with the help of (11) as

𝑣  �⃗�   sgn   𝑤 �⃗� 𝑏 sgn  

 𝛼  𝑘  �⃗�  �⃗� 𝑏 11

The classical SVM is generally framed as a
quadratic programming problem solvable in time
𝑂 𝑙𝑜𝑔 𝜀 𝑝𝑜𝑙𝑦 𝑁,𝑀 . Here, 𝜀 is accuracy, 𝑁 is
dimensionality of feature space, and 𝑀 is number of
training vectors. The major difference between
classical SVM and quantum SVM algorithm is time
taken to solve the problem. The quantum SVM take
time logarithmic while classical SVM take time
polynomial in handling dimensionality of vector
space and the number of vectors 3, 9. Thus, quantum
SVM is capable of providing exponential speed
advantage over its classical counterpart. The machine
learning is basically about manipulation and
classification of large datasets. Quantum computers
are exceptionally better in handling and execution of
large vectors and matrices of their inner products in
high dimensionality vector spaces. In quantum SVM,
firstly the classical data is transformed to quantum
states over 𝑙𝑜𝑔 𝑁 quantum bits taking 𝑂 𝑙𝑜𝑔 𝑁
mapping steps. Then, the data in quantum form is
processed using various quantum operations such as
matrix inversion and Quantum Fourier Transform
(QFT) etc. The superiority of quantum operations lies
in anticipating distances and inner products among the
post-processed vectors in exponential lesser time as
compared to classical operations. As compared to

SINGH et al.: IMPLEMENTATION OF QUANTUM SUPPORT VECTOR MACHINE ALGORITHM

411

classical SVM’s problem solving time of
𝑂 𝑝𝑜𝑙𝑦 𝑁 𝑀 , quantum SVM take a problem-
solving time of 𝑂 𝑙𝑜𝑔 𝑁𝑀 only. The other major
advantage of processing classification problems on
quantum computers is that quantum states stored in
quantum random access memory (QRAM) can be
accessed in parallel3,9. The Table 1 lists computational
complexity of classical and quantum SVM algorithms
used for classification of MNIST dataset in this study.

4 Experiments and Results
The benchmarking MNIST dataset22-23 of

handwritten digits comprising of 60000 images of
training data and 10000 images of test data has been
used in this experiment. There are two files named
train.csv and test.csv which contain grey-scale images
of handwritten digits, from 0 to 9. Each handwritten
black and white image comprise of digits of 28 x 28
pixels. The digits are centered and size-normalized in
a fixed-size image. The training dataset file train.csv
has 785 columns. It contains label in the 1st column
and remaining columns contain pixel value of that
image.

The test dataset file test.csv contain same columns
except label column. The accuracy of MNIST dataset
is defined as percentage of correctly classified images
in the test set. The whole process of applying
quantum machine learning is divided into various
steps such as dataset selection, data pre-processing &
visualization24, exploratory data analysis (EDA)25,
algorithm selection, principal component analysis
(PCA), classification using quantum support vector
machine algorithm (variational/kernel based
approach)9,21,26, quantum circuit generation, and result
readout and visualization. The selection of dataset is
critical factor for finding an optimal solution to a
classification problem. The selected dataset must have
sufficient training and data vectors. Many data pre-
processing steps such as rescaling, normalization,
formatting, binarizing, and cleaning along with
different visualization plots are generally required for
datasets to develop robust machine learning models.
Data pre-processing is mainly performed to identify
null and missing values which further help to identify
corrupted images within the dataset. Before selecting
a machine learning approach to solve a problem, one

need to find answer to questions like suitability of
algorithms for a dataset and feature variable selection
of data. EDA can make sure that results are valid,
correct, and applicable to the problem. It is performed
after validation of raw data, anomaly checking, and
ensuring error free dataset. The algorithm must be
capable of providing very high accuracy and faster
processing. The principal component analysis (PCA)
is an expedient statistical way of discovering patterns
in high dimensionality data27-28.

It is usually used when the number of
features/variables in datasets become very high or in
simple words it is to scale down the dimensionality
while preserving the variations in the dataset. The
features are mapped to a new set called principal
components (PCs). They are eigen vectors of the
covariance matrix and are ordered and orthogonal.
The Table 2 lists the steps taken to perform PCA in
this experiment.

For classical algorithms, PCA executes in 𝑂 𝑑 in
terms of query and computational complexity. In case

of quantum PCA28, the data vector 𝑎
→

 is mapped to a
quantum state 𝑎 having 𝑙𝑜𝑔 𝑑 qubits with QRAM
requiring only 𝑂 𝑑 operations divided by 𝑙𝑜𝑔 𝑑
steps which can be executed in parallel. The density
matrix equivalent of co-variance matrix for the chosen
quantum state 𝑎 described using (12) as

𝜌 1 𝑛 ∑ 𝑎 𝑎 (12)

where, n are data vectors. Then, quantum data is
sampled repeatedly, followed by density matrix
exponentiation and quantum phase estimation
operations28 resulting in eigen vector and eigen values
of matrices. These operations permits decomposing
𝑎 to its principal components |𝑐 ⟩, the eigen value

of co-variance matrix is computed with help of (13) as

Table 2 — Principal Component Analysis Steps

a) Choosing data-points: Shape of sample data = (15000, 784)
b) Data standardizing: (15000, 784)

c) Computing the co-variance matrix (𝐶 ∑ 𝑎
→
𝑎
→

), where, 𝑎
→

is

data vector and 𝑎
→

is it’s transpose The shape of co-variance
matrix is (784, 784)

d) Diagonalizing of co-variance matrix (𝐶 ∑ 𝑒 𝑐
→
𝑐
→

),

where 𝑐
→

 is eigen vector and 𝑒 its eigen value. The shape of eigen
vector is (2, 784)
e) Projection of original data sample on the plane formed by
principal eigen vectors by vector-vector multiplication i.e.
resultant new data point’s shape becomes (2, 784) x
(784, 15000) = (2, 15000)

Table 1 — Computational complexity of the algorithms

Algorithms Time

Classical SVM O (poly (NM))
Quantum SVM O (log (NM))

INDIAN J PURE APPL PHYS, VOL. 60, MAY 2022

412

𝑎 → ∑ 𝑎 |𝑐 ⟩ 𝑒
→

 (13)

As compared to its classical counterpart, the
quantum PCA executes in 𝑂 𝑙𝑜𝑔 𝑑 in terms of
query and computational complexity.

In this experiment, the accuracy and execution time
of classical and quantum support vector machine
classifiers have been computed. To solve machine
learning and problems in other application areas, IBM
has developed IBM® Quantum Experience29 and
IBM® application programming interfaces (APIs)30 to
access its real time quantum devices and simulators.
In this study, the real quantum processors
(IBMQ_16_ Melbourne and IBMQX2) and
IBMQ_QASM simulator have been deployed as back-
ends. The quantum SVM’s variational and kernel-
based approaches are used in our machine learning
classification problem.

In QSVM variational approach, hyperplane(s) are
computed to classify new test data. It can handle
classification problems having even more than two
classes. But, this approach uses two quantum
algorithms making it computationally more intensive.
The first algorithm calculates hyperplane(s) from
available training data whereas the second algorithm
perform the classification of new test data. In QSVM
kernel-based approach, only one algorithm is used
and it is primarily used for binary classification
problems.

At the onset, a kernel matrix is computed from
training data using a quantum machine, then a
classical machine computes support vectors from it.
Thereafter, the classification of the test data is
performed.

The Table 3 illustrates the list of the algorithms,
computational back-ends, datasets, and performance
metrics used in this study.

The Table 4 describes the execution time results for
accuracy achieved using different back-ends and
MNIST dataset of handwritten digits.

The results in Table 4 reveal that QSVM
variational algorithm is too much time consuming as
it uses two different quantum algorithms making it
computationally more intensive. Compared to
classical SVM run on local CPU environment, the
QSVM variational algorithm run on QASM simulator
is 81.37 % more time consuming. QSVM kernel
matrix algorithm run on IBM QASM simulator back-
end is computationally least intensive as compared to
both classical SVM and QSVM variational algorithms
run on local CPU and QASM simulator, respectively.
It took only 139 millisecond (ms) to produce the
classification results. It is 99.44 and 99.98 %
computationally more efficient than classical SVM
and QSVM variational algorithms run on local CPU
and QASM simulator, respectively. In this study,
QSVM kernel matrix algorithm is also simulated on
two real time quantum processor back-ends IBMQX2
and IBMQ_16_Melbourne to obtain the classification
results for MNIST dataset. The QSVM kernel matrix
algorithm run on real quantum devices IBMQX2 and
IBMQ_16_Melbourne is 39.64 and 81.62 %
computationally more efficient than classical SVM run
on local CPU machine.

The results in Table 5 disclose that accuracy of
classical SVM algorithm run on local CPU is 91.26 %.
The QSVM algorithm executed on QASM simulator
exhibits accuracy of 95 %.

The highest accuracy of 97.5 % is exhibited by
QSVM kernel matrix algorithm run on IBMQX2,
IBMQ_16_Melbourne, and IBM QASM simulator. As
compared to classical SVM, the quantum SVM
variational algorithm display 3.9 % improvement in

Table 3 — Experiment set-up details

Algorithm used Computational
Back-end

Dataset Targeted
Metrics

Classical SVM Local CPU
environment

MNIST Accuracy,
execution
time

QSVM Variational
Approach

Local CPU environment,
IBMQX2, IBMQ_16_
Melbourne,
IBMQ_QASM simulator

MNIST Accuracy,
execution
time

QSVM Kernel
Approach

Local CPU environment,
IBMQX2, IBMQ_16_
Melbourne,
IBMQ_QASM simulator

MNIST Accuracy,
execution
time

Table 4 — Execution time results

Algorithm used Computational Back-end Execution Time (s)

Classical SVM Local CPU environment 248.64
QSVM Variational QASM Simulator 1335
QSVM Kernel
Matrix

IBMQX2 89.6
IBMQ_16_Melbourne 45.7
IBM QASM Simulator 0.139

Table 5 — Accuracy results

Algorithm used Computational Back-end Accuracy (%)

Classical SVM Local CPU environment 91.26
QSVM Variational QASM Simulator 95
QSVM Kernel Matrix IBMQX2 97.5

IBMQ_16_Melbourne 97.5
IBM QASM Simulator 97.5

SINGH et al.: IMPLEMENTATION OF QUANTUM SUPPORT VECTOR MACHINE ALGORITHM 413

accuracy whereas quantum SVM kernel matrix
algorithm exhibit 6.4 % improvement. In comparison to
quantum SVM variational algorithm, the quantum SVM
kernel matrix algorithm show 2.56 % improvement in
accuracy.

Labelling of data is a very crucial step in data
pre-processing helping in identification of features and
characteristics in the dataset. To develop an efficient
machine learning model for regression, classification,
and pattern recognition problems, it is foremost
requirement to select only explanatory, unique, and
astute features within the dataset. Precisely labelled data
makes the basic foundation for validation of the model.
Fig. 2 (a) enumerates the labelling of handwritten
digits performed during data pre-processing steps. The
Fig. 2(b) depicts the few handwritten images obtained
after separating the training pictures of the numbers
from their labels and after reshaping to have digit image
of 28 28 pixels.

After pre-processing, visualization, PCA, classical
and quantum SVM classifiers are applied to solve the
classification problem on different back-ends to produce
accuracy and execution time results. Fig. 3 (a), (b) & (c)
enumerates visualization of handwritten image of digit 9
with its pixel values after separating the training images

from their labels and after reshaping to make it a 28 28
pixels, final readout image obtained after applying
classical and quantum SVM algorithms.

5 Conclusion
This study demonstrated that machine learning

problems with large datasets could be solved taking
quantum advantage offered by quantum machine
learning algorithms. A benchmarking MNIST dataset
comprising of handwritten images has been used for
pattern classification problem. The classical and
quantum SVM classifiers are used to solve the
classification problem. The quantum classifiers
explicitly demonstrate speed advantage over their
classical counterpart. The quantum simulator and
superconducting quantum processors are used as back-
ends to run the quantum algorithms. The QSVM kernel
matrix algorithm implemented on 5 and 14 qubit real
quantum processors is 39.64 and 81.62 %
computationally more efficient than classical SVM run
on local CPU machine. Further, the quantum SVM
kernel matrix algorithm exhibit 6.4 % better accuracy
as compared to classical SVM. The results clearly
indicate quantum algorithms can accelerate the
execution time to solve many complex machine
learning problems as compared the classical machines.
Based on results, it can be concluded that very soon
quantum computers capable of executing feature
mapping or classification on big data sets would even
surpass existing classical supercomputing machines.

Acknowledgments
Authors are highly grateful to IBM Inc. for

providing access to their software and hardware
computational resources through cloud network.

Declaration
Authors declare that there are no conflict of

interests.

Fig. 2 ⸻ (a) Labelling of handwritten digits, and (b) Images after
separating the training pictures of the numbers from their label
and after reshaping to have digit image of 28 28 pixels.

Fig. 3 ⸻ (a) Visualization of handwritten image of digit 9 with its
pixel values after separating the training images from their labels
and after reshaping to make it of 28 28 pixels, (b) final readout
image obtained after applying classical SVM algorithm, and (c)
final readout image obtained after applying quantum SVM
algorithm.

INDIAN J PURE APPL PHYS, VOL. 60, MAY 2022

414

References
1 Tsai C, Lai C & Chao H, J Big Data, 2 (2015) 1.
2 Fisher D, DeLine R, Czerwinski M & Drucker S, Interactions,

19 (2012) 50.
3 Saini S, Khosla PK, Kaur M & Singh G, Int J Theor Phys, 59

(2020) 4013.
4 Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N &

Lloyd S, Nature, 549 (2017) 195.
5 Du Y, Hsieh M H, Liu T, & Tao D, Phys Rev Research, 2(3)

(2020) 33199.
6 Tang E, In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing, (2019) https://doiorg/
101145/33132763316310.

7 Grover L K, Phys Rev Lett, 79 (1997) 325.
8 Shor PW, Proceedings of the 35th Annual Symposium on

Foundations of Computer Science, (1994) https://doiorg/101109/
SFCS1994365700.

9 Rebentrost P, Mohseni S & Lloyd S, Phys Rev Lett, 113 (13)
(2014) 30503.

10 Dunjko V & Briegel H J, Rep Prog Phys, 81(7) (2018) 074001.
11 Chen D & Tian Y B & He-Liang H, arXiv preprint

arXiv:190608902 (2019).
12 Nielsen M A & Chuang I L, Cambridge: Cambridge University

Press, (2000).
13 Ying M, Artificial Intel, 174 (2) (2010) 162.
14 Arute F, Arya K & Babbush R, Nature, 574 (2019) 505.
15 Ciliberto C, Herbster M, Ialongo A D, Pontil M, Rocchetto A,

Severini S & Wossnig L, Proc R Soc A, 474 (2018) 20170551.
16 Schuld M, Sinayskiy I & Petruccione F, Contemporary Phys,

56 (2014) 172.

17 Havlíček V, Córcoles A D & Temme K, Nature, 567 (2019)
209.

18 Kerenidis I & Prakash A, 8th Innovations Theoretical
Computer Sci Conf, ser Leibniz International Proceedings in
Informatics (LIPIcs), 67, Berkeley, CA, USA, 49 (2017) 1.

19 Hearst M A, Schölkopf B, Dumais S, Osuna E & Platt J,
IEEE Intelligent Systems, 13 (1998) 18.

20 Wittek P, Academic Press, (2014) 73.
21 Muller K-R, Mika S, Ratsch G, Tsuda K & Scholkopf B,

IEEE Transactions on Neural Networks, 12(2) (2001) 181.
22 Lecun Y & Cortes C, The MNIST database of handwritten

digits [Online] Available: http://yannlecuncom/exdb/
mnist/ 1998.

23 Lecun Y, Bottou L, Bengio Y & Haffner P, Proc IEEE, 86
(1998) 2278.

24 Famili A, Shen W, Weber R & Simoudis E, Intel Data Anal,
1 (1997) 3.

25 Komorowski M, Marshall D C, Salciccioli J D & Crutain Y,
Secondary Analysis of Electronic Health Records Springer,
Cham https://doiorg/101007/978-3-319-43742-2_15.

26 Kandala A, Mezzacapo A & Temme K, Nature, 549 (2017)
242.

27 Yan S, Xu D, Zhang B, Zhang H J, Yang Q & Lin, S, IEEE
Trans Pattern Anal Mach Intel, 29 (2007) 40.

28 Lloyd S, Mohseni M & Rebentrost P, Nature Phys, 10
(2014), 631.

29 IBM Inc, https://quantumexperiencengbluemixnet/qx/
experience.

30 IBM Inc, https://qiskit.org/aqua.

