Structural, stability and electronic properties of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters

M Luo ${ }^{1}$, W L Guo ${ }^{1 *}$, X R Zhang ${ }^{2}$ \& X G Meng ${ }^{1}$
${ }^{1}$ Department of Biology and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang, Jiangsu, 212003, China
${ }^{2}$ Department of Mathematics and Physics, Jiangsu University of Science and Technology
Zhenjiang, Jiangsu, 212003, China
*E-mail: guowl1954@163.com

Received 25 November 2014; revised 13 December 2014; accepted 26 January 2015

Abstract

The structures, relative stabilities and electronic properties of $\mathrm{Os}_{m} \mathrm{C}_{n}$ clusters for $m+n \leq 7$ have been investigated by the density functional theory. The planar geometries have been preferred for small carbon mixed clusters up to $m+n=5$, for those with size of $m+n \geq 6$, the C-rich clusters are still planar structures, while Os-rich clusters are three-dimensional structures, and the most energetic favourable structures tend to be capped pyramid or irregular prism. The stability analysis indicates that the mixed clusters are more stable than those of the corresponding pure Os_{n} clusters, among which $\mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{4} \mathrm{C}_{2}$, $\mathrm{Os}_{2} \mathrm{C}_{4}$ exhibit higher stability than their neighbouring clusters. Os5d and C 2 p electrons play dominant roles in chemical reaction of mixed clusters.

Keywords: $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters, Structures, Stability, Density functional theory, Electronic properties

1 Introduction

The mixed clusters have rich diversities in composition, structure and properties which can greatly expand the properties of pure clusters and make them have more extensive and excellent performance ${ }^{1-3}$. Transition metals (TM) play important roles in the field of metallurgy and catalysis due to their d electrons, which make them exhibit special electronic structures and physical-chemical properties. Therefore, TM clusters and TM-mixed clusters have been extensively studied ${ }^{4-10}$. Os as one of the important TM especially Os-mixed clusters have been carried out in the past few years. Zheng et al ${ }^{11}$. calculated Os, OsC and OsN clusters by using first principle calculations, their results confirmed that Os, OsC, and OsN in the hexagonal structures are more stable than those under the structure of sodium chloride. Chen et al ${ }^{12}$. investigated the structures and electronic properties of OsB_{2}. Young et al ${ }^{13,14}$. found that mixing $\mathrm{C}, \mathrm{N}, \mathrm{B}, \mathrm{O}$ and other light elements into transition metals may form a directed covalent bond. By the first principles plane-wave pseudopotential calculations based on the density functional theory, Liang et al ${ }^{15}$. studied the equations of states and structural properties of transition metal compounds OsB_{2} and OsO_{2}, the possible high pressure phase transitions of OsO_{2} and its rutile, pyrite and fluorite phases under high pressure, found that incorporating
light elements (boron, oxygen, carbon or nitrogen) into osmium is possibly a new way to prepare super hard material. It would be a significant work to investigate lighter elements mixed osmium clusters.

Our research group ${ }^{16-18}$ has studied the pure osmium clusters, Os-N and Os-B cluster system. However, the structural information of the mixed $\mathrm{Os}_{m} \mathrm{C}_{n}$ clusters with $m+n \leq 7$ has not been investigated so far. Therefore, the geometries, stabilities and electronic properties of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters have been investigated in the present work. The density functional theory has been taken to study the lowestenergy optimized structures. However, it is a difficult task to experimentally determine the ground-state structures of small atomic clusters, so the density functional theory has been taken to find the lowestenergy optimized structures. As for each size cluster, hundreds of initial configurations are designed and the lowest energy structures are chosen from them.

The lowest energy structures of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ are reported. The average binding energies, the secondorder differences of total energies, the energy gaps and the density of state are presented in the present study. The main goal of the work is to lay foundations for further studying the properties of carbon-osmium clusters and developing new materials with special functions.

2 Computational Methods

All the calculations were carried out with spinpolarized DFT at the level of generalized gradient approximation (GGA) via the Perdew-Wang exchange-correlation functional. In the calculation of the electronic structure, a double-numerical polarized basis set that includes d-polarization functions (DND) was chosen by us to describe the electronic wave functions. All of the possible spin multiplicities include singlet, triplet, quintet and seven spin states were calculated for each configuration to ensure that the obtained spin states are the lowest in energy. In order to accelerate the convergence of self-consistent field (SCF), the Pulay's direct inversion in an iterative subspace (DIIS) approach was designed with a convergence criterion of 10^{-5} Hartree. In the geometry optimization process, we chose the convergence criterion as follows: 2.0×10^{-5} Hartree for the total energy, 0.0040 Hartree $/ \AA$ for gradient of force and $0.005 \AA$ for atomic displacement. All our spinunrestricted calculations were performed with the Accelrys DMOL package ${ }^{3}$.
The reliability of the proposed computational method was checked by calculating the bond length of C_{2} and Os_{2} dimers, the value obtained for C_{2} is 1.312 \AA, which is in excellent agreement with the experimental value $(1.312 \AA$) reported in the previous studies ${ }^{19}$. As for Os_{2}, the calculated bond length of $2.296 \AA$ is consistent with the experimental data ${ }^{20}$ of $2.28 \AA$. The above results indicate that our calculation method is reasonable and will provide reliable results for the $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters.

3 Results and Discussion

3.1 Geometrical structures of $\mathbf{O s}_{\mathrm{m}} \mathbf{C}_{\mathbf{n}}(\mathbf{m}+\mathbf{n} \leq 7)$ clusters

We have searched for a series of possible initial configurations for each size of the clusters on the basis of taking into full account the spin multiplicity to ensure the high accuracy of our determination for the ground-states of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters. The lowest-energy optimized structures are shown in Fig. 1. The spin multiplicity (S), structure symmetries and average bond lengths are listed in Table 1.

As can be seen from Fig. 1, for pure $C_{n}(n \leq 7)$ clusters the most stable structures are linear with $\mathrm{D}_{\text {oh }}$ symmetry except $n=3$ and 6 . This is in good agreement with the results reported by Zhang et al ${ }^{21}$. The C - C bond lengths in pure $\mathrm{C}_{n}(n \leq 7)$ clusters are in the range 1.288-1.326 \AA, which correspond to C-C double bond ${ }^{22}$. As for C_{3}, the ' V ' shaped configuration
with an apex angle of 142.171° is the lowest-energy structure. While the lowest energy structure of C_{6} is a regular hexagon $\left(\mathrm{D}_{3 \mathrm{~h}}\right)$ with side length of $1.326 \AA$. That is in excellent agreement with the Binkley et $a l^{23}$. result. For the pure $\mathrm{Os}_{n}(n \leq 7)$ clusters, all the lowest energy structures obtained in our work are well consistent with the previous result ${ }^{24}$ except the symmetry of $\mathrm{Os}_{5}\left(\mathrm{C}_{4 \mathrm{v}}\right)$.

For the binary clusters, the smallest one-OsC is in triplet state with $\mathrm{C}_{\infty \text { ov }}$ symmetry. The Os-C distance $(1.690 \AA)$ is shorter than the $(1.981 \AA)$ previous theoretical result ${ }^{25}$. In the isomers of OsC_{2} cluster, equicrural triangle geometry with $\mathrm{C}_{2 \mathrm{v}}$ symmetry and singlet spin multiplicity has the lowest energy. The ground state of $\mathrm{Os}_{2} \mathrm{C}$ is a linear structure (Os-C-Os) with $\mathrm{D}_{\infty \mathrm{h}}$ symmetry in quintet state which can be viewed as an Os atom located at the C atom of the OsC cluster rather than a C atom located at Os_{2} cluster. This may be because the energy of C-C bond is higher than that of Os-Os bond. The $\mathrm{Os}_{m} \mathrm{C}_{n}$ ($m+n=4$) clusters are the smallest ones that can display 3D structures, so we not only designed the linear and planar structures but also considered the tetrahedral structures. However, according to the optimized results, the planar configurations are found to be more stable than the tetrahedral structures in total energy. For the OsC_{3}, linear geometry with triplet multiplicity is found to be the ground state, which is similar to the GaC_{3} cluster ${ }^{27}$. The ground state of $\mathrm{Os}_{2} \mathrm{C}_{2}$ is a planar rhombus $\left(\mathrm{D}_{2 \mathrm{~h}}\right)$ with bond length of $1.837 \AA$. In the case of $\mathrm{Os}_{3} \mathrm{C}$, the planar quadrilateral with a C atom bridged over two Os atoms is the most preferred one, it can be seen to add a C atom to one side of Os_{3}. All the optimized geometries of $\mathrm{Os}_{m} \mathrm{C}_{n}$ ($m+n=5$) binary clusters are also planar structures. The OsC_{4} with C_{s} symmetry is an irregular pentagon, while the $\mathrm{Os}_{2} \mathrm{C}_{3}$ with $\mathrm{C}_{2 \mathrm{v}}$ symmetry is a regular pentagon, in this isomer the $\mathrm{C}-\mathrm{C}$ bond length is 1.381 \AA, which is obviously shorter than Os-C. This may be caused by the interaction between the C atoms. The ground state of $\mathrm{Os}_{3} \mathrm{C}_{2}\left(\mathrm{C}_{2 \mathrm{v}}\right)$ is similar to OsC_{4}, in which the Os-Os bond length is $2.350 \AA$ and Os-C bond length is $1.801 \AA$. The $\mathrm{Os}_{4} \mathrm{C}$ can be viewed as adding two Os atoms to opposite ends of $\mathrm{Os}_{2} \mathrm{C}$.

For the hexamer, we attempted planar, octahedron, triple prisms and capped trigonal bipyramidal structures. As seen from Fig. 1, the structures of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n=6)$ clusters transform from planar into three-dimensional structures with increasing number

Fig. 1 - Lowest energy structures of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters
of Os atoms. The most stable structure of OsC_{5} with $\mathrm{C}_{2 \mathrm{v}}$ symmetry is found to be obtained by using one Os atom substituting for the C atom at the apex of C_{6} cluster, C-C bond lengths are shortened due to the influence of Os. A regular hexagonal structure with $\mathrm{D}_{2 \mathrm{~h}}$ symmetry is obtained to be the ground state of $\mathrm{Os}_{2} \mathrm{C}_{4}$, the two Os atoms are at the opposite position. The $\mathrm{Os}_{3} \mathrm{C}_{3}$ cluster shows analogical triangular prism $\left(\mathrm{C}_{\mathrm{s}}\right)$ as the ground-state geometry, in which there is no $\mathrm{C}-\mathrm{C}$ bond. For $\mathrm{Os}_{4} \mathrm{C}_{2}$, the binary edge capped triangular pyramid geometry in singlet state with $\mathrm{D}_{2 \mathrm{~d}}$ symmetry is found to have the lowest energy. Influenced by the function of C atoms, the bond lengths of Os-Os that close to C atom are $2.927 \AA$,
while the others away from C atom are $2.490 \AA$, all the bond lengths of $\mathrm{Os}-\mathrm{C}$ are $1.837 \AA$. In the $\mathrm{Os}_{5} \mathrm{C}$, the C edge capped the square pyramid with C_{s} symmetry is the most stable one.

While for $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n=7)$, all the optimized geometries are three-dimensional structures except OsC_{6}, which is an irregular seven-membered ring with C_{s} symmetry. For $\mathrm{Os}_{2} \mathrm{C}_{5}$, the ground-state geometry likes a basket with long handle $\left(\mathrm{C}_{2 \mathrm{v}}\right)$. In $\mathrm{Os}_{3} \mathrm{C}_{4}$, the most stable isomer in triplet state with C_{s} symmetry can be viewed as adding a C atom to the bottom of $\mathrm{Os}_{3} \mathrm{C}_{3}$. Similarly, $\mathrm{Os}_{4} \mathrm{C}_{3}$ can be viewed as bridging the third C atom over the existed two C atoms in $\mathrm{Os}_{4} \mathrm{C}_{2}$, the average Os-Os bond length in it lies in the range

Table 1—Geometric parameters of lowest energy structures of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters					
Cluster	S	Sym	$\bar{R}(C-C) / \AA$	$\bar{R}(O s-C) / \AA$	$\bar{R}(O s-O s) / \AA$
C_{2}	3	D_{∞}	1.312	-	-
OsC	3	C_{∞}	-	1.690	-
Os_{2}	7	D_{∞}	-	-	2.296
C_{3}	1	$\mathrm{C}_{2 \mathrm{v}}$	1.303	-	-
OsC_{2}	1	$\mathrm{C}_{2 \mathrm{v}}$	1.585	1.758	-
$\mathrm{Os}_{2} \mathrm{C}$	5	D_{∞}	-	1.777	-
Os_{3}	5	$\mathrm{D}_{3 \mathrm{~h}}$	-	-	2.378
C_{4}	3	D_{∞}	1.311	-	-
OsC_{3}	3	$\mathrm{C}_{\text {¢ }}$	1.300	1.757	-
$\mathrm{Os}_{2} \mathrm{C}_{2}$	3	$\mathrm{D}_{2 \mathrm{~h}}$	-	1.837	-
$\mathrm{Os}_{3} \mathrm{C}$	7	$\mathrm{C}_{2 \mathrm{v}}$	-	1.841	2.548
Os_{4}	5	$\mathrm{D}_{4 \mathrm{~h}}$	-	-	2.326
C_{5}	1	D_{∞}	1.292	-	-
OsC_{4}	1	$\mathrm{C}_{\text {s }}$	1.397	1.829	-
$\mathrm{Os}_{2} \mathrm{C}_{3}$	1	$\mathrm{C}_{2 \mathrm{v}}$	1.381	1.809	-
$\mathrm{Os}_{3} \mathrm{C}_{2}$	1	$\mathrm{C}_{2 \mathrm{v}}$	-	1.801	2.358
$\mathrm{Os}_{4} \mathrm{C}$	5	$\mathrm{C}_{2 \mathrm{v}}$	-	1.781	2.356
Os_{5}	1	$\mathrm{C}_{4 \mathrm{v}}$	-	-	2.468
C_{6}	1	$\mathrm{D}_{3 \mathrm{~h}}$	1.326	-	-
OsC_{5}	1	$\mathrm{C}_{2 \mathrm{v}}$	1.320	1.834	-
$\mathrm{Os}_{2} \mathrm{C}_{4}$	1	$\mathrm{D}_{2 \mathrm{~h}}$	1.392	1.774	-
$\mathrm{Os}_{3} \mathrm{C}_{3}$	3	$\mathrm{C}_{\text {S }}$	-	1.908	2.555
$\mathrm{Os}_{4} \mathrm{C}_{2}$	1	$\mathrm{D}_{2 \mathrm{~d}}$	-	1.837	2.636
$\mathrm{Os}_{5} \mathrm{C}$	3	$\mathrm{C}_{\text {S }}$	-	1.841	2.561
Os_{6}	5	$\mathrm{D}_{3 \mathrm{~h}}$	-	-	2.430
C_{7}	1	D_{∞}	1.288	-	-
OsC_{6}	1	$\mathrm{C}_{\text {S }}$	1.328	1.805	-
$\mathrm{Os}_{2} \mathrm{C}_{5}$	1	$\mathrm{C}_{2 \mathrm{v}}$	1.347	1.875	-
$\mathrm{Os}_{3} \mathrm{C}_{4}$	3	$\mathrm{C}_{\text {S }}$	-	1.917	-
$\mathrm{Os}_{4} \mathrm{C}_{3}$	3	C_{2}	2.510	1.840	2.857
$\mathrm{Os}_{5} \mathrm{C}_{2}$	3	$\mathrm{C}_{\text {S }}$	-	1.852	2.913
$\mathrm{Os}_{6} \mathrm{C}$	5	$\mathrm{C}_{2 \mathrm{v}}$	-	2.039	2.472
Os_{7}	7	$\mathrm{C}_{3 \mathrm{v}}$	-	-	2.464

2.437-3.325 $\AA . \mathrm{Os}_{5} \mathrm{C}_{2}$ and $\mathrm{Os}_{6} \mathrm{C}$ can be obtained by adding a C atom to $\mathrm{Os}_{5} \mathrm{C}$ and Os_{6}, respectively.

3.2 Stabilities of $\mathbf{O s}_{m} \mathbf{C}_{\mathrm{n}}(\mathrm{m}+\mathrm{n} \leq 7)$ clusters

For the purpose of analyzing the stabilities of the ground state $\mathrm{Os}_{m} \mathrm{C}_{n}$ clusters, the average binding energies per atom ($E_{\mathrm{b}} /$ atom), the second-order differences of total energies ($\Delta_{2} \mathrm{E}$) and the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been calculated.

The average binding energies reflect the stability of the clusters. For the same size clusters, the higher the average binding energy is, the more stable the cluster will be.

Fig. 2 - Average binding energies $\left(E_{\mathrm{b}} /\right.$ atom $)$ of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters

The average binding energies of the mixed clusters can be described by the following formula:
$E_{b}=\left[m E(O s)+n E(C)-E\left(O s_{m} C_{n}\right)\right] /(m+n)$
where $E(\mathrm{Os}), E(\mathrm{C})$ represent the energy of isolated Os and C, respectively. $E\left(\mathrm{Os}_{\mathrm{m}} \mathrm{C}_{\mathrm{n}}\right)$ represents the total energy of the $\mathrm{Os}_{m} \mathrm{C}_{n}$ clusters, and E_{b} represents the average binding energy of system. These quantities of average binding energies are shown in Fig. 2 as a function of the number of C atoms. Both the average binding energies of pure Os_{n} and C_{n} clusters increase as the cluster sizes fill out, and all the average binding energies of pure C_{n} clusters are larger than those of Os s_{n} clusters, this indicates that the stability of carbon clusters is better than that of osmium (Fig. 2). Whereas for mixed clusters, all the average binding energies increase with the number of carbon atoms and are between pure osmium clusters and pure carbon clusters except for C_{2}. Thus, from the above analysis, we conclude that the energy of C-C bond is stronger than that of Os-Os bond and the C-rich clusters are more stable than Os-rich clusters with the same number of total atoms. Though there is no obvious odd-even oscillation, five slight lifts corresponding to $\mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{2} \mathrm{C}_{4}, \mathrm{Os}_{4} \mathrm{C}_{2}, \mathrm{Os}_{3} \mathrm{C}_{4}$, respectively. The emergence of these local magnitude maxima means that these clusters have stronger stabilities relative to their neighbours.

As the second-order differences of total energies $\left(\Delta_{2} E\right)$ can be used to measure the relative stability of clusters, so we calculated the $\Delta_{2} E$ of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$. In order to investigate, the effect of the increasing number of C and Os atoms to the stabilities clearly,
both $\Delta_{2} E_{n}$ and $\Delta_{2} E_{\mathrm{m}}$ have been calculated and the relationship between $\Delta_{2} E$ and n are shown in Figs 3 and 4 , respectively. The $\Delta_{2} E$ is estimated in the following way:

$$
\begin{equation*}
\Delta_{2} E(n)=E(n+1)+E(n-1)-2 E(n) \tag{2}
\end{equation*}
$$

From Fig. 3, it is evident that the values of the second-order differences of total energies for $\mathrm{C}_{3}, \mathrm{C}_{5}$, $\mathrm{OsC}, \mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{2} \mathrm{C}_{4}, \mathrm{Os}_{3} \mathrm{C}, \mathrm{Os}_{3} \mathrm{C}_{2}$ and $\mathrm{Os}_{4} \mathrm{C}_{2}$ clusters are positive numbers, this shows that the stabilities of these clusters are relatively better. There exist clear even-odd oscillations in the curves of C_{n} and $\mathrm{Os}_{2} \mathrm{C}_{n}$ clusters, $\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{2} \mathrm{C}_{4}$ and $\mathrm{Os}_{3} \mathrm{C}_{2}$ are more stable than their neighbouring ones. As well, we can easily find that the values of the secondorder differences of total energies for $\mathrm{Os}_{2}, \mathrm{Os}_{4}, \mathrm{OsC}$,

Fig. 3 - Second-order differences of total energies $\left(\Delta_{2} E_{n}\right)$ of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters as a function of the number of C atoms

Fig. 4 - Second-order differences of total energies $\left(\Delta_{2} E_{m}\right)$ of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters as a function of the number of Os atoms
$\mathrm{Os}_{3} \mathrm{C}, \mathrm{Os}_{5} \mathrm{C}, \mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{4} \mathrm{C}_{2}, \mathrm{Os}_{2} \mathrm{C}_{3}$ and $\mathrm{Os}_{2} \mathrm{C}_{4}$ clusters are positive numbers from Fig. 4, indicating that these clusters possess stronger stabilities relative to their neighbours. The curves of Os_{m} and $\mathrm{Os}_{\mathrm{m}} \mathrm{C}$ clusters show the odd-even oscillation behaviour and two peaks can be found corresponding to Os_{4} and $\mathrm{Os}_{3} \mathrm{C}$.
Combining the above analysis of both $\Delta_{2} E_{\mathrm{n}}$ and $\Delta_{2} E_{\mathrm{m}}$, we can draw a conclusion that $\mathrm{OsC}, \mathrm{OsC}_{2}$, $\mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{2} \mathrm{C}_{4}$ and $\mathrm{Os}_{4} \mathrm{C}_{2}$ are much more stable than other clusters in $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$.
The energy gaps E_{g} between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are able to used to reflect the stabilities of clusters from the chemical stability point of view, they are defined as:

$$
\begin{equation*}
E_{g}=E_{\mathrm{LUMO}}-E_{\text {Номо }} \tag{3}
\end{equation*}
$$

where $E_{\text {LUMO }}$ is the energy of the lowest unoccupied molecular orbital, $E_{\text {номо }}$ is the energy of the highest occupied molecular orbital.
The HOMO-LUMO energy gaps of the ground state geometries of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters are plotted in Fig. 5. Compared with pure Os and Cmixed clusters, the pure C clusters (except C_{4}) have higher energy gaps, so pure C clusters have higher chemical stability than others, which coincides well with the result of the average binding energies and the second-order differences of total energies. It also can be found that most of the energy gaps of the C-mixed clusters are larger than those of the Os_{n} with the same cluster size; this result clearly indicates that the doping of C atom has lowered the chemical activity of

Fig. 5 - Energy gaps $\left(E_{\mathrm{g}}\right)$ of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters as a function of the number of C atoms

Fig. 6 - Corresponding HOMO and LUMO orbital isosurfaces of $\mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{4} \mathrm{C}_{2}$ and $\mathrm{Os}_{2} \mathrm{C}_{4}$ clusters

Fig. 7 - Partial density of states (PDOS) of s, p and d orbital and total density of states (TDOS) $\mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{4} \mathrm{C}_{2}$, and $\mathrm{Os}_{2} \mathrm{C}_{4}$ clusters. The vertical line indicates the Fermi level
Os_{n} clusters. Among all the clusters, $\mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}$, $\mathrm{Os}_{4} \mathrm{C}_{2}$, and $\mathrm{Os}_{2} \mathrm{C}_{4}$ display higher energy gaps as compared to their neighbours, which is coincident with the conclusions obtained from the average binding energy and the second-order differences of total energy.

3.3 Electronic properties of $\mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{4} \mathrm{C}_{2}$, and $\mathrm{Os}_{2} \mathrm{C}_{4}$ clusters

In order to further explore the properties of $\mathrm{Os}_{m} \mathrm{C}_{n}$ ($m+n \leq 7$) clusters, the HOMO and LUMO orbital isosurfaces of $\mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{4} \mathrm{C}_{2}$ and $\mathrm{Os}_{2} \mathrm{C}_{4}$ clusters are shown in Fig. 6 (because they are thought to be the most stable clusters in the present paper), from which one can see that both HOMO and LUMO states are mainly contributed by Os5d orbital and C2p orbital. This indicates that there exists d-p hybridization between Os atoms and C atoms, which are the dominating factor for decrease of doping of C atoms the energy gaps of pure C_{n} cluster but increase the energy gaps of pure Os_{n} cluster. The corresponding total density of states (DOS) and partial density of states (PDOS) of these clusters are also calculated and shown in Fig. 7. The Fermi level is at zero energy presented as a vertical line, the upper side of the figure is related to DOS for electrons with upward spin, and the lower side is related to the electrons with downward spin. It is clear that in all the chosen clusters, all curves are discrete; this indicates that the energy levels for $\mathrm{OsC}_{2}, \mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{4} \mathrm{C}_{2}$ and $\mathrm{Os}_{2} \mathrm{C}_{4}$ clusters are discrete. It is also clearly seen from Fig. 7 that in the vicinity of the Fermi level, all the electronic states consist mainly of Os5d and C2p states, and the contribution of the s orbital electrons can be negligible as compared with p and d orbital electrons. There exist isolated peaks in the vicinity of the Fermi level of all the state density curves and in PDOS the peaks of all orbital are in one-to-one correspondents, this indicates that the d electrons of Os atoms and the s and p electrons of C atoms are relatively localized and there exist more or less spd hybridization in all of the selected clusters. For OsC_{2}, $\mathrm{Os}_{4} \mathrm{C}_{2}$ and $\mathrm{Os}_{2} \mathrm{C}_{4}$ clusters, both the PDOS and TDOS curves are symmetric, while for $\mathrm{Os}_{2} \mathrm{C}_{2}$ the situation is different. This indicates that there is a difference between the spin up electronic number and the spin down number in $\mathrm{Os}_{2} \mathrm{C}_{2}$, that is to say there exist unpaired electrons in this cluster. This result is consistent with the spin multiplicities of these clusters that previously mentioned.

4 Conclusions

Employed with PW91 functional within the generalized gradient approximation (GGA), the lowest energy structures of $\mathrm{Os}_{m} \mathrm{C}_{n}(m+n \leq 7)$ clusters are obtained. The lowest energy geometries show that most of small pure carbon clusters are in single state while pure osmium clusters have higher spin multiplicity and symmetry. For binary clusters, the singlet and triplet state structures are more stable than others. The preferred $\mathrm{Os}_{m} \mathrm{C}_{n}$ structures with size of $\mathrm{m}+\mathrm{n} \leq 5$ transform from chain-like geometries to ringlike structures except Os_{5} which is a pyramid structure. As for those with size of $m+n \geq 6$, the C-rich clusters are still planar structures, while Os-rich clusters are three-dimensional structures and most of them tend to be capped pyramid or irregular prism. The relative stabilities are determined by analyzing the average binding energies, the second-order differences of total energies and the energy gaps. The $\mathrm{OsC}_{2}, \quad \mathrm{Os}_{2} \mathrm{C}_{2}, \quad \mathrm{Os}_{4} \mathrm{C}_{2}$ and $\mathrm{Os}_{2} \mathrm{C}_{4}$ show stronger stabilities than their neighbouring ones. HOMO and LUMO orbital isosurfaces and DOS analysis of OsC_{2}, $\mathrm{Os}_{2} \mathrm{C}_{2}, \mathrm{Os}_{4} \mathrm{C}_{2}$ and $\mathrm{Os}_{2} \mathrm{C}_{4}$ indicate that Os5d and C 2 p electrons play dominant roles in chemical reaction of mixed clusters. As the partial DOS described, the d electrons of Os atoms and the s and p electrons of C atoms are relatively localized and there exist more or less spd hybridization in all of the selected clusters.

Acknowledgement

This Project was supported by the National Natural Science Foundation of China (Grant No. 21207051).

References

1 Zhai H J, Ni G Q, Zhou R F \& Wang Y Z, Prog Phys, 17 (1997) 265.

2 Sheng Y, Tu M J \& Mao H P, Acta Phys Sin, 57 (2008) 4153.

3 Wang Y L, Henan university master's degree thesis, (2012).
4 Lombardi J R \& Davis B, Chem Rev, 102 (2002) 2431.
5 Kumar V \& Kawazoe Y, Phys Rev B, 65 (2002) 125403.
6 Alonso J A, Chem Rev, 100 (2000) 637.
7 Hübner O, Himmel H J, Manceron L \& Klopper W, J Chem Phys, 121 (2004) 7195.
8 Zhang L, Qi Y \& Zhang C B, Chin Phys, 15 (2006) 2001.
9 Ma J, Chen Y H \& Zhang C R, Acta Phys Sin, 55 (2006) 171.
10 Wang H Y, Chen X H, Zhu Z H, Li X B, Tang Y J \& Wang C Y, Acta Phys Sin, 54 (2005) 3565.
11 Zheng J C, Phys Rev B, 72 (2005) 052105.
12 Chen Z Y, Xiang H J, Hou J G \& Zhu Q S, Phys Rev B, 74 (2006) 012102.

13 Young T H \& Chuang W Y, J Membr Sci, 210 (2002) 349.
14 Tian F Y, Wang Y X \& Jing Q, Acta Phys Sin, 57 (2008) 1648.

15 Guo W L, Liang Y C \& Fang Z, Acta Phys Sin, 56 (2007) 4847.

16 Zhang X R, Zhang F X, Chen C \& Yuan A H, Chin Phys B, 22 (2013)123102.
17 Zhang X R, Wu L Q \& Rao Q, Acta Phys Sin, 60 (2011) 083601.
18 Zhang X R, Comput Appl Chem, 27 (2010) 221.
19 Yadav P S, Yadav P K, Agrawal S \& Agrawal B K, J Phys Condens Matter, 18 (2006) 7085.
20 Wu Z J, Han B, Dai Z W \& Jin P C, Chem Phys Lett, 403 (2005) 367.

21 Zhang C J, Xu X, Wu H S \& Zhang Q, Chem Phys Lett, 364 (2002) 213.

22 Zhang C J, Jiang Z Y, Wang Y L \& Zhu H Y, Comput Theor Chem, 1004 (2013) 12.
23 Raghavachari K \& Binkley J S, J Chem Phys, 87 (1987) 2191.

24 Takahashi K, Isobe S \& Ohnuki S, Chem Phys Lett, 555 (2013) 26.

25 Zhao E J, Wang J P \& Wu Z J, J Comput Chem, 31 (2010) 2883.

