Indian Journal of Pure & Applied Physics Vol. 53, July 2015, pp. 429-435

Elastic properties of elemental, binary and ternary semiconductor materials

V Kumar¹*, J K Singh² & G M Prasad³

¹Department of Electronics Engineering, Indian School of Mines, Dhanbad 826 004, India

²Flame & Explosion Laboratory, ³Instrumentation Division & Testing Cell,

CSIR-Central Institute of Mining and Fuel Research, Brawa Road, Dhanbad 826 015, India

*E-mail: vkumar52@hotmail.com

Received 8 January 2015; revised 9 April 2015; accepted 7 May 2015

Elastic properties of elemental (C, Si, Ge), binary (II-VI, III-V) and ternary (I-III-VI₂, II-IV-V₂) semiconductors have been studied. New relations, based on plasma oscillation theory of solids, have been proposed for the calculation of bulk modulus (*B*), microhardness (*H*) and shear modulus (*G*) of these materials. The values of *B*, *H*, *G* and *G/B* ratio have been calculated for 13 new compounds of II-IV-V₂ family. The calculated values are compared with the available experimental and reported values. Reasonably good agreement has been obtained between them. The average percentage deviation of proposed relations has also been estimated and found to be better than earlier correlations.

Keywords: Bulk modulus, Microhardness, Shear modulus, Elastic properties, Plasma energy, Elemental, Binary and ternary semiconductors

1 Introduction

In the recent past, the elastic properties of elemental (C, Si, Ge), binary (II-VI, III-V) and ternary (I-III-VI₂, II-IV-V₂) semiconductor materials, have been studied. Elemental semiconductors are the back bone for modern electronic industries and having potential applications in fabricating diodes, bi-polar junction transistors (BJTs), field effect transistors (FETs), logic gates, integrated circuits (ICs), nanoelectronics and lasing devices¹. The semiconductors of group II-VI are important for nuclear, industrial and medicinal applications. They are widely used in optoelectronic devices², quantum wells³, quantum wires⁴, quantum dots⁵, lasing devices⁶ and detectors for nuclear power plants⁷. Group III-V semiconductors are the most promising materials for cutting-edge classes of electronic and optoelectronic devices^{8,9}. The nitrides of III-V group are used in designing short wavelength laser diodes (LDs), high efficient blue and white light emitting diodes (LEDs) and optical data storage systems¹⁰. The ternary chalcopyrites of I-III- VI_2 (I = Cu, Ag; III = Al, Ga, In, Tl, Fe; VI = S, Se, Te) and II-IV-V₂ (II = Zn, Cd; IV = Si, Ge, Sn; V = P, As) families are widely used in photovoltaic solar cells, LEDs, LDs, photo-detectors (PDs), frequency conversion applications, optical parametric oscillators (OPO) and nonlinear optical (NLO) devices $^{11-13}$. Recently, new chalcopyrites of II-IV-V₂ family have been developed by replacing group II atom with Be,

Mn and Mg atoms, which are also having potential applications in spintronics and magnetically controlled NLO devices¹⁴⁻¹⁶. In spite of their potential applications, elastic properties of group IV, II-VI, III-V, I-III-VI₂, II-IV-V₂ semiconductors are still not sufficiently studied. A large variation in the experimental values has been obtained in some of these semiconductors, e.g., experimental values of *H* of ZnS (1.7-3.5) vary more than 100%, CdSe (0.7 to 1.2) varies approximately 72%, C ranges from 57 to 104 and BN from 34.3 to 73. In the case of B, it varies from 35.7 to 76.6 for AgGaTe₂ semiconductor. Therefore, it has been thought of interest to further study the elastic properties of these materials.

The elastic properties such as bulk modulus (*B*), microhardness (*H*) and shear modulus (*G*) of these semiconductors have been studied experimentally and theoretically. A state of the art review¹⁷ of earlier models for the calculation of *B* and *H* has been presented. Gilman¹⁸ has proposed an expression for the calculation of *G* of metals based on quantum mechanical description. Kamran *et al*¹⁹. have correlated *G* with f_i and *d* for II-VI and III-V diamond like and zinc-blende binary crystals and shown that the product of *G* and $d^{5.5}$ is linearly related to f_i . Abdellaoui *et al*²⁰. have calculated the values of *G* for CuAlX₂ (X = S, Se, Te) compounds using elastic constant data C_{ij} . Other researchers^{21, 22} have proposed empirical relations for the calculation of *B*, *H* and *G* of I-III-VI₂ and II-IV-V₂ groups of chalcopyrites. Recently, Kumar *et al*¹³. have calculated the values of *B*, *G* and *G/B* ratio of various compounds of II-IV-V₂ family using first-principle calculations.

The models proposed by earlier researchers require experimental data of number of parameters such as bond ionicity f_i , bond length d, melting temperature $T_{\rm m}$ and atomic volume Ω in their calculation. The values of these parameters are not known for some of these compounds specially the new magnetic materials of II-VI-V₂ family. Their calculations are also complex in nature and limited for particular group of materials. Therefore, simple models have been developed, which can be applicable for all groups of compounds and do not require any experimental data or less number of experimental data. Recently, simple models based on plasmon energy $(\hbar \omega_p)$ data for the calculation of various elastic and thermal properties of these semiconductors^{17,23} have been developed. In the present paper, the applicability of $\hbar \omega_p$ for the calculation of B, H and G have been explored, which give better results than the earlier models.

2 Calculation of Bulk Modulus, Microhardness and Shear Modulus

The bulk modulus *B* is a measure of resistance to volume change by applied pressure. Based on empirical relations, a number of theoretical models have been proposed for the calculation of bulk modulus (*B*). In almost all earlier models, it has been found that *B* is related to the bond length¹⁷ (*d*). Kumar *et al.*²³ have shown that the bond length *d* is related to the plasmon energy ($\hbar\omega_p$). This is because of the fact that *d* and $\hbar\omega_p$ both are related to the effective number of valence electrons in a semiconductor. This shows that there must be a relation between *B* and $\hbar\omega_p$. For tetrahedrally coordinated semiconductor materials, the bond length *d* can be written as^{17,23}:

$$d = 15.30 \left(\hbar\omega_{p}\right)^{-2/3} \qquad \dots (1)$$

where bond length d and plasma energy $\hbar \omega_{p}$ are in Å and eV, respectively.

Further, Plendl *et al*²⁴. have shown that *B* is directly proportional to *H*, i.e., *B* α *H*, which shows that *H* is also related to the $\hbar \omega_p$. This shows that the elastic properties of material have fundamental relation among *B*, *H* and $\hbar \omega_p$. Based on this, we have simulated the data taking the experimental values of *B*

and the calculated values of plasmon energy $\hbar\omega_p$ as well as the experimental data of H and $\hbar\omega_p$ and proposed the following polynomial relation for the calculation of B and H for Gr. IV, II-VI, III-V, I-III-VI₂ and II-IV-V₂ semiconductors materials:

B and
$$H = K_1(\hbar\omega_n)^2 + K_2(\hbar\omega_n) + K_3$$
 ...(2)

where K_1 , K_2 and K_3 are the constants and having different values for *B* and *H* (in GPa) for different groups of semiconductors. The simulated values of K_1 , K_2 and K_3 are listed in Table 1 and the calculated values of *B* and *H* from Eq. (2) are listed in Tables 2 and 3 along with the available experimental and reported values.

Shear modulus *G* is another quantity for measuring the stiffness of materials, which measures the resistance of reversible deformations upon the shear stress. It is related to the Poison's ratio and bulk modulus²⁵. Kamran *et al.*¹⁹ have derived the following relation for the calculation of *G* of diamond like and zincblende binary crystal:

$$G = \frac{C_1 - C_2 f_1}{d^{5.5}} \qquad \dots (3)$$

where f_i is the ionocity, d is the bond length and C_1 and C_2 are the constants. The numerical values of C_1 and C_2 are, respectively, 5954.02 and 4538.40 for diamond like and 9058.22 and 6905.86 for zincblende crystals. Recently, Kumar *et al*^{26,27}. have correlated f_i with the plasmon energy $\hbar \omega_p$ by the relation:

$$f_1 = \kappa_1 + \kappa_2(\hbar\omega_p) \qquad \dots (4)$$

where κ_1 and κ_2 are the constants and their numerical values are given elsewhere^{26,27}. Eqs. (1), (3) and (4) show that *G* is related to $\hbar \omega_p$. Based on this, we have

Table 1 — Numerical values of the constants K_1 to K_5 used in
proposed relations

Constants	Elastic		Co	mpound	l family	
	Moduli	IV	II-VI	III-V	I-III-VI ₂	II-IV-V ₂
K	В	0.172	0.718	-0.171	1.365	-0.021
\mathbf{n}_1	H	-0.047	0.016	0.189	0.161	0.549
V	В	15.44	-12.56	15.2	-25.38	8.865
κ ₂	H	5.579	-0.094	-3.852	-4.107	-14.32
V	В	-205.6	84.71	-117.9	127.5	-65.86
κ ₃	H	-67.35	-1.139	20.46	27.22	96.71
K_4	G	6.426	0.236	1.532	0.7589	0.640
K_5	G	0.142	0.300	0.220	0.244	0.267

				Bulk modi	ulus (B) (GP	a)		Microhar	dness (H)	(GPa)		Shea	r modulus (G) (GPa)	G/B	latio
Group	40p	Expt. ⁺	This		Repo	orted	110 J	Expt.	This	Repo	rted	Expt ^{#, +}	This	Reported	This	Expt: ⁵
2	(eV)	[Ket.17]	work Ea.(2)	[Ket. 17]	[Ket. 30]	[Ket. 31]	[Ket. 31]		work Eq.(2)	[Ket.17]	[Ket.34]	[Ket.19]	work Eq.(5)	[Ket.19]	work	
1	5	3	4	5	9	7	8	6	10	Ĩ	12	13	14	15	16	17
c	31.14	442	441.99	430	435			$10(M)^{a}(57-104)^{b^{+}}$	60.80	96.92	80.0	535.7	534.98	534.5	1.2093	1.2119
Si	16.58	98	97.68	98.82	98	92	100.7	11.27 ^b , 11.50 ^b 12.35 ^c ⁺	12.23	12.33	13.3	70.8	67.67	82.4	0.8435	0.7224
Ge	15.59	77.2	76.91	85.60	76	79	1.97	7.644 ^a , 8 ^{b. +}	8.20	8.96	9.85	56.6	58.79	65.5	0.8516	0.7331
Average %	deviation		0.13	4.78	1.01	4.22	2.6		1.13	4.05	10.27		2.81	10.77		
A ^{II} B ^{VI}								[Ref.35]			[Ref.35]					
BeO	28.26		303.17	265.12				9.1*- 12.7	8.98	8.21	11.6		1134.64		3.7425	
BeS	19.52		113.11	111.81					3.12	3.01			92.44	76.7	0.8172	
BeSe	18.39		96.55	97.29					2.54	2.52			58.73	60.1	0.6082	
BeTe	16.12		68.81	71.54					1.50	1.64			29.72	42	0.4319	
ZnO	21.48		146.19	139.78	90	61	75.21	3.9, 4.8, 4 ⁺ (M)	4.22	3.96	4.6		148.42		1.0152	
ZnS	16.71	77	75.31	77.80	75	58	65.7	$1.7^{+}, 2.8, 3.5$	1.75	1.86	3.3	31.9	35.48	29.1	0.4711	0.4142
ZnSe	15.78	62	65.30	68.07	59	54	61.46	1.3 - 1.8	1.36	1.52	1.7	32.9	26.84	31.7	0.4110	0.5306
ZnTe	14.76	51	55.74	58.24	. 69	99	61.6	0.8 - 1.1	0.96	1.19	1.0	24.8	19.76	25.4	0.3545	0.4862
CdS	14.88	62	56.79	59.35	60	60	58.9	1.2 ⁺ , 1.22 ^b	1.00	1.23	1.1	16.9	20.49	17.6	0.3608	0.2725
CdSe	14.01	53	49.67	51.57	47	56	41.6	0.7^{+} - 1.2	0.68	0.96	0.8	13.6	15.78	13.9	0.3176	0.2566
CdTe	13.09	42	43.32	44.01				0.4^{+} - 0.64	0.37	0.71	0.5	10.5	11.97	9.8	0.2763	0.2500
MgTe	12.97		42.58	43.07					0.33	0.68			11.55		0.2712	
HgS	14.85		56.52	59.07					0.99	1.22			20.30	15	0.3591	
HgSe	13.99		49.52	51.39					0.68	0.96		16.5	15.69	15.4	0.3168	
HgTe	12.85		41.87	42.15					0.29	0.65		12.9	11.14	12.2	0.2660	
Average %	deviation		5.77	6.0	14.98	14.38	16.9		4.58	5.01	2.35		12.75	3.86		
$A^{III}B^{V}$																
BN	24.53		152.06	218.52				34.3 - 73.0	39.70	29.57	45.8	414	338.04	400.9	2.2152	
BP	21.71		131.49	164.33				31.4*-40	25.91	20.81	32.3	139	181.77	142.3	1.3823	
BAS	20.12		118.70	137.61				19.0	19.46	16.50	10.9		128.12	165.4	1.0793	
AIP	16.65	86	87.77	88.47	87	79	86.7		8.71	8.55	6.30		59.71	61.7	0.6803	
AIAS	15.75	17	79.08	77.71	79	99	75.3		6.67	6.81			48.98	54.2	0.6193	
AISb	13.72	58	58.45	56.32	57	61	55.4	4.0 ^{c. +}	3.18	3.36	10.90	31.1	31.34	28.2	0.5361	0.5362
GaN	21.98		133.58	169.14					27.10	21.60			192.90	144	1.4440	
GaP	16.50	89	86.34	86.63	87	74	89.79	· 9.45 ª	8.55	8.25		58	57.77	57.6	0.6690	0.6516
GaAs	15.35	75	75.12	73.20	<i>LL</i>	65	70.6	$7.50^{a}, 7.21^{b.+}$	5.86	6.08		48.8	44.86	50.1	0.5971	0.6506
GaSb	13.38	57	54.86	53.12	58	59	55.5	4.48 ^a	2.75	2.84		35.4	29.08	34.1	0.5300	0.6210
InN	18.82		107.59	117.75					14.90	13.28			96.25	73.3	0.8946	
InP	14.76	11	- 69.19	66.80	67	63	68.75	$4.10^{a}, 4.30^{b.+}$	4.78	5.05	5.30	36.5	39.40	36.5	0.5694	0.5140
InAs	14.07	60	62.11	59.73	61	- 61	58.19	3.30^{a} , $3.84^{b.+}$	3.68	3.91		31.4	33.85	33.7	0.5450	0.5233
InSb	12.73	47	47.88	47.30	47	55	45.05	2.20^+	2.05	1.90		24.2	25.20	23.3	0.5263	0.5148
Average %	6 deviation		2.37	2.84	2.15	10.13	3.02		10.08	22.18	30.30		5.21	3.65		
These value	s have been u	used for reg	ression o	f Eqs (2) an	d (5) and cal	culating av	erage % devi	ation, where more than c	ine experit	nental valu	es are avail	able				
References	of individual	experiment	al values	of G are gi	ven in [Ref.	[6]										
G/B Ratio I	lave been cal	culated fron	n the expo	erimental va	alues of B an	d G listed i	n column 3 a	nd 13								
[Ref. 32], ^v]	Ref. 33], '[K	ef. 34]														

KUMAR et al.: ELASTIC PROPERTIES OF SEMICONDUCTOR MATERIALS

Compds	hω _p	,		Bulk mo	dulus (B)((GPa)				Microhardness	(<i>H</i>) (GPa	(1			Shear mo	odulus (C) (GPa)	
	(eV)	This				Reported			This	Expt*.		Reported		This	Repo	rted	G/B R	atio
	[Ref.17]	Work Eq.(2)	Expt*. [Ref.17]	[Ref.36]	[Ref.17]	[Ref.37]	[Ref.38]	[Ref.39]	Work Eq.(2)	[Ref.17]	[Ref.40]	[Ref.17]	[Ref.41]	Work Eq.(5)			This re Work []	sported Ref.13]
1 A ^t B ^{III} C, ^{v1}	2	<u>s</u>	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19
CuAIS ₂	17.25	95.86	94⁺, 99		84.02	96.8	96	85.3	4.28	4.33^{+}	2.45	3.84	2.56	51.06	51.56 ^a 4	10.443 ^b (.5326	
CuAlSe ₂	15.86	68.32	84^{+}		69.06	77.3	80	72.9	2.58	$3.19^{+}, 2.06$	2.21	2.95	2.23	36.37	35.89 ^a 3	32.917 ^b (.5323	
CuAlTe ₂	14.35	44.38			54.68	57.2	64	53.5	1.44	$1.78^{+}, 1.82$	2.50	2.09	2.06	25.16	26.81 ^a 2	28.964 ^b (.5669	
CuGaS ₂	17.10	92.64	94 ⁺ , 96, 97		82.32	95.8	94	98.0	4.07	4.22 ⁺ , 4.81-7.10	2.25	3.74	2.40	49.23	50.06 ^a	U	.5314	
CuGaSe ₂	15.92	69.40	71 ⁺ , 94		69.67	76.6	79	69.3	2.64	3.23 ⁺ ,1.93,4.2	1.93	2.98	2.06	36.91	37.29ª	U	.5318	
CuGaTe ₂	14.30	43.69	44 +		54.24	55.4	38	48.5	1.41	1.77 ⁺ , 2.11, 3.14, 3.5	2.35	2.07	1.81	24.86	25.78 ^a	Ŭ	.5690	
CuInS ₂	16.12	73.07	75^{+}		71.73	84.4	81	72.9	2.85	2.84 ⁺ , 4.9-6.2, 2,26, 2.55	1.37	3.10	1.37	38.76	37.29ª	U	5304	
CuInSe ₂	15.09	55.33	53 ⁺ , 48, 62, 72		61.49	68.4	69	64.0	1.91	$1.81^{+}, 2.05$	1.57	2.49	1.38	30.14	31.71 ^a	0	.5447	
CuInTe ₂	13.66	35.51	36 ⁺ , 45.4		48.74	50.6	51	45.0	1.60	$1.49^{+}, 1.87, 0.4$	1.63	1.74	1.37	21.26	21.89 ^a	U	5987	
CuTIS ₂	15.89	68.86		11	69.36				2.61	2.96^{+}		2.96		36.64		U	5320	
CuTISe ₂	14.88	52.07		53	59.51				1.76			2.37		28.64		Ŭ	.5500	
CuFeS ₂	17.19	94.57		105	83.33				4.20			3.79		50.32		Ŭ	.5320	
AgAIS ₂	16.26	75.71			73.19	79.9	82	75.2	3.01	3.19^{+}		3.19		40.10		U	.5296	
AgAlSe ₂	15.16	56.45			62.15	65	70	62.8	1.96	$1.60^+, 1.57$	1.68	2.53		30.66	30.97 ^a	U L	.5431	
AgAlTe ₂	14.50	46.48			56.02	48.8	54	40.4	1.52	$1.49^{+}, 1.46$	1.64	2.17		26.10	20.64 ^a	U	5615	
AgGaS ₂	16.10	72.70	72 ⁺ , 60, 67, 90		71.52	77.6	76	67.2	2.83		1.71	3.09		38.57	37.46 ^a		.5305	
AgGaSe ₂	14.76	50.26	59.8 ⁺ , 65		58.39	63.8	63	59.9	1.67	$1.43^{+}, 1.40, 4.4$	1.55	2.32		27.81	27.94 ^a	U	.5533	
AgGaTe ₂	13.63	35.15	35.7 ⁺ , 71.5, 76.6		48.49	48.6	21	38.9	1.15	$1.32^{+}, 1.76, 1.8$	1.63	1.73	-	21.11	20.49 ^a	Ŭ	.6005	
$AgInS_2$	15.21	57.25			62.63	71.6	99	55.0	2.00	2.2		2.56		31.04	29.26 ^a	Ŭ	.5421	
$AgInSe_2$	14.23	42.74	42 *		53.62	58.3	50	48.7	1.38	$1.24^{+}, 1.85$	1.00	2.02		24.44	23.50^{a}	Ŭ	5718	
$AgInTe_2$	13.04	28.65			43.73	44.1	29	24.5	1.04	$1.15^{+}, 1.18$	1.14	1.44		18.28	18.06^{a}	Ŭ	.6380	
AgFeS ₂	16.24	75.33			72.98				2.98			3.18		39.91		U	5298	
Average %	Devi.	05.35	•		11.77	13.14	10.42	5.69	11.72		17.27	18.28	20.62				:	
			[Ref.13]	[Ref.42]	[Ref.17]	[Ref.43]	[Ref.44]	[Ref.45]			[Ref.40]	[Ref.17]	[Ref.41]				=	kef.13]
ZnSiP ₂	17.02	78.93	+ 62	73.2	93.13	120.3	79.0	6.99	12.01	12.20 ⁺ , 10.79 , 11	8.83	11.43	10.45	60.22	48.59 ^a	59.31° (55.45 ^d	.7629	0.77
ZnGeP,	16.64	75.83	86 +	86.0	88.35	107.6	73.6	71.2	10.43	9.80 ⁺ , 9.61, 8.1	6.23	10.06	7.60	54.41	39.19 ^a	54.87° (.7175	0.82
ZnSnP ₂	15.55	66.91	68.4 ⁺		75.44	84.2	67.5	57.7	6.78	6.5 ⁺ , 7.00, 6.37	5.20	6.35	4.90	40.67	,	46.05° (.6078	0.74
							•									40.97°		
$CdSiP_2$	16.19	72.15	+ 26	71.9	82.88	97.0	48.0	60.9	8.77	$9.30^{+}, 10.5$	7.16	8.50	7.49	48.25	40.24 ^a	45.28° (.6687	0.60
CdGeP ₂	15.52	66.66	68.1 +	67.4	75.10	86.4	47.0	60.4	6.70	$6.70^{+}, 5.54, 4.02, 5.65$	4.61	6.26	5.10	40.34	29.35 ^a .	42.30° (.6051	0.65
																	0	ntd —

INDIAN J PURE & APPL PHYS, VOL 53, JULY 2015

432

			Ta	ble 3 — Bu	lk modulu	s, microhar	dness and s	shear modu	lus of gr	oup I-III-VI ₂ and II-IV-V	2 semicor	nductors	- Contd					
Compds	hup			Bulk mo	dulus (B) (GPa)				Microhardness	(H) (GP	a)			Shear m)) sn npo	7) (GPa)	
	(cV)	This				Reported			This	Expt*.		Reported		This	Repo	rted	G/B R	atio
		Work E. (2)	Expt*.						Work	I			1. J.	Work En (5)			This re Work D	ported
-	ć	124.(2) 3	4	Ŷ	Ŷ	7	~	6	(7).h1	=	12	13	14	(c).h-1 15	16	17	18	61
CdSnP ₂	14.82	60.90		55.9	67.43	67.2	52.5	50.2	5.06	5 ⁺ , 5.29	2.50	4.10	2.69	33.47	20.42ª	34.02°	0.5495	0.57
ZnSiAs ₂	16.05	71.01	¢9.69	69.69	81.22	93.4	68.0	53.2	8.29	9.02 ⁺ , 8.80 , 9.2	8.04	8.02	8.07	46.48	37.16ª	48.85°	0.6545	0.76
ZnGeAs ₂	15.66	67.81	€7⁺	53.8	76.68	85.7	67.0		7.09	6.8 ⁺ , 6.60 , 6.67	6.18	6.714	6.70	41.88	31.08ª	44.20°	0.6176	0.78
ZnSnAs ₂	14.82	60.90	56.6 ⁺	56.6	67.43	67.0	55.8		5.06	5.40 ⁺ , 4.46, 4.55	4.22	4.10	4.39	33.47	25.40ª	31.98°	0.5495	0.62
CdSiAs ₂	15.35	65.26			73.19	77.0	54.0		6.25	6.10 ⁺ , 6.85	6.03	5.71	6.29	38.55	28.88ª	36.60°	0.5907	0.59
CdGeAs ₂	14.90	61.56	69.7 +	47.7	68.28	69.7	41.3		5.22	5.20 ⁺ , 4.61, 4.70	4.61	4.30	4.79	34.19	23.00 ^a	30.12 ^c	0.5553	0.54
																30.54 ^f		
																27.95 ^f		
CdSnAs ₂	14.12	55.12	54.8+	49.9	60.23	54.8	37.1		3.96	4.00^{+} , 3.43 , 3.28 , 3.45	3.04	2.00	3.09	27.76	19.11 ^a	29.52°	0.5036	0.57
Average %	Dev.	06.48		10.49	11.79	20.78	17.39	18.49	2.68		14.81	9.13	10.72					
BeSiP ₂	18.13	87.95							17.54					80.99		-	0.9208	
BeSiAs ₂	16.91	78.04							11.54					58.47		-	0.7492	
BeGeP ₂	17.61	83.74							14.78					70.49			0.8417	
BeGeAs ₂	16.46	74.36							9.74					51.85		-	0.6972	
BeSnp ₂	16.45	74.28							9.70					51.72			0.6962	
BeSnAs ₂	15.48	66.33				• ,			6.59					39.91		-	0.6016	
MgSiP ₂	16.04	70.93							8.26					46.35		-	0.6534	
MgSiAs ₂	15.08	63.04							5.61					35.87		-	0.5690	
MgGeP ₂	15.67	67.89							7.12					41.99		-	0.6185	
MgGeA ₂	14.68	59.75						•	4.80					32.24			0.5395	
MgSnP ₂	14.73	60.16							4.89					32.67		-	0.5430	
MgSnA ₂	13.93	53.55							3.76					26.39			0.4928	
MnGeP ₂	15.64	67.65	,						7.03					41.66			0.6158	
References	of individ	ual experim	ental data of B	are given i	n [Ref. 17		•											
[*] These value	s have be	en taken for	regression of	Eqs. (2) and	(5) and ca	alculating a	verage perc	centage der	viation, w	here more than one expe	crimental	values are	available.					
[Kei.21], [Kei.zuj,	Ker.ij, [Kei.40J, [Kei		4/]													

KUMAR et al.: ELASTIC PROPERTIES OF SEMICONDUCTOR MATERIALS

433

simulated the known values of *G* and $\hbar\omega_p$ and proposed a simple relation for the calculation of *G* (in GPa) for IV, II-VI, III-V, I-III-VI₂ and II-IV-V₂ semiconductor materials:

$$G = K_4 \exp|K_5 \hbar \omega_p| \qquad \dots (5)$$

where K_4 and K_5 are the constants and their numerical values are given in Table 1. The calculated values of shear modulus *G* from Eq. (5) are listed in Tables 2 and 3 along with the available experimental and reported values. The ratio of *G/B* gives the information about covalent and ionic behaviour of materials on the basis of their brittle and ductile character in solids^{28,29}, are also calculated and presented in Tables 2 and 3. The upper limits of *G/B* are 1.1 for brittle and 0.6 for ductile character, i.e., if *G/B* \leq 0.60, the materials are ductile (ionic), otherwise brittle (covalent) in nature.

3 Results and Discussion

Using Eqs (2) and (5), the values of B, H and G of group IV, II-VI and III-V semiconductor materials have been calculated and listed in Table 2 and I-III- VI_2 and II-IV-V₂ materials in Table 3 along with the available experimental and reported values. The values of these parameters for 13 new compounds of II-IV-V₂ family have been calculated for the first time and listed in bottom rows of Table 3. The calculated values are in good agreement with the available experimental and reported values. We have also calculated the average percentage deviation of proposed Eqs. (2) and (5) using the relation: Percentage deviation = [Experimental value- Calculated Valuel/Experimental value] \times 100. In the case of Eq. (2), the average percentage deviation of B for IV, II-VI and III-V materials has been estimated between 0.13% to 5.77% against the earlier estimations between 1.01 to 14.98%. However, in the case of I-III-VI₂ and II-IV-V₂ chalcopyrites, it has been estimated between 5.35 to 6.48% against the earlier estimations between 5.69-20.78%. The average percentage deviation of Eq. (2) for H has been found between 1.13 to 10.08% against the earlier estimations between 2.35 to 30.30% for group IV, II-VI and III-V, and 2.68 to 11.72% against the earlier estimations between 9.13 and 20.62% for I-III-VI₂ and II-IV-V₂ semiconductors. In the case of Eq. (5), the average percentage deviation of G for group IV, II-VI and III-V semiconductors has been found in the range

2.81-12.75% against earlier values between 3.65-10.77%. The average percentage deviation of G for ternary chalcopyrite has not been calculated due to unavailability of experimental values. However, these data have been compared with the reported values. The calculated values of G/B ratio, which show the ionic and covalent nature of the materials, are also listed in Table 2 for group IV, II-VI and III-V, and Table 3 for I-III-VI₂ and II-IV-V₂ materials along with available experimental values in few cases where the experiments have been performed and the reported values. A fairly good agreement has obtained between them. The calculated average percentage deviations of all groups of semiconductor materials are also listed in Tables 2 and 3. In almost all cases, the average percentage deviation of proposed relations is lower than the earlier correlations. The main advantage of the present models is the simplicity of the formulae, which do not require any experimental data except the plasmon energy of the materials while the earlier models require the experimental values of bond length, ionicity, melting temperature and atomic volume in their calculation.

4 Conclusions

Hence, it is possible to calculate the values of B, H and G of group IV, II-VI, III-V, I-III-VI₂ and II-IV-V₂ semiconductor materials from their plasmon energy data. The predictive nature of the proposed relations is of great importance in predicting the values of B, H, G and G/B ratio of new compounds of these group having the same crystal structure. The lower percentage deviation shows the significant improvement over the earlier models.

Acknowledgement

The authors are thankful to Prof D C Panigrahi, Director, Indian School of Mines, Dhanbad and Dr Amalendu Sinha, Director, Central Institute of Mining and Fuel Research, Dhanbad for their continuous encouragement and inspiration in conducting this work.

References

- 1 Boyraz O & Jalali B, Optical Express, 12 (2004) 5269.
- 2 Rappl P H O & Mccann P J, *IEEE Photonics Technol Lett*, 15 (2003) 374.
- 3 Komirenka S M, Kim K W, Kochelp V A & Zavada J M, App Phys Lett, 81 (2002) 4616.
- 4 Wang X Y, Wang Z M, Yazdanpanah V R et al., J Appl Phys, 95 (2004) 1609.
- 5 Ma S B, Wang X D, Su F H *et al.*, Fang Z L, Ding K, Niu Z C & Li G H, *J Appl Phys*, 95 (2004) 933.

- 6 Nawaz M, Permthamassin K, Zaring C & Willander M, *Solid State Electron*, 47 (2003) 291.
- 7 Azhazha V A, Kutnii V E, Rayka A V et al., At Energy, 92 (2002) 508.
- 8 Vurgaftman, Meyer J R & Ram-Mohan L R, J Appl Phys, 89 (2001) 5815.
- 9 Reshak A H, Eur Phys J, B47 (2005) 503; J Chem Phys, 125 (2006) 034710.
- 10 Fritsch D, Schmidt H & Grundmann M, Phys *Rev* B, 67 (2003) 235205; *Phys Rev*, B 69 (2004) 165204.
- 11 Shay J L & Wernick J H, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon Press, New York), 1975.
- 12 Kumar V, Tripathi S K & Jha Vijeta, *Appl Phys Lett*, 101 (2012) 192105.
- 13 Kumar V, Singh B P & Pandey B P, Comput Mater Sci, 87 (2014) 227.
- 14 Shaposhnikov V L, Krivosheeva A V, Borisenko V E et al., Phys Rev B, 85 (2012) 205201.
- 15 Krivosheeva A V, Shaposhnikov V L, Borisenko V E et al., J Phys Condens Matter, 21 (2009) 045507.
- 16 Medvedkin G A & Voevodin V G, *J Opt Soc Am*, B 22 (2005)1884.
- 17 Kumar V, Shrivastava A K & Jha Vijeta, J Phys Chem Solids, 71 (2010) 1513.
- 18 Gilman J J, Chemistry and Physics of Mechanical hardness (A John Wiley & Sons Inc., Publication), 2009.
- 19 Kamran S, Chen K & Chen L, Phys Rev, B 77 (2008) 094109.
- 20 Abdellaoui A, Ghaffour M, Bouslama M et al., J Alloys Compd, 487 (2009) 206.
- 21 Verma A S, Sharma S, Bhandari R *et al.*, *Mater Chem Phys*, 132 (2012) 416.
- 22 Verma A S, Mater Chem Phys, 139 (2013) 256.
- 23 Kumar V, Shrivastava A K, Banerji R & Dhirhe D, *Solid State Commun*, 149 (2009) 1008.

- 24 Plendl J N, Mitra S S & Gielisse P J, Phys Status Solidi, B12 (1965) 367.
- 25 Sahin S, Ciftici Y O, Colakoglu A & Korozlu N, J Alloys Compd, 529 (2012) 1.
- 26 Kumar V, Shrivastava A K, Sinha A & Jha Vijeta, Indian J Pure & Appl Phys, 51 (2013) 49.
- 27 Kumar V, Jha Vijeta & Sinha A, Indian J Phys, 89 (2015) 233.
- 28 Young A F, Sanloup C, Gregoryanz E et al., Phys Rev Lett, 96 (2006) 155501.
- 29 Pugh S F, Philos Mag, 45 (1954) 833.
- 30 Cohen M L, Phys Rev, B 32 (1985) 7988.
- 31 Al-Douri Y, Abid H & Aourag H, *Physica B*, 305 (2001) 186; 322 (2002) 179.
- 32 Lide D R (Ed.), *Hand book of Chemistry and Physics* (CRC Publication), 80th Edn, 1999-2000.
- 33 Weber M (Ed.), *Handbook of Optical Materials* (CRC Publication), 2003.
- 34 Garbato L & Rucci A, Philos Mag, 35 (1977) 1681.
- 35 Neumann H, Cryst Res Technol, 22 (1987) 271.
- 36 Caceres J B & Rincon C, Phys Status Solidi, B 234 (2002) 541.
- 37 Neumann H, Cryst Res Technol, 18 (1983) 665.
- 38 Gallardo P G, Phys Stat Sol (b), 182 (1994) K 67.
- 39 Wei S H, Zunger A, Choi I H & Yu PY, *Phys Rev*, B 58 (1998) R1710.
- 40 Garbato L & Rucci A, Philos Mag, 35 (1977) 1685.
- 41 Samanta L K, Ghosh D K & Bhar G C, *Chem Phys*, 79 (1983) 361.
- 42 Deus P & Schneider H A, Cryst Res Technol, 20 (1985) 867.
- 43 Neumann H, Cryst Res Technol, 23 (1988) 97.
- 44 Oshcherin B N, Phys Status Solidi, A 51 (1979) K175.
- 45 Poplavnoi A S, Vyssh Izv & Zab Ucheb, Fizika, 29 (1986) 5.
- 46 Arab F, Sahraoui F Ali, Haddadi K & Louail L, *Comput l Mater Sci*, 65 (2012) 520.
- 47 Chongqiang Z, Chunhui Y, Tianhui M et al., Journal of the Chinese Ceramic Society, 39 (2011) 349.