An investigation on gamma and neutron shielding efficiency of lead-free compounds and alloys

Vishwanath P Singh^{a,b}* & N M Badiger^a

^aDepartment of Physics, Karnatak University, Dharwad 580 003, India

^bHealth Physics Section, Kaiga Atomic Power Station-3 & 4, NPCIL, Karwar 581 400, India

Received 25 October 2013; revised 24 February 2014; accepted 11 July 2014

The effective atomic numbers, Z_{Pleff} and half value layer, HVL for lead-free shielding materials, tungsten compounds and alloys for gamma ray over an energy range from 1 keV to 100 GeV have been calculated in the present work. As well as the macroscopic effective removal cross-sections (Σ_R) for fast neutron (2-12 MeV) had been calculated. From results, it has been concluded that HVL and Σ_R values of the tungsten alloys are half of the lead shielding material. The values of Z_{Pleff} have been compared with possible experimental results, and good agreement has been observed. We found that the theoretical values of Z_{Pleff} of the tungsten alloys agree with experiment where the ratio of atomic number of the elements is near to unity and shows weak energy dependence for ratio away from unity. The tungsten alloys show better the degree of protection against gamma ray and neutron as compared to the lead, resulting in an overall reduction in thickness and volume of the shielding material. The tungsten alloys containing gold, silver, platinum, copper, nickel and iron were found superior lead-free radiation shielding materials. This study is expected to be useful for design and application of lead-free radiation shielding for nuclear engineering, radiation application to control lead hazard.

Keywords: Toxic, Shielding, Fusion, Lead-free, Protection, Weak dependency, Tungsten-gold

1 Introduction

Radiation protection is at the "cutting edge" of nuclear engineering and design where radiation exposure is controlled by various passive and active lead-based techniques. Conventional radiation shielding is widely used to offer protection against exposure to ionizing radiation because of its physical properties and ease casting, fabrication and malleability. It takes many forms; including lead impregnated rubber, glass, powder and leadpolyethylene-boron mixture for protection against gamma and neutron radiation and may form temporary or permanent arrangement of shielding.

Over the past years, a great deal of concern has been expressed about the toxicity of the lead¹⁻³. The lead toxicity in children as well as adults has been studied and well documented. Corrosion in lead sheets of structural shielding walls has also been reported⁴. In view of this, an environment friendly non-toxic "lead-free" material is a challenging requirement for radiation shielding and protection. Various investigators have studied the gamma ray interaction parameters in silicate glass⁵, industrial As a result, we have studied gamma ray and neutron shielding efficiency of "lead-free" shielding materials, tungsten compounds and alloys (given in Table 1). Tungsten is being used for X- and gamma ray shielding, shielding glasses, in fusion reactor and around scintillation crystals¹⁴⁻¹⁸. In this work we have calculated the effective atomic numbers and half value layer of tungsten compounds and alloys for gamma ray over the energy range 1 keV to 100 GeV and macroscopic effective removal cross-sections for fast neutrons (2-12 MeV). The objective of the study is to determine the shielding efficiency of "lead-free" compounds and alloys, and comparison with lead shielding. This study should be useful for design of "lead-free" radiation shielding to control the lead hazard in nuclear industries.

2 Material and Method

Table 1 lists the tungsten compounds and alloys under present study. The mass attenuation coefficients,

byproduct⁶, tungsten-copper alloys⁷, alloys^{8,10-12} and carbon and stainless steels¹³. The effective atomic numbers of carbon and stainless steels¹³ ascertain for computation of gamma ray interaction parameters for alloys.

^{*}Corresponding author (E-mail: kudphyvps@rediffmail.com)

Compounds/Alloy	Chemical formula/Percentage composition		
Tungsten oxides Tungsten carbides Lead Tungstate (PWO) Cadmium Tungstate	WO ₂ , WO ₃ , W ₂ O ₅ , W ₄ O ₁₁ WC, W ₂ C PbWO ₄ CdWO ₄		
(CWO)			
Tungsten-Copper	W50-Cu50, W55-Cu45, W60-Cu40, W65-Cu35, W70-Cu30, W75-Cu25, W80-Cu20, W85-Cu15, W90-Cu10 and W93-Cu7		
Tungsten-Nickel-Iron	W85-Ni10.5-Fe4.5, W90-Ni7-Fe3, W90-Ni6-Fe4, W91-Ni6-Fe3, W92-Ni5-Fe3, W92.5-Ni5-Fe2.5, W93-Ni4-Fe3, W93-Ni4.9-Fe2.1, W93-Ni5-Fe2, W95-Ni3-Fe2, W95-Ni3.5-Fe1.5, W96-Ni3-Fe1, W97-Ni2-Fe1.5, W96-Ni3-Fe1,		
Tungsten-Nickel-Copper	W97-N12-re1 and W98-N11-re1 W90-Ni6-Cu4, W90-Ni5-Cu5, W90-Ni7-Cu3, W93-Ni4.9-Cu2.1, W93-Ni4-Cu3, W95-Ni3-Cu2, W95-Ni3.5-Cu1.5 and W96-Ni2-Cu2		
Tungsten-Silver	W50-Ag50, W65-Ag35, W74-Ag26 and W90- Ag10		
Tungsten Steel	W: 23, C: 0.77, Cr: 4.25, V: 1.6, Co: 11, Fe: 59.38		
High Speed Steel	W:18, Fe:75, Cr:6, V:0.3, C:0.3		
Tool Steel	W:17, Fe:66, Cr:10, C:3.2, Mo:2.5		
Ferrotungsten	W:78, C:1, Fe;21		
Ultimet	W: 2, Co: 54, Cr: 26, Ni:9, Mo:5, Fe:3, Mn:0.8, Si:0.08, C: 0.06		
Hastelloy	W: 4, Co: 2.5, Cr: 16, Mo: 16, Fe: 5, Si: 0.08, Mn: 1, C: 0.01, V: 0.35, Ni: 55.06		
Tungsten- Platinum	W15- Pt85 and W10- Pt90		
Tungsten- Gold	W50-Au50		
Tungsten-Nickel-Iron- Molybdenum	W: 93, Ni: 2, Fe: 2, Mo: 3		

Table 1-Tungsten compounds and alloys for shielding materials

 μ/ρ of the tungsten compounds and alloys have been computed by the mixture rule $((\mu/\rho) = \sum_{i}^{n} w_i (\mu/\rho)_i)$ where w_i is the proportion by weight and $(\mu/\rho)_i$ is

mass attenuation coefficient of the *i*th element taken from standard tables of XCOM program¹⁹. This calculates gamma ray interaction cross-sections of elements, compounds and mixtures at energies 1 keV to 100 GeV. The XCOM program is converted to windows platform is known as WinXcom²⁰.

2.1 Effective atomic numbers

The effective atomic numbers, Z_{Pleff} of the tungsten compounds and alloys can be calculated by various methods. In this work we have calculated Z_{Pleff} by total photon interactions formula²¹ $(Z_{Pleff} = \sum_i f_i A_i (\frac{\mu}{\rho})_i / \sum_j f_j \frac{A_j}{Z_j} (\frac{\mu}{\rho})_j$), where f_i is molar fraction in the mixture or compound, μ/ρ is mass attenuation coefficient of i^{th} element, A is atomic weight, Z is atomic number and the ratio A/Z is approximately constant.

2.2 Half value layer

The half value layer, HVL is the thickness of the shielding material required to reduce the intensity of transmitted radiation to half of the incident upon it. The intensity is reduced by gamma interaction process, photoelectric absorption, Compton scattering and pair production. The HVL (HVL= $ln2/\mu$) is derived using linear attenuation coefficients, μ . The μ is derived by multiplication of μ/ρ and the density of the material.

2.3 Macroscopic effective removal cross-section of fast neutron

The probability per unit length of a neutron losing all its energy above thermal is called the fast neutrons removal cross-section Σ_R (cm⁻¹). The effective removal cross-section for compounds and homogeneous mixtures may be calculated from the value Σ_R or Σ_R/ρ for various elements in the compounds or mixtures²² by the general formula ($\Sigma_R = \sum_i \rho_i (\Sigma_R / \rho)_i$) where ρ_i

and Σ_R / ρ are the partial density (the density as it appears in the mixture) and the mass removal cross-section of the *i*th constituent, respectively. The Σ_R / ρ (in cm²/g) values of elements have been taken from Kaplan and Chilton^{23,24}.

2.4 Errors

The errors in the present method for calculating μ/ρ is about 1% for low atomic number elements (1 < Z < 8) in the energy region 30 keV to 100 MeV²⁵. Below 30 keV and above 100 MeV, the errors are as much as 5-10 %. For elements molybdenum (Z > 42) through uranium the error at low energies (10 keV to 1 MeV) ranges from 1-2 % from away from absorption edge to 5-10 % in the vicinity of absorption edge. Medical, biological and industrial, applications and transportation tend to use sources with photon energies above 5 keV. The values for effective neutron removal cross-sections calculated in the present work are accurate within 10% of the experimental values investigated for aluminum, beryllium, graphite, hydrogen, Iron, oxygen lead, boron carbide etc²⁶. Therefore the errors in our results may not have any practical impact.

3 Results and Discussion

Values of the effective atomic numbers and half value layers of the tungsten compounds and alloys as a function of photon energy from 1 keV to 100 GeV are shown in Figs. 1 and 2, respectively. Table 2 shows the comparison of theoretical values with experiment results of some alloys. Table 3 provides the calculated fast neutron removal cross- section of tungsten compounds and alloys.

3.1 Effective atomic numbers

The variations of the effective atomic numbers, Z_{Pleff} of the selected tungsten compounds and alloys as a function of photon energy are shown in Fig. 1 (a-h). From the graphs it is evident that Z_{Pleff} varies with photon energy, with a peak in the proximity of the *K* shell absorption edges of the high atomic number elements, a minima at inter-mediate energy (0.3 < E < 3 MeV) and then becomes constant at high energy (>100 MeV). These variations are due to the different photon interaction mechanisms, namely photoelectric absorption, Compton scattering and pair production. The variation is large below 100 keV where photoelectric absorption dominates and above 3 MeV

where pair production becomes the major interaction mechanism but varies little between 0.3 to 3 MeV where Compton scattering dominates. The alloys containing high atomic number elements show higher values of Z_{Pleff} as seen in Fig. 1 (h). The highest value of Z_{Pleff} across the entire range of energies for the lead (containing low antimony alloy) (Pb: 96.69 and Sb: 3.1) was also plotted for comparison of Z_{Pleff} (Fig. 1(h)).

The variation of Z_{Pleff} with energy can be explained by the dependence of the total interaction crosssection on atomic number and photon energy. This is proportional to $Z^{4.5}/E^{3.5}$ for photoelectric absorption, Z/E for Compton scattering and Z^2 for pair production. The Z_{Pleff} for oxides and carbide of tungsten were found lowest in Compton scattering region (Fig. 1 (a-b)). The Z_{Pleff} of lead tungstate was found higher than cadmium tungstate. The tungsten carbides are superior gamma ray shielding than tungsten oxides (Fig. 1 (a-b)). Fig. 1 (c, d, e and f) shows identical behavior as a function of photon energy with the absolute magnitude of Z_{Pleff} increasing with theweight fraction of tungsten in the alloy. If the

Table 2—Comparison of theoretical values and experimental results of effective atomic numbers of lead and tungsten-copper alloy at different energies

Energy (keV)	Effective atomic numbers							
-		Lead		W65-Cu35		W60-Cu40		
	Exp. ^a	Present Work	Energy (keV)	Exp. ^b	Present Work	Exp ^b	Present Work	
81	81.66	80.74	121.8	59.00	71.65	56.90	71.13	
356	80.23	81.54	244.7	58.10	69.02	55.90	67.99	
511	80.20	81.41	344.3	56.40	65.06	54.10	63.43	
661.1	80.23	81.32	778.9	51.70	61.51	49.30	59.49	
835	79.90	81.25	867.4	51.10	61.10	48.70	59.05	
1274	80.37	81.15	964	50.60	60.74	48.00	58.66	
1332	79.88	81.15	1085.8	50.10	60.38	47.70	58.27	
			1112.1	50.00	60.31	47.60	58.19	
			1408	48.40	59.93	46.90	57.79	
^a Kateb <i>et al.</i> ^{9; b} N	Murty ⁷							
	Table	3—Macroscopic fast	neutron removal cr	oss-section c	of tungsten compound	ds and alloys		
Compounds	/Alloy		$\Sigma_R (\mathrm{cm}^{-1})$	Compound	ls/Alloy		$\Sigma_R (\mathrm{cm}^{-1})$	
Tungsten Ox	kide (W_4O_{11})		0.1803	High Spee	d Steel		0.1554	
Tungsten Ca	arbide (W_2C)		0.0832	Tool Steel			0.1546	
Lead Tungst	tate (PWO)		0.1231	Ferrotungs	ten		0.1629	
Cadmium Tu	ungstate (CW	⁷ O)	0.1357	Ultimet			0.1645	
Tungsten-Co	opper		0.1932	Hastelloy			0.1521	
Tungsten-Ni	ickel-Iron		0.2024	Tungsten-	Platinum		0.2092	
Tungsten-Ni	ickel-Copper		0.2093	Tungsten-	Gold		0.2079	
Tungsten-Si	lver		0.1823	Tungsten-I	Nickel-Iron- Molybd	enum	0.1982	
Tungsten Ste	eel		0.2752	Lead			0.1186	

Fig. 1—The variation effective atomic numbers of tungsten compounds, alloys and lead in the photon energy ranging 1 keV to 100 GeV

Fig. 2—The variation of half value layer of tungsten compounds, alloys and lead in the photon energy range 1 keV to 100 GeV

low atomic number elements are reduced, the alloys become less dependent on gamma ray energy higher energies.

In some alloys the variation of Z_{Pleff} with photon energy differs from compounds of the same heavy elements (Fig. 1 (h)). The presence of low atomic number elements in the compounds (*e.g.*, oxygen) makes a smaller contribution to the overall atomic cross-section, which consequently is less than that of an equivalent the alloy. The multiple peaks in the graphs in the low energy region dominated by photoelectric absorption are due to the *K* and *L* absorption edges of the elements in these compounds or alloys. The *K* and *L* absorption edges (in keV) are shown in the figures.

The Z_{Pleff} of the alloys of tungsten-platinum, tungsten-gold and lead (Fig. 1 (h)) show weak energy dependence in the energy regions dominated by photoelectric absorption and Compton scattering since they contain elements of similar atomic numbers. Small amounts of low atomic number elements change the Z_{Pleff} in the photoelectric absorption region but much less in the energy regions dominated by Compton scattering and pair production. However alcohols containing low atomic number elements (H, C and O) show a strong dependence on photon energy ²⁷.

3.2 Half value layer

Figure 2 (a,b) shows the half value layer, HVL of tungsten compounds and alloys along with lead as a function of photon energy in range 1 keV to 100 GeV. The HVL for all the compounds and alloys considered

here shows maxima in the photon energy region dominated by Compton scattering. It is evident that HVL of tungsten compounds and alloys containing significant amounts of low atomic number and low density elements (oxides, carbides, iron) is larger than for lead at all photon energies. These tungsten compounds and alloys would make inferior shields. Figure 2b show that the HVL as a function of photon energy for two element and multi-elements alloys containing a high proportion of tungsten and other high atomic number elements. With the exception of ferrotungsten, all have lower HVL's than lead and would make superior shielding. From Fig. 2 (b), it is to be noted that HVL values of W50-Au50 are the lowest. Therefore, the highest gamma ray shielding efficiency is provided by a 50-50 alloy of tungsten and gold though it may be expensive shielding.

3.3 Comparison with experimental results

This study of Z_{Pleff} of tungsten-copper and lead alloys has been compared with experimental results^{7,9} and the results are listed in Table 2. Our theoretical estimate of the Z_{Pleff} of the tungsten-copper alloy slightly overestimates the experimental values, by as much as 25% in the energy region dominated by photoelectric absorption, but is in good agreement with experiment for the lead⁹. The experimental results do not show much dependence of the Z_{Pleff} on gamma ray energy. The slight disagreement with experimental values of the effective atomic numbers for tungsten-copper alloys may be due to the energy region selected falling between the influence of photoelectric absorption and Compton scattering, the latter being much less dependent on atomic number. Also the atomic numbers of the lead (Pb: 82 and Sb: 51) are much closer in magnitude than for the tungsten-copper alloy (W: 74 and Cu: 29). It was observed that the theoretical Z_{Pleff} values of the tungsten alloys completely agree with experiment where ratio of atomic numbers of the elements is unity. The variation in the theoretical and experimental values of effective atomic number is due to non-unity of the ratio of atomic numbers consisting of one high- and one low-atomic number element.

3.4 Macroscopic fast neutron removal cross-section

The effective macroscopic fast neutron removal cross-section Σ_R (cm⁻¹) of the tungsten compounds and alloys is given in Table 3. It is highest for tungsten-steel. The Σ_R value of lead is very low (0.1186 cm⁻¹) as compared with tungsten alloys. The presence of gold or platinum in the tungsten alloy is superior to the presence of iron and these are at least twice as effective as lead as a shield against fast neutrons. Tungsten steel shows very high Σ_R values. The Σ_R values of the tungsten alloys are of order of stainless steel and copper alloys ²⁸.

4 Conclusions

This work has shown that tungsten compounds and alloys are twice as effective neutron shields as lead shielding material. They are also better shields than lead against gamma ray over the photon energy range from 1 keV to 100 GeV since their half value layer is less. The effective atomic number of an alloy of tungsten with a low atomic number element is not greatly affected by the weight fraction of the lighter element.

References

- 1 Hulbert S M & Carlson K A, J Nucl Med Technol, 37(3) (2009) 170.
- 2 CAS ID: 7439-92-1, Available at http://wwwatsdrcdcgov/.
- 3 Millstone E & Russell J, J R Soc Health, 115(6) (1995) 347.
- 4 Schick D K, Casey R N, Sim L H & Siddle K J, Australas Radiol, 43 (1999) 47.

- 5 Natthakridta C, Jakrapong K, Chittra K, Weerapong C, Artorn P & Pichet L, *Prog Nucl Sci Technol*, 1 (2011) 106.
- 6 Koutroubas S K, *J Radiol Prot*, 12 (1992) 37.
- 7 Murty V R K, Radiat Phys Chem, 71 (2004) 667.
- 8 Gurmel S M & Makhan S, Appl Radiat Isot, 42 (1991) 509.
- 9 El-Kateb A, Rizk R & Abdul-Kader A, Ann Nucl Ener, 27 (2000) 1333.
- 10 Han I & Demir L, J X-ray Sci Technol, 18 (2010) 36.
- 11 Subrahmanayam V V V, Narsimha M K & Narayan D G S, *Nuovo Cimento B*, 42 (1997) 226.
- 12 Akkurt I, Chinese Phys Lett, 24 (2007) 2812.
- 13 Singh V P & Badiger N M, Radioprotection, 48 (2013) 431.
- 14 Aghamiri M R, Mortazavi S M J, Tayebi M, Mosleh-Shirazi M A, Baharvand H, Tavakkoli-Golpayegani A & Zeinali-Rafsanjani B, *J Biomed Phys Eng*, 1(2011) 17.
- 15 Masayuki Z, Koichi C, Masaaki T, Yohei I, Ayako E & Shogo Y, *Radiat Prot Dosim*, 131 (2008) 531.
- 16 Subbalakshmi P & Veeraiah N, J Non-Cryst Solids, 298 (2002) 89.
- 17 Kenneth O, Robert T & Don B, The effective use of Tungsten as shielding materials in nuclear applications, ISOE Int ALARA Symp organized by the European Technical Centre Lyon, France, 24-26 March 2004, Available on http://wwwisoe-networknet/indexphp/symposium-mainmenu-113/proceedingshtml.
- 18 Hipaux R, Korzhik M V, Borisevich A, Lecoq P & Dujardin C, Behaviour of PWO scintillators after high fluence neutron irradiation, Int Conf on inorganic scintillators and their applications, SCINT 2005, Alushta, Crimea, Ukrain (2005) 19.
- 19 Berger M J & Hubbell J H, XCOM: Photon Cross Sections Database, Web Version 12, available at http:// physicsnistgov/xcom, National Institute of Standards and Technology, Gaithersburg, MD 20, 899, USA (1987/1899).
- 20 Gelward L, Guilbert N, Jensen K B & Levring H, J Radiat Phys Chem, 71 (2004) 653.
- 21 Manohara S R, Hanagodimath S M, Thind K S & Gerward L, Nucl Instr Meth Phys Res, 266 (2008) 3906.
- 22 Wood J, *Computational methods in reactor shielding*, (Pergamon Press, New York), 1982.
- 23 Kaplan M F, Concrete radiation shielding Longman scientific and technology, (Lonman Group UK, Limited, Essex, England), 1989.
- 24 Chilten A B, Shultis J K & Faw R E, *Principle of radiation shielding*, (Prentice-Hall, Englewood Cliffs, NJ), 1984.
- 25 Hubbell J H, Photon cross sections, attenuation coefficients and energy absorption coefficients from 10 keV to 100 GeV, NSRDS-NBS, 29, 1969.
- 26 Samuel G & Alexander S, *Nuclear Reactor Engineering*, 4th ed, 1 (2004).
- 27 Singh V P, Badiger N M, Nucl Technol Radiat Protect, 28 (2013) 137.
- 28 Singh V P & Badiger N M, Ann Nucl Energy, 64 (2014) 301.