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An expression for the volume dependence of thermal pressure is formulated using basic thermodynamic identities. It is 

applied to aluminium metal for which sufficiently reliable data are available for comparison. The calculations are performed 

using the two models viz. the Thomas-Fermi model and the Stacey-Davis model. It is found that the values of thermal 

pressure for m=6 in both models are almost the same. Thermal pressure increases with the increase in pressure. The 

anhormonic effects are found to be dominant below about (P=60 GPa). While above this, harmonic effects become 

dominant. The anharmonic effects are very important at low pressures and become less significant as the pressure is 

increased. Values of thermal pressure have been calculated by taking into account the effect of the change in volume on 

melting. The results obtained for aluminium indicate that the present model is capable of predicting the volume dependence 

of thermal pressure, which is found to be in good agreement with the available data for a wide range of pressures and temperatures  
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1 Introduction 

 The anharmonic behaviour can be studied by 

determining the volume dependence of thermal 

pressure which is responsible for the volume thermal 

expansion of a solid. The anharmonic term including 

in the Helmholtz free energy (F) affects all 

thermodynamic and thermoelastic properties of 

materials which are determined by the derivatives of 

F. The potential energy curve of the interatomic 

interactions in a solid departs from harmonic 

behaviour in the high temperature region approaching 

the melting temperature
1
. It is always interesting to 

know the sources and measure for anharmonicity, 

particularly, in metals; however, inclusion of true 

anharmonicity like vacancy formation, phonon-

phonon interaction, etc in the equation of state 

through Grüneisen parameter (γ). The anharmonic 

effect is related to the deviations from the linearity of 

the thermal pressure versus temperature plot. 

Deviation from the linearity of the thermal pressure in 

very high temperature region is accepted by various 

researchers
2-6

. Thermal pressure is defined as
7
: 

 

th

V

F
P

T

∂� �
= −� �

∂� �
 …(1) 

 

and  

th thP E
V

γ
=  …(2) 

 

where γ is the Grüneisen parameter 

( )ln lni T
Vω= −∂ ∂  which shows the measurement of 

anharmonicity due to lattice vibrations and thE is 

thermal energy which includes the anharmonic effects 

due to thermal vibrations of atoms.  

 A widely used method of incorporating the 

temperature contribution to the equation of state is to 

add at each temperature the thermal pressure thP , a 

term that accounts for the isochoric temperature effect 

on pressure
8-10

. The general expression for an 

equation of state
7
 is: 
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equation: 
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α is volume thermal expansivity  
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TK  is isothermal bulk modulus  
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Anderson
7
 integrated Eq.(4) to evaluate  

 

( , ) ( , )th th thP P T V P Tr V∆ = − = )( rT TTK −α  …(7) 
 

where rT  is the reference temperature equivalent to 

300K. 

 One can use the following thermodynamic identity
7
 

to compute the values of volume dependence of 

thermal pressure. 
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On integration of Eq.(8) and using Eq.(7), we get: 
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where 0α  and 0K  are the values of volume thermal 

expansivity (α ) and isothermal bulk modulus ( TK ) 

at atmospheric pressure, respectively and at a 

reference temperature. Tδ  is isothermal bulk 

modulus: 
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and TK ′  is the first order pressure derivative of 

isothermal bulk modulus: 
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 In the present paper, we formulate an expression to 

evaluate values of volume dependence of thermal 

pressure for aluminium. Aluminium (Al) is an 

important metal due to its simple s-p nearly-free 

electronic structure calculations. and has been the 

subject of numerous experimental and theoretical 

investigation. Aluminium does not have any d or f 

electrons which will contribute to the thermodynamic 

properties either magnetically or electronically, so it 

is a good choice to establish criteria based only on 

vibrational contributions. It is found that the values of 

thermal pressure are very close to those values 

reported in the literature11,12
.  

2 Theoretical Model 

 Sharma and Sharma
13

 used the following 

expression for the volume dependence of Tδ . 
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where 
0
Tδ  and Tδ ∞

 are the values of Tδ  at 0P =  and 

at P → ∞  or 0V → , respectively and the exponent m 

is an adjustable parameter. 

 Srivastava and Sinha
14

 considered the following 

expression for first pressure derivative of isothermal 

bulk modulus. 
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where '
0K  and 

'
K∞ are the values of 

'
TK , respectively 

at 0P = and at P → ∞  or 0V → . 

Equation (9) at mT T= , the melting temperatures 

becomes; 
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Using Eqs (9,12-14), we get the following 

relationship: 
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where A, B and C are constants for given material. We 

have 
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 One can find the values of ( ) ( ), ,0m rV T P V T  in 

Eq. (15) from the following expression: 
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 Kushwah et al
15

. obtained the following isobaric 

equation of state: 
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We can predict the values of ( ),rT Pα  through the 

following relationship
13

: 
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where ( ),0rTα  is the volume thermal expansivity at 

the reference temperature rT  and at zero pressure. We 

can easily compute the values of ( ) ( ), ,0m rV T P V T  

through Eq. (19-21). The values of volume 

dependence of thermal pressure are calculated 

through Eq. (15). 

 

3 Results and Discussion 

 

3.1 Values of Tδ
∞

 and 
'K∞  

A well known thermodynamic identity 
16

 is given by: 
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where 
'
TK  is first order pressure derivative of 

isothermal bulk modulus TK . 
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and q is second Grüneisen parameter.  
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and 
'
TC  is the volume derivative of heat capacity at 

constant volume along isotherm.  
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 At infinite pressure i.e., P → ∞  or 0V → , Eq. (22) 

takes the form: 

 
' '1T TK q Cδ

∞ ∞∞ ∞= + − +  …(26) 

 

q∞ tends to zero
16

 and '
TC

∞
tends to zero

17 
at P → ∞  or 

0V → , now Eq. (26) becomes: 
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 If we Follow the Thomas-Fermi model
18-21

, i.e., 
' 5 3K∞ =  then Eq. (27) results into 2 3Tδ

∞
= . While 

for the Stacey-Davis model
22

 i.e., 
' 2.652K∞ =  which 

is calculated
22 

through ' '
00.6K K∞ =  where '

0K is the 

first order pressure derivative of isothermal bulk 

modulus at rT  and zero pressure, now Eq. (27) gives 

1.652Tδ
∞

= . The values of Tδ
∞

 for both models
18-22

 

satisfy the constraint
23 '0

T
Kδ

∞ ∞< < . Input 

parameters used in calculations are presented in  

Table 1. The predicted thermal pressure of aluminium 

through Eq. (15) for both models i.e., 
' 5 3K∞ =  or 

2 3Tδ
∞

=  and 
' 2.652K∞ =  or 1.652Tδ

∞
=  for the 

different values of m such as 1, 3, 6, 8, 10 and 12. 

According to the Thomas-Fermi model Tδ ∞
 and 

'
K∞  

are the same for all the materials, while according to 

the Stacey-Davis model Tδ ∞
 and 

'
K∞  depend on the 

Table 1 — Input parameters11,31-33 used in calculations 

 

Parameter Values 

 

0Tδ  4.8 δ 

K0 IGPa) 77.2 

α0 (10−1K−1) 6.9 

K′0 4.42 
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material. This behaviour is similar to that found for 

the Grüneisen parameters γ ∞ and λ∞  (Ref. 24). 

 
3.2 Effect of m parameter on thermal pressure 

 P-V relationship for Al at 300K based on 

experimental data is shown in Fig. 1. Values of 

thermal pressure obtained through Eq. (15) along with 

those values obtained by Hanstrom and Lazor
11

 and 

Boehler and Ross
12

 for the sake of comparison, is 

shown in Fig. 2. It is apparent from Fig. 1 that thermal 

pressure increases with the increase in m . It also 

reflects that thermal pressure increases with increase 

in pressure. As the value of m increases, the values of 

thermal pressure increases throughout the wide range 

of pressure. It explores that both models give almost 

the same results for m=6 at every pressure and near to 

those values of thermal pressure obtained by 

Hanstrom and Lazor
11

 and Boehler and Ross
12

. Values 

 

 

Fig. 1 — Pressure versus volume for aluminium at reference temperature based on experimental data11,12 

 

 
 

Fig. 2 — Pressure dependence of thermal pressure at different values of m for two models (the Thomas-Fermi model and the  

Stacey-Davis model) at reference temperature Tr for aluminium 
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of thermal pressure for m>6 deviate more than m>6 

from data
11,12

 at higher pressures. It is also observed 

from Fig. 2 that the values of thermal pressure for 

above m>6 come closer to each other throughout the 

pressure range. At constant temperature, thermal 

pressure increases with the increase in pressure by 

virtue of the reduction in amplitude of atomic 

vibrations..  
 

3.3 Anharmonic effects in thermal pressure 

 Figure 2 shows the non-linearity at low pressures. It 

could be seen below about (P=60 GPa) for the metal 

under consideration, however, for (P>60 GPa) 

inearity takes place. It is clear from Eq. (2) that there 

must be anharmonicity in thermal pressure. Thermal 

pressure in Eq. (2) is the function of Grüneisen 

parameter γ (=−∂ln ωi/∂ln V)T γ  a and thermal energy 

Eth. Out of which Grüneisen parameter is the crucial 

measurement of anharmonicity. This anharmonicity is 

arised from strong asymmetry of atomic vibrations. 

At low pressures, anharmonic effects are higher and 

decrease with increase in pressure. The values 

obtained through Eq. (15) are consistent with those 

explanations given by many researchers
25-29

. Isaak  

et al.
29

 and Karki et al.
30 

also explained that these 

effects are limited to low pressure. This is proved by 

Hardy theory
25

, which shows that the application of 

pressure extends the boundary between the 

anharmonic and the classical regime to higher 

temperatures. Thus, anharmonic effects disappear 

with increasing P. 
 

4 Conclusions 

 We have thus formulated an Expression (Eq. 15) 

using basic thermodynamic identities for estimating 

the values of volume dependence of thermal pressure. 

The present model has been applied to aluminium. 

The results have been obtained for different values of 

parameter m  viz. 1, 3, 6, 8, 10, 12 and reasonably 

good agreement with the available data
11,12 

has been 

obtained for m>6. This is true for the Thomas –Fermi 

model as well as for the Stacey-Davis model. For 

m>6, both the models yield almost identical results. 

For m>6, the results obtained from the two models are 

also quite close to each other. It should be mentioned 

that values of m>6, the results based on the two 

models deviate significantly with each other, and also 

deviate from the data. It is also revealed that the 

anharmonic effects are more significant below 60 GPa 

and the anharmonicity is suppressed at higher 

pressures.  
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