Indian Journal of Pure & Applied Physics Vol. 53, September 2015, pp. 585-589

# Lattice dynamical, elastic properties and sound velocities of $\gamma$ -Si<sub>3</sub>N<sub>4</sub>

A K Kushwaha

Department of Physics, K N Govt P G College, Gyanpur, Bhadohi 22 1304, India

E-mail: akkphys\_bu@yahoo.com

Received 14 September 2014; revised 20 January 2015; accepted 14 May 2015

Lattice dynamical, elastic properties and sound velocities of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> have been calculated by using a proposed six parameter bond-bending force constant model. In this model, the potential energy of the compound  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> is expanded by using the Taylor's expansion in the harmonic approximation. The proposed theoretical model is used to calculate the zonecentre phonon frequencies, elastic properties, sound velocities and Debye characteristic temperature for  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> and compared our results with experimental and previously calculated results available in the literature. It is found to be in good agreement with the experimental results. The significant outcome of the present work is that the octahedral bonding is stronger than that of the tetrahedral bonding.

Keywords: γ-Si<sub>3</sub>N<sub>4</sub>, Octahedral, Tetrahedral, Zone-centre, Phonon

#### **1** Introduction

Silicon nitride (Si<sub>3</sub>N<sub>4</sub>) is an important structural and ceramic material with many applications such as in micro-electronics, optoelectronics, mechanics, automobile, solar cells and tools for ceramic cutting and processing<sup>1</sup> due to its outstanding high temperature and oxidation resistant properties. Silicon nitride has been described at least in four different crystalline polymorphs as  $\alpha$ -,  $\beta$ -,  $\gamma$ - and  $\delta$ -Si<sub>3</sub>N<sub>4</sub>. In which  $\alpha$ -and  $\beta$ -Si<sub>3</sub>N<sub>4</sub> have hexagonal structure<sup>2</sup> with almost the same density of 3.2g/cm<sup>3</sup>. The third polymorph of  $Si_3N_4$  has cubic structure ( $\gamma$ -Si<sub>3</sub>N<sub>4</sub> = c-Si<sub>3</sub>N<sub>4</sub>) which is discovered by Zerr *et al*<sup>3</sup>. at high pressure. High pressure experiments on  $\beta$ -Si<sub>3</sub>N<sub>4</sub> at room temperature led to the formation of fourth polymorph of  $Si_3N_4$ , i.e.,  $\delta$ - $Si_3N_4$  with tetragonal symmetry4 in 2001.  $\delta$ -Si<sub>3</sub>N<sub>4</sub> is most likely a metastable intermediate between  $\beta$ -and  $\gamma$ -Si<sub>3</sub>N<sub>4</sub>.

In recent years,  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> has much attraction due to several reasons. The  $\alpha$ -and  $\beta$ -phases of Si<sub>3</sub>N<sub>4</sub> have hexagonal structure in which the N-atoms are tetrahedrally coordinated with the Si-atoms but in the  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> the N-atoms are tetrahedrally as well as the octahedrally coordinated with the Si-atoms, which is very rare in binary compounds. This introduces some different physical properties of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> from other polymorphs of Si<sub>3</sub>N<sub>4</sub>. Therefore, the nature of bonding in the compound  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> is very important. The  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> is a semiconductor with direct band gap<sup>5-8</sup> of about 3.45 eV and hence, it has potential applications in optical and electronic devices in addition to the structural applications<sup>9-11</sup>.

A full chacterization of the physical properties of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> is important for applications. The lattice dynamical calculations are one of the important tools in understanding the thermodynamical, structural, bonding and numerous other solid state properties. Phonons, being one of the elementry excitations of solids, provide complete information about the interatomic forces in solids. The interatomic forces are of paramount importance as their study leads to study an understanding of bonding and the structural properties of compounds. All the properties depend upon the constituent atoms of the crystal and can be obtained with the help of lattice dynamical calculations. Recently, Fang et  $al^{12}$ . have done the lattice dynamical calculations for  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> using the first principles molecular dynamics<sup>13-15</sup> computer code VASP (Vienna ab initio simulation program).

Wang *et al*<sup>16</sup>. have investigated the bulk modulus and some thermodynamic properties of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> using the analytic mean field method. Kuwabara *et al*<sup>17</sup>. have obtained the phonon dispersion curves, phonon DOSs, bulk moduli, thermal expansion coefficients, and heat capacities of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> using density functional theory (DFT) calculations<sup>18</sup> were performed using VASP code<sup>14,15</sup>. Electron-ion interaction was represented by the projector augmented wave (PAW) method<sup>19</sup> and the local density approximation<sup>20</sup> (LDA). Dong *et al*<sup>21</sup>. have optimized the ground state  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> in the framework of the first-principles method based on the Kohn–Sham equation<sup>18</sup>. The self-consistent total energy calculations are performed with the plane-wave pseudo-potential (PW-PP) method<sup>22</sup>. The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof<sup>23</sup> is used for the exchange–correlation function.

## 2 Crystal Structure and Potential Model

The crystal structure of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> is classified as HI<sub>1</sub> space group  $O_h^7$  (Fd3m), is cubic and consist of a slightly distorted cubic close-packed arrangement of N-atoms with the Si-atoms occupy 1/8 of the tetrahedral and 1/2 of the octahedral interstices, respectively<sup>24</sup> (normal spinel). The crystal structure of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> is shown in Fig. 1. The bond length between (Si-N)<sub>tet</sub>, (Si-N)<sub>oct</sub> and N-N is 1.778, 1.871 and 2.558 Å, respectively and the angle between (Si-N)<sub>tet</sub>, and (Si-N)<sub>oct</sub> is 109.47° and 86.58°, respectively<sup>25</sup>. Group theoretical treatment of the optical zone-centre ( $\Gamma$ =0) phonon modes are known to be resolved into 17 fundamental lattice vibration modes<sup>26-28</sup>. The representation of these modes at zero wave-vectors is expressed as:

$$\Gamma = A_{1g} + E_g + 2E_u + 2A_{2u} + F_{1g} + 3F_{2g} + 5F_{1u} + 2F_{2u} \qquad \dots (1)$$

where  $A_{1g}$ ,  $E_g$  and  $3F_{2g}$  modes are Raman-active and  $F_{1u}$  modes are infrared-active modes. In the  $5F_{1u}$  modes, one mode with frequency zero is translation mode, and the other four modes are observed in the infrared region. There is one Raman-inactive mode,  $F_{1g}$ , while  $2A_{2u}$ ,  $2E_u$  and  $2F_{2u}$  are infrared-inactive modes.

In the present paper, the potential energy  $\phi$  of the  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> can be expended by using Taylor's series and can be written as:



Fig. 1 — Crystal structure of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub>

$$\phi = \sum_{lmm} \left[ \frac{1}{r} \left( \frac{d\phi}{dr} \right)_{|r| \neq |r_k|} \left\{ r_{lmm}^o (S_{lmm} - S_o) + \frac{1}{2} |S_{lmm} - S_o|^2 \right\} + \frac{1}{2} \left\{ \frac{1}{r} \frac{d}{dr} \left( \frac{1}{r} \frac{d\phi}{dr} \right) \right\}_{|r| \neq |r_k|} \left\{ r_{lmm}^o (S_{lmm} - S_o) \right\}^2 \right]$$
 ...(2)

where  $S_0$  and  $S_{lmn}$  are the displacements of the central ion and its first neighbour ions from their equilibrium position  $r_{lmn}^0$  represent the position coordinates of neighbouring ions in equilibrium. l, m, n, represent the direction cosines of the line joining the central ion and a nearest neighbour ions.  $|\mathbf{r}_k|$  is the nearest neighbour distance.

Let  $A_k$  be the bond-stretching force constant defined by the second derivative of the potential energy  $\phi$ :

$$\frac{e^2}{V}A_k = \frac{d^2\phi}{dr^2}\Big|_{|r|=|r_k|} \qquad \dots (3)$$

The bond-bending force constant  $B_k$  is expressed as the first derivative of the potential energy  $\phi$ :

$$\frac{e^2}{V}B_k = \frac{1}{r}\frac{d\phi}{dr}\Big|_{|r|=|r_k|} \qquad \dots (4)$$

where k = 1, 2, 3 for first, second and third neighbours, respectively.

#### **3 Elastic Constants and Related Properties**

Elastic constants for  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> are calculated from the dynamical matrix  $D_{\alpha\beta}(\mathbf{q}, \mathbf{k}\mathbf{k}')$  by expanding it as a function of q in the neighbourhood<sup>29</sup> of  $\mathbf{q} = 0$ , the relation between the elastic constants and the coupling coefficients (force constants) can be established.

Debye temperature is an important fundamental parameter related to many other physical properties such as elastic constants, specific heat and melting temperature. The Debye temperature  $\Theta_D$  can be calculated<sup>30</sup> as :

$$\Theta_D = \frac{h}{k_B} \left(\frac{3}{4\pi V_0}\right)^{1/3} v_m \qquad \dots (5)$$

where *h* is the Planck's constant,  $k_{\rm B}$  is the Boltzmann's constant,  $V_0$  is the molar volume and  $v_{\rm m}$  is the average sound velocity in the material  $\gamma$ -Si<sub>3</sub>N<sub>4</sub>.

At low temperature, the Debye temperature can be calculated from elastic constants because at low temperatures the vibrational excitations arise solely from acoustic vibrations. Average sound velocity in the polycrystalline materials can be calculated<sup>31</sup> as:

$$\nu_m = \left[\frac{1}{3} \left(\frac{1}{\nu_L^3} + \frac{2}{\nu_T^3}\right)\right]^{-1/3} \dots (6)$$

where  $V_{\rm L}$  and  $V_{\rm T}$  are the longitudinal and transverse sound velocities in an isotropic material, respectively. Longitudinal and transverse velocities can be obtained with the formula<sup>30</sup> :

$$v_{L} = \left[\frac{B + (4/3)G}{\rho}\right]^{1/2} \dots (7)$$

$$v_L = \left(\frac{G}{\rho}\right)^{1/2} \dots (8)$$

where B, G and  $\rho$  are the bulk modulus, shear modulus and molecular density of the material, respectively.

### **4 Results and Discussion**

In the present paper, let  $A_1$  and  $B_1$  represent the bond-stretching and bond-bending force constants between Si-N (tetrahedral) types of ions, respectively, whereas  $A_2$  and  $B_2$  represent similar force constants between Si-N (octahedral) types of ions. Likewise  $A_3$ and  $B_3$  correspond to bond-stretching and bondbending force constants between N-N or (Si-Si) types of ions.

The dynamical matrix of the order of  $(42 \times 42)$  is obtained and solves it at the zone-centre, we get analytical expressions for all the different modes of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub>. fundamental Using the experimental values of Raman modes<sup>32</sup>  $A_{1g}$ ,  $E_g$  and the infrared modes<sup>33</sup>  $F_{1u}$ , we have calculated the three bond-stretching  $(A_1, A_2 \text{ and } A_3)$  and three bondbending  $(B_1, B_2 \text{ and } B_3)$  force constants. These force constants are listed in Table 1.

Using above force constants, we have calculated the zone-centre phonon frequencies of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> have been calculated and listed in Table 2 along with the experimental Raman<sup>32</sup>, the infrared modes<sup>33</sup> and the results of Fang *et al*<sup>12</sup>. The calculated result shows a very good agreement with the experimental results.

| Table 1 — Values of force constants (kdynes/cm) for $\gamma\text{-}\text{Si}_3\text{N}_4$ |                      |                                          |  |  |
|-------------------------------------------------------------------------------------------|----------------------|------------------------------------------|--|--|
| Force constant                                                                            | Internal coordinates | $\gamma$ -Si <sub>3</sub> N <sub>4</sub> |  |  |
| $A_1$                                                                                     | Si-N (tet)           | 40.49                                    |  |  |
| $B_1$                                                                                     | Si-N (tet)           | 1.82                                     |  |  |
| $A_2$                                                                                     | Si-N (oct)           | 156.55                                   |  |  |
| $B_2$                                                                                     | Si-N (oct)           | 6.23                                     |  |  |
| $A_3$                                                                                     | N-N (Si-Si)          | 24.79                                    |  |  |
| $B_3$                                                                                     | N-N (Si-Si)          | 1.02                                     |  |  |

| Table 2 —   | Observed <sup>32,7</sup>                     | <sup>33</sup> and | calculate | d zone-   | centre p | honon          |
|-------------|----------------------------------------------|-------------------|-----------|-----------|----------|----------------|
| frequencies | for $\gamma$ -Si <sub>3</sub> N <sub>4</sub> | along             | with the  | results o | of Fang  | $et al^{12}$ . |

| Species        | Frequencies (cm <sup>-1</sup> ) |            |             |  |  |
|----------------|---------------------------------|------------|-------------|--|--|
|                | Observed                        | Calculated | Fang et al. |  |  |
| $A_{1g}$       | 979                             | 978        | 972         |  |  |
| $E_{\sigma}$   | 522                             | 522        | 522         |  |  |
| $F_{2g}(1)$    | 845                             | 846        | 840         |  |  |
| $F_{2g}(2)$    | 727                             | 725        | 726         |  |  |
| $F_{2g}(3)$    | 420                             | 419        | 415         |  |  |
| $F_{1u}(1)$    | 1094                            | 1097       | 1030        |  |  |
| $F_{1u}(2)$    | 872                             | 873        | 764         |  |  |
| $F_{1u}(3)$    | 702                             | 699        | 718         |  |  |
| $F_{1u}(4)$    | 465                             | 463        | 410         |  |  |
| $A_{2u}(1)$    |                                 | 949        | 946         |  |  |
| $A_{2u}(2)$    |                                 | 781        | 782         |  |  |
| $E_{\rm u}(1)$ |                                 | 782        | 775         |  |  |
| $E_{\rm u}(2)$ |                                 | 451        | 455         |  |  |
| $F_{1g}$       |                                 | 502        | 504         |  |  |
| $F_{2u}(1)$    |                                 | 634        | 631         |  |  |
| $F_{2u}(2)$    |                                 | 313        | 317         |  |  |

From the results obtained on the basis of the above force constants model, it is concluded that the in the case of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> the second neighbour interaction is stronger than the first neighbour interaction this means that the octahedral bonding (second neighbour interactions) is stronger than that of the tetrahedral bonding (first neighbour interactions), the reason being that the bonding between Si-N ions (octahedral bonding) is more ionic than the bonding between Si-N (tetrahedral bonding). This result shows that the bonding in  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> is partially ionic and partially covalent in nature which is very much different from the nature of bonding (covalent) in the other polymorphs of  $Si_3N_4$  such as  $\alpha$ -Si<sub>3</sub>N<sub>4</sub> and  $\beta$ -Si<sub>3</sub>N<sub>4</sub>. Hence, the properties of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> very much differ from  $\alpha$ -Si<sub>3</sub>N<sub>4</sub> and  $\beta$ -Si<sub>3</sub>N<sub>4</sub>.

Using the calculated force constants (Table 1), we have calculated the elastic constants  $C_{11}$ ,  $C_{12}$  and  $C_{44}$  for  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> and these are listed in Table 3. Once the elastic constants is calculated, the bulk modulus *B*, compressibility coefficient *K*, shear modulus *G*, Young's modulus *Y*, Poisson's ratio  $\sigma$ , anisotropy factor *A* are also calculated by the relations given

Table 3 — Calculated elastic constants  $C_{11}$ ,  $C_{12}$  and  $C_{44}$  (GPa), bulk modulus *B* (GPa), compressibility coefficient *K* (GPa<sup>-1</sup>), shear modulus *G* (GPa), Young's modulus *Y* (GPa), Poisson's ratio  $\sigma$ , anisotropy factor and as compared to experimental data<sup>3</sup> and other researchers<sup>3,12,17,36-44</sup> of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub>.

|                                                   | $C_{11}$                                                         | $C_{12}$                                                        | $C_{44}$                                           | В                    | Κ                 | G                    | Y                  | Α                 | σ                  |
|---------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|----------------------|-------------------|----------------------|--------------------|-------------------|--------------------|
| Present                                           | 542.2                                                            | 193.4                                                           | 338.22                                             | 309.7                | 3.23              | 259.2                | 608                | 1.94              | 0.263              |
| Others                                            | 512.1 <sup>a</sup>                                               | $177.3^{a}$                                                     | 330.9 <sup>a</sup>                                 | $288.9^{a}$          | 3.46 <sup>a</sup> | 251.7 <sup>a</sup>   | 585.2 <sup>a</sup> | 1.94 <sup>a</sup> | $0.162^{a}$        |
|                                                   | 532.6 <sup>b</sup>                                               | 191.2 <sup>b</sup>                                              | 341.0 <sup>b</sup>                                 | 305.0 <sup>b</sup>   |                   | 258.3 <sup>b</sup>   | 604.3 <sup>b</sup> | 1.94 <sup>b</sup> | 0.169 <sup>b</sup> |
|                                                   | 550.6 <sup>°</sup>                                               | 191.0 <sup>c</sup>                                              | 349.4 <sup>c</sup>                                 | 310.9 <sup>c</sup>   |                   | 264.6 <sup>c</sup>   | 618.3 <sup>c</sup> | $1.90^{\circ}$    | 0.168 <sup>c</sup> |
|                                                   |                                                                  |                                                                 |                                                    | 300 <sup>d</sup>     |                   | $258^{\rm f}$        | 379 <sup>i</sup>   |                   | $0.28^{i}$         |
|                                                   |                                                                  |                                                                 |                                                    | 335 <sup>e</sup>     |                   | 261 <sup>m</sup>     |                    |                   |                    |
|                                                   |                                                                  |                                                                 |                                                    | $308^{\rm f}$        |                   | $148^{i}$            |                    |                   |                    |
|                                                   |                                                                  |                                                                 |                                                    | 412 <sup>g</sup>     |                   | 205-260 <sup>k</sup> |                    |                   |                    |
|                                                   |                                                                  |                                                                 |                                                    | 285 <sup>h</sup>     |                   |                      |                    |                   |                    |
|                                                   |                                                                  |                                                                 |                                                    | 290 <sup>i</sup>     |                   |                      |                    |                   |                    |
|                                                   |                                                                  |                                                                 |                                                    | 321 <sup>j</sup>     |                   |                      |                    |                   |                    |
|                                                   |                                                                  |                                                                 |                                                    | 290-308 <sup>k</sup> |                   |                      |                    |                   |                    |
|                                                   |                                                                  |                                                                 |                                                    | 320 <sup>1</sup>     |                   |                      |                    |                   |                    |
| <sup>a</sup> 36, <sup>b</sup> 37, <sup>c</sup> 38 | , <sup>d</sup> 3, <sup>e</sup> 39, <sup>f</sup> 40, <sup>g</sup> | <sup>g</sup> 41, <sup>h</sup> 12, <sup>i</sup> 42, <sup>j</sup> | 12, <sup>k</sup> 43, <sup>1</sup> 17, <sup>m</sup> | 44                   |                   |                      |                    |                   |                    |

Table 4 — Elastic wave velocities (in km/s) for different propagation directions and Debye temperature ( $\Theta_D$  in K) for the  $\gamma$ -Si<sub>3</sub>N<sub>4</sub>

| Velocities                | Present calculation |  |  |
|---------------------------|---------------------|--|--|
| $v_{L}^{[100]}$           | 11746               |  |  |
| $v_{T}^{[100]}$           | 9276                |  |  |
| $v_{l}^{[110]}$           | 13403               |  |  |
| $v_{t  }^{[110]}$         | 9276                |  |  |
| $v_{t\perp}^{[110]}$      | 6661                |  |  |
| $v_{vl}^{[111]}$          | 23189               |  |  |
| $v_{vt}^{[111]}$          | 9543                |  |  |
| $\mathbf{V}_{\mathrm{L}}$ | 12912               |  |  |
| $V_{T}^{-}$               | 8121                |  |  |
| $V_{m}$                   | 10067               |  |  |
| $\Theta_D$                | 1248                |  |  |

elsewhere<sup>34</sup> and listed in Table 3 along with the experimental and previously calculated results.

The components of the elastic tensor have been calculated. The components of the elastic tensor for a cubic crystal are characterised by three independent elastic constants  $C_{11}$ ,  $C_{12}$  and  $C_{44}$ . These components are allowed to obtain acoustic velocities along [100], [110] and [111] directions<sup>34</sup> and listed in Table 4 along with the experimental and previously calculated results. For the calculation of sound velocities, we have taken the density<sup>3</sup> of  $\gamma$ -Si<sub>3</sub>N<sub>4</sub> as 3.93 gm/cm<sup>3</sup>.

#### References

- 1 Wang W X, Li D H, Liu Z C & Liu S H, Appl Phys Lett, 62 (1993) 321.
- 2 Dufour G, Rochet F, Roulet H & Sirotti F, *Surf Sci*, 304 (1994) 33.

- 3 Zerr A, Miehe G & Serghiu G, Nature, 400 (1999) 340.
- 4 Zerr A, Phys Status Solidi (b), 227 (2004) R4.
- 5 Mo S D, Ouyang L Z, Ching W Y, Tanaka I, Koyama Y & Riedel R, *Phys Rev Lett*, 83 (1999) 5046.
- 6 Ching W Y, Mo S D, Ouyang L Z, Rulis P, Tanaka I & Yoshiya M, J Am Ceram Soc, 85 (2002) 75.
- 7 Ching W Y, Mo S D & Ouyang L Z, *Phys Rev B*, 63 (2001) 245110.
- 8 Tanaka I, Oba F & Ching W Y, Mater Integr, 14 (2001) 21.
- 9 Shang D M, Ouyang L Z & Ching W Y, *Phys Rev Lett*, 83 (1999) 5046.
- 10 Oba F, Tatsumi K, Adachi H & Tanaka I, *Appl Phys Lett*, 78 (2001) 1577.
- 11 Oba F, Tatsumi K, Tanaka I & Adachi H, *J Am Ceram Soc*, 85 (2002) 97.
- 12 Fang C M, Wijs G A de, Hintzen H T & With G de, J Appl Phys, 93 (2003) 5175.
- 13 Kresse G & Hafner J, *Phys Rev B*, 47 (1993) 558; 49 (1994) 14251.
- 14 Kresse G & Furthmuller J, Comput Mater Sci, 6 (1996) 15.
- 15 Kresse G & Furthmuller J, Phys Rev B, 54 (1996) 11169.
- 16 Wang L G, Sun J X & Tian R G Y W, Acta Phys Pol A, 114 (2008) 807.
- 17 Kuwabara A, Matsunaga K & Tanaka I, *Phys Rev B*, 78 (2008) 064104.
- 18 Kohn W & Sham L J, Phys Rev, 140 (1965) A1133.
- 19 Blöchl P E, Phys Rev B, 50 (1994) 17953.
- 20 Ceperley D M & Alder B J, Phys Rev Lett, 45 (1980) 566.
- 21 Dong C & Ben-Hai Y, Chin Phys B, 22 (2013) 023104.
- 22 Giannozzi P, Baroni S & Bonini N, J Phys C, 21 (2009) 395502.
- 23 Perdew J P, Burke K & Ernzerhof M, *Phys Rev Lett*, 77 (1996) 3865.
- 24 Wyckoff W G, Crystal Struct, 4 (1965) 540.
- 25 Jiang J Z, Lindelov H, Gerward L, Stahl K, Recio J M, Sanchez P M, Carlson S, Mezouar M, Dooryhee E, A Fitch & Frost D J, *Phys Rev B*, 65 (2002) 161202.
- 26 Lutz H D, Z Naturforsch, 24 (1969) 1417.
- 27 White W B & Anglis B A de, *Spectrochim Acta*, 23 (1967) 985.
- 28 Chopelas A & Hofmeister A M, *Phys Chem Minerals*, 18 (1991) 297.

- 29 Born M & Huang K, Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford (1954).
- 30 Drymiotis F R, Ledbetter H, Betts J B, Kimura T, Lashley J C, Migliori A, Ramirez A P, Kowach G R & Duijn J Van, *Phys Rev Lett*, 93 (2004) 025502.
- 31 Anderson O L, J Phys Chem Solids, 24 (1963) 909.
- 32 Jiang J Z, Stahl K, Berg R W, Frost D J, Zhou T J & Shi P X, Europhys Lett, 51 (2000) 62.
- 33 Schwarz M, Miehe G, Zerr A, Kroke E, Poe B T, Fuess H & Riedel R, *Adv Mater*, 12 (2000) 883.
- 34 Kushwaha A K, Comp Mat Sci, 69 (2013) 505.
- 35 Jiang J Z, Stahl K, Berg R W, Frost D J, Zhou T J & Shi P X, *Eur Phys Lett*, 51 (2000) 62.
- 36 Dong C & Ben-Hai Y, Chin Phys B, 22 (2013) 023104.

- 37 Soignard E, Somayazulu M, Dong J J, Sankey O F & McMillan P F, *J Phys Condens Matter*, 13 (2001) 557.
- Kocer C, Hirosaki N & Ogata S, *Phys Rev B*, 67 (2003) 035210.
   Mori-Sanchez P, Marques M, Beltran A, Jiang J Z, Gerward
- L & Recio J M, Phys Rev B, 68 (2003) 064115.
  40 Dong J J, Deslippe J, Sankey O F, Soignard E & McMillan P F, *Phys Rev B*, 67 (2003) 094104.
- 41 Marian C M, Gastreich M & Gale J D, *Phys Rev B*, 62 (2000) 3117.
- 42 Zerr A, Kempf M, Schwarz M, Kroke E, Goken M & Riedel R, *J Am Ceram Soc*, 85 (2002) 86.
- 43 Schwarz M R, High Pressure Synthesis of Novel Hard Materials: Spinel-Si3N4 and Derivates, Kassel, Kassel Press, (2003).
- 44 Sekine T, Tansho M & Kanzaki M, Appl Phys Lett, 78 (2001) 3050.