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Lattice dynamical, elastic properties and sound velocities of �-Si3N4 have been calculated by using a proposed six 

parameter bond-bending force constant model. In this model, the potential energy of the compound �-Si3N4 is expanded by 

using the Taylor’s expansion in the harmonic approximation. The proposed theoretical model is used to calculate the zone-

centre phonon frequencies, elastic properties, sound velocities and Debye characteristic temperature for �-Si3N4 and 

compared our results with experimental and previously calculated results available in the literature. It is found to be in good 

agreement with the experimental results. The significant outcome of the present work is that the octahedral bonding is 

stronger than that of the tetrahedral bonding. 
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1 Introduction 

 Silicon nitride (Si3N4) is an important structural and 

ceramic material with many applications such as in 

micro-electronics, optoelectronics, mechanics, 

automobile, solar cells and tools for ceramic cutting 

and processing
1
 due to its outstanding high 

temperature and oxidation resistant properties. Silicon 

nitride has been described at least in four different 

crystalline polymorphs as �-, �-, �- and �-Si3N4. In 

which �-and �-Si3N4 have hexagonal structure
2
 with 

almost the same density of 3.2g/cm
3
. The third 

polymorph of Si3N4 has cubic structure (�-Si3N4 =  

c-Si3N4) which is discovered by Zerr et al
3
. at high 

pressure. High pressure experiments on �-Si3N4 at 

room temperature led to the formation of fourth 

polymorph of Si3N4, i.e., �-Si3N4 with tetragonal 

symmetry4 in 2001. �-Si3N4 is most likely a 

metastable intermediate between �-and �-Si3N4. 

 In recent years, �-Si3N4 has much attraction due to 

several reasons. The �-and �-phases of Si3N4 have 

hexagonal structure in which the N-atoms are 

tetrahedrally coordinated with the Si-atoms but in the 

�-Si3N4 the N-atoms are tetrahedrally as well as the 

octahedrally coordinated with the Si-atoms, which is 

very rare in binary compounds. This introduces some 

different physical properties of �-Si3N4 from other 

polymorphs of Si3N4. Therefore, the nature of 

bonding in the compound �-Si3N4 is very important. 

The �-Si3N4 is a semiconductor with direct band gap
5-8

 

of about 3.45 eV and hence,it has potential 

applications in optical and electronic devices in 

addition to the structural applications
9-11

.  

 A full chacterization of the physical properties of  

�-Si3N4 is important for applications. The lattice 

dynamical calculations are one of the important tools 

in understanding the thermodynamical, structural, 

bonding and numerous other solid state properties. 

Phonons, being one of the elementry excitations of 

solids, provide complete information about the 

interatomic forces in solids. The interatomic forces 

are of paramount importance as their study leads to 

study an understanding of bonding and the structural 

properties of compounds. All the properties depend 

upon the constituent atoms of the crystal and can be 

obtained with the help of lattice dynamical 

calculations. Recently, Fang et al
12

. have done the 

lattice dynamical calculations for �-Si3N4 using the 

first principles molecular dynamics
13-15

 computer code 

VASP (Vienna ab initio simulation program). 

 Wang et al
16

. have investigated the bulk modulus 

and some thermodynamic properties of �-Si3N4 using 

the analytic mean field method. Kuwabara et al
17

. 

have obtained the phonon dispersion curves, phonon 

DOSs, bulk moduli, thermal expansion coefficients, 

and heat capacities of �-Si3N4 using density functional 

theory (DFT) calculations
18

 were performed using 

VASP code
14,15

. Electron-ion interaction was 

represented by the projector augmented wave (PAW) 

method
19

 and the local density approximation
20

 

(LDA).  
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 Dong et al
21

. have optimized the ground state  

�-Si3N4 in the framework of the first-principles 

method based on the Kohn–Sham equation
18

. The 

self-consistent total energy calculations are performed 

with the plane-wave pseudo-potential (PW-PP) 

method
22

. The generalized gradient approximation 

(GGA) of Perdew-Burke-Ernzerhof
23

 is used for the 

exchange–correlation function.  

 

2 Crystal Structure and Potential Model 

 The crystal structure of �-Si3N4 is classified as HI1 

space group 
7
hO (Fd3m), is cubic and consist of a 

slightly distorted cubic close-packed arrangement of 

N-atoms with the Si-atoms occupy 1/8 of the 

tetrahedral and 1/2 of the octahedral interstices, 

respectively
24

 (normal spinel). The crystal structure of 

�-Si3N4 is shown in Fig. 1. The bond length between 

(Si-N)tet, (Si-N)oct and N-N is 1.778, 1.871 and 2.558 

�, respectively and the angle between (Si-N)tet, and 

(Si-N)oct is 109.47° and 86.58°, respectively
25

. Group 

theoretical treatment of the optical zone-centre (Γ=0) 

phonon modes are known to be resolved into 17 

fundamental lattice vibration modes
26-28

. The 

representation of these modes at zero wave-vectors is 

expressed as: 
 

Γ=A1g+Eg+2Eu+2A2u+F1g+3F2g+5F1u+2F2u …(1) 
 

where A1g, Eg and 3F2g modes are Raman-active and 

F1u modes are infrared-active modes. In the 5F1u 

modes, one mode with frequency zero is translation 

mode, and the other four modes are observed in the 

infrared region.  There is one Raman-inactive mode, 

F1g, while 2A2u, 2Eu and 2F2u are infrared-inactive 

modes.  

 In the present paper, the potential energy φ  of the 

�-Si3N4 can be expended by using Taylor’s series and 

can be written as: 

2
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where S0 and Slmn are the displacements of the central 

ion and its first neighbour ions from their equilibrium 

position 
0

lmnr  represent the position coordinates of 

neighbouring ions in equilibrium. l, m, n, represent 

the direction cosines of the line joining the central ion 

and a nearest neighbour ions. �rk�is the nearest 

neighbour distance. 

 Let Ak be the bond-stretching force constant 

defined by the second derivative of the potential 

energy φ: 

 
2 2

2
k

k r r

e d
A

V dr

φ
=

=  …(3) 

 

 The bond-bending force constant Bk is expressed as 

the first derivative of the potential energy φ: 

 
2 1

k
k r r

e d
B

V r dr

φ
=

=  …(4) 

 

where k = 1, 2, 3 for first, second and third 

neighbours, respectively. 

 

3 Elastic Constants and Related Properties 

 Elastic constants for �-Si3N4 are calculated from the 

dynamical matrix Dαβ(q, kk′) by expanding it as a 

function of q in the neighbourhood
29

 of q = 0, the 

relation between the elastic constants and the coupling 

coefficients (force constants) can be established.  

 Debye temperature is an important fundamental 

parameter related to many other physical properties 

such as elastic constants, specific heat and melting 

temperature. The Debye temperature ΘD can be 

calculated
30

 as : 
 

1 3

0

3

4
D m

B

h

k V
ν

π

� �
Θ = � 	

� �
 …(5) 

 

where h is the Planck’s constant, kB is the 

Boltzmann’s constant,V0 is the molar volume and vm 

is the average sound velocity in the material �-Si3N4. 

 
 

Fig. 1 — Crystal structure of �-Si3N4 
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At low temperature, the Debye temperature can be 

calculated from elastic constants because at low 

temperatures the vibrational excitations arise solely 

from acoustic vibrations. Average sound velocity in 

the polycrystalline materials can be calculated
31

 as: 
 

1 3

3 3

1 1 2

3
m

L T

ν
ν ν

−
� �� �

= +
 �� 	

 �� �� �

 …(6) 

 

where VL and VT are the longitudinal and transverse 

sound velocities in an isotropic material, respectively. 

Longitudinal and transverse velocities can be obtained 

with the formula
30

 : 

 

( )
1 2

4 3
L

B G
ν

ρ

� + �
= 
 �
� �

 …(7) 

 
1 2

L

G
υ

ρ

� �
= � 	
� �

 …(8) 

 

where B, G and ρ are the bulk modulus, shear 

modulus and molecular density of the material, 

respectively. 

 

4 Results and Discussion 

 In the present paper, let A1 and B1 represent the 

bond-stretching and bond-bending force constants 

between Si-N (tetrahedral) types of ions, respectively, 

whereas A2 and B2 represent similar force constants 

between Si-N (octahedral) types of ions. Likewise A3 

and B3 correspond to bond-stretching and bond-

bending force constants between N-N or (Si-Si) types 

of ions. 

 The dynamical matrix of the order of (42×42) is 

obtained and solves it at the zone-centre, we get 

analytical expressions for all the different 

fundamental modes of �-Si3N4. Using the 

experimental values of Raman modes
32

 A1g, Eg and the 

infrared modes
33

 F1u, we have calculated the three 

bond-stretching (A1, A2 and A3) and three bond-

bending (B1, B2 and B3) force constants. These force 

constants are listed in Table 1. 

 Using above force constants, we have calculated 

the zone-centre phonon frequencies of �-Si3N4 have 

been calculated and listed in Table 2 along with the 

experimental Raman
32

, the infrared modes
33

 and the 

results of Fang et al
12

. The calculated result shows a 

very good agreement with the experimental results. 

Table 1 — Values of force constants (kdynes/cm) for �-Si3N4 

 

Force constant Internal coordinates 
 

�-Si3N4 

A1 

B1 

A2 

B2 

A3 

B3 

Si-N (tet) 

Si-N (tet) 

Si-N (oct) 

Si-N (oct) 

N-N (Si-Si) 

N-N (Si-Si) 

40.49 

1.82 

156.55 

6.23 

24.79 

1.02 
 

 

Table 2 — Observed32,33 and calculated zone-centre phonon 

frequencies for �-Si3N4 along with the results of Fang et al
12. 

 

Frequencies (cm−1) Species 

Observed Calculated Fang et al. 
 

A1g 

Eg 

F2g(1) 

F2g(2) 

F2g(3) 

F1u(1) 

F1u(2) 

F1u(3) 

F1u(4) 

A2u(1) 

A2u(2) 

Eu(1) 

Eu(2) 

F1g 

F2u(1) 

F2u(2) 

979 

522 

845 

727 

420 

1094 

872 

702 

465 

978 

522 

846 

725 

419 

1097 

873 

699 

463 

949 

781 

782 

451 

502 

634 

313 

972 

522 

840 

726 

415 

1030 

764 

718 

410 

946 

782 

775 

455 

504 

631 

317 

 
 From the results obtained on the basis of the above 

force constants model, it is concluded that the in the 

case of �-Si3N4 the second neighbour interaction is 

stronger than the first neighbour interaction this 

means that the octahedral bonding (second neighbour 

interactions) is stronger than that of the tetrahedral 

bonding (first neighbour interactions), the reason 

being that the bonding between Si-N ions (octahedral 

bonding) is more ionic than the bonding between Si-N 

(tetrahedral bonding). This result shows that the 

bonding in �-Si3N4 is partially ionic and partially 

covalent in nature which is very much different from 

the nature of bonding (covalent) in the other 

polymorphs of Si3N4 such as �-Si3N4 and �-Si3N4. 

Hence, the properties of �-Si3N4 very much differ 

from �-Si3N4 and �-Si3N4. 

 Using the calculated force constants (Table 1), we 

have calculated the elastic constants C11, C12 and C44 

for �-Si3N4 and these are listed in Table 3. Once the 

elastic constants is calculated, the bulk modulus B, 

compressibility coefficient K, shear modulus G, 

Young’s modulus Y, Poisson’s ratio �, anisotropy 

factor  A  are  also  calculated  by  the  relations  given  
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Table 4 — Elastic wave velocities (in km/s) for different 

propagation directions and Debye temperature (ΘD in K) for 

the �-Si3N4  
 

Velocities Present calculation 

 

[100]
Lv  11746 

[100]
Tv  9276 

[110]
lv  13403 

[110]
||tv  9276 

[110]
tv ⊥  6661 

[111]
vlv  23189 

[111]
vtv  9543 

VL 12912 

VT 8121 

Vm 10067 

ΘD 1248 
 

elsewhere
34

 and listed in Table 3 along with the 

experimental and previously calculated results. 

 The components of the elastic tensor have been 

calculated. The components of the elastic tensor for a 

cubic crystal are characterised by three independent 

elastic constants C11, C12 and C44. These components 

are allowed to obtain acoustic velocities along [100], 

[110] and [111] directions
34

 and listed in Table 4 

along with the experimental and previously calculated 

results. For the calculation of sound velocities, we 

have taken the density
3
 of �-Si3N4 as 3.93 gm/cm

3
.  
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