
Indian Journal of Pure & Applied Physics 

Vol. 53, October 2015, pp. 643-651 

 

 

 

 

 

 

Analytical computation of unsteady MHD mixed convective heat transfer over a 

vertical stretching plate with partial slip conditions 
 

Xiaohong Su 

School of Mathematics and Physics, North China Electric Power University, Baoding 071003, China 

E-mail: suxh2005@163.com 

Received 22 October 2014; revised 19 January 2015; accepted 25 June 2015 

The analysis of the unsteady MHD mixed convective flow and heat transfer over an impulsively stretched permeable 

vertical surface in a moving fluid with partial velocity slip and thermal slip conditions in the presence of thermal radiation, 

internal heat absorption or generation, and injection or suction, has been studied in the present paper. The governing 

boundary layer equations are converted into a system of nonlinear coupled ordinary differential equations by suitable 

similarity transformations. The appropriate analytical solutions for the velocity and temperature fields are gotten by the 

DTM-BF which is an analytical method based on the differential transformation method (DTM) and basis functions. The 

results obtained by the DTM-BF are in good agreement with those presented by the numerical method. The effects of the 

various parameters which determine the velocity and temperature fields are shown by plotting graphs and discussed in 

detail. 
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1 Introduction 

 The momentum and thermal transport due to a 

stretching heated surface in a quiescent or moving 

fluid is of great practical interest because it occurs in 

a number of engineering processes such as hot rolling, 

metal and plastic extrusion, continuous casting, and 

glass fiber and paper production. The study of the 

flow and heat transfer adjacent to the moving surface 

is necessary for determining the quality of the final 

products of these engineering processes. Many 

aspects of the steady boundary layer flow and heat 

transfer over a horizontal moving surface have been 

studied by many researchers
1-5

. 

 The mixed convective flow of different types of 

fluids over a stretching vertical sheet under some 

conditions has been investigated. Karwe and Jaluria
6,7

 

have analyzed mixed convective flow over a continuous 

moving plate in material processes. Patil et al
8
. have 

studied the mixed convection effects over a moving 

vertical stretching plate in a parallel free stream. Al-

Sanea
9
 discussed the effects of suction or injection on 

the behaviour of the steady laminar flow and heat 

transfer over a continuously moving vertical wall of 

extruded material. The MHD flow of a viscous 

incompressible and electrically conducting fluid over 

a stretching vertical surface with constant wall 

temperature was analyzed by Ishak et al
10

. Shateyi
11

 

considered steady MHD flow of a Maxwell fluid past 

a vertical stretching sheet in a Darcian porous medium. 

 All the investigations cited above considered are 

restricted to steady state conditions. It is important to 

include unsteadiness into the governing equations of 

any problem for the development of a more physically 

realistic characterization of the flow configuration. 

Relating to the unsteady flows and heat transfer over 

horizontal stretching sheets, some important 

investigations can be found in Refs 12-19. Recently, 

Mukhopadhyay
20

 performed an analysis to investigate 

the effect of thermal radiation on unsteady mixed 

convective boundary layer flow and heat transfer over 

a vertical porous stretching surface in a quiescent 

fluid by a numerical method. Kumari and Nath
21

 

investigated the effects of the magnetic field and 

injection/suction on the unsteady mixed convective 

flow and heat transfer of an incompressible 

electrically conducting fluid over an impulsively 

stretched permeable vertical surface in an unbounded 

quiescent fluid by solving the problem analytically 

using the homotopy analysis method and numerically 

by Keller box method. Ram et al
22

. studied the effects 

of porosity on unsteady MHD flow past a semi-

infinite vertical stretching plate with time dependent 

suction. 

 The no-slip boundary condition is one of the central 

tenets of the Navier-Stokes theory. However, there are 

some situations wherein this condition does not hold. 

Partial velocity and temperature slip may occur on the 

surface of the stretching sheet when the fluid is 
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particulate such as emulsions, suspensions, foams and 

polymer solutions. Recently, Mukhopadhyay and 

Andersson
23

 have investigated the effects of the 

partial velocity and temperature slip on the flow and 

heat transfer over a horizontal unsteady stretching 

surface submerged in a quiescent fluid by numerical 

method. Bhattacharyya et al
24

. and Mukhopadhyay
25

 

investigated slip effects on the flow and heat transfer 

towards an unsteady stretching sheet in a quiescent 

fluid. 

 The DTM method is an approximate analytic 

method for many types of nonlinear problems
26-29

. At 

the same time, it is usually difficult to obtain 

analytical solutions of the differential equations in an 

unbounded domain because the results obtained by 

the DTM are usually valid only in a small region. The 

main reason is that the series solutions obtained by the 

DTM are divergent as the variables of the problems 

go to infinity. In order to overcome this difficulty, Su 

et al
30

.
 
proposed an analytical method named DTM-

BF which is a combination of the DTM and the 

approach by using base functions, and successfully 

solved the problem of the steady MHD mixed 

convective heat transfer over a permeable stretching 

wedge. 

 The DTM-BF is applied to consider the unsteady 

MHD mixed convective flow and heat transfer over 

an impulsively stretched permeable vertical surface in 

a moving fluid with partial velocity slip and thermal 

slip conditions. In the present paper, the effects of 

velocity slip, thermal slip, the ratio of the velocity of 

the stretching surface to that of the ambient fluid, 

thermal buoyancy, magnetic field, and thermal 

radiation on the momentum and heat transfer 

characteristics have been analyzed. 

 

2 Mathematical Formulation 

 Consider an unsteady two-dimensional MHD 

boundary layer flow and heat transfer over a 

continuous stretching vertical sheet embedded in a 

moving viscous, incompressible, electrically 

conducting fluid, as shown in Fig. 1. The sheet is 

stretching with a velocity 1(1 )wU ax ct
−= −  in the 

positive x direction
20,23

. The free stream velocity far 

away from the sheet is wU RU∞ = , where 0R ≥ , 

0a > , 0c >  and 1ct < . The fluid is under the 

influence of the magnetic field B which acts in the 

direction normal to the stretching sheet. The induced 

magnetic field is negligible, which is a valid 

assumption on a laboratory scale under the 

assumption of small magnetic Reynolds number. It is 

also assumed that the external electric field is zero. 

Under these assumptions, the basic unsteady 

boundary layer equations governing the transfer of 

momentum and heat in the presence of thermal 

buoyancy, thermal radiation and internal 

absorption/generation take the following form: 

 

0
u v

x y

∂ ∂
+ =

∂ ∂
  … (1) 

 

2 2

2

1

( )T

u u u p u B
u v u

t x y x y

g T T

σ
ν

ρ ρ

β ∞

∂ ∂ ∂ ∂ ∂
+ + = − + −

∂ ∂ ∂ ∂ ∂

+ −

  …(2) 

 
2

2
( )r

p

qT T T T
c u v Q T T

t x y yy
ρ α ∞

� � ∂∂ ∂ ∂ ∂
+ + = − + −� �

∂ ∂ ∂ ∂∂� �
  

  … (3) 
 

subject to boundary conditions: 

 

,   ,    w u w w T

u T
u U D v V T T D

y y
ν

∂ ∂
= + = = +

∂ ∂
 at 

0y =  

 … (4) 

 

,      u U T T∞ ∞= = as y = ∞   …(5) 

 
 

Fig. 1 — Schematic representation of the physical model and 

coordinates system 
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where 2U Up
U B U

x t x
ρ ρ σ∞ ∞

∞ ∞

∂ ∂∂
= − − −

∂ ∂ ∂
 is pressure 

gradient, x  and y  axe coordinates measure along 

and normal to the surface, respectively. u  and v  are 

the velocity components along x  and y  directions, 

respectively, t  the time, σ  the electrical 

conductivity, T  the temperature inside the boundary 

layer, g  the gravity field, Tβ  the volumetric 

coefficient of thermal expansion, pc  the specific heat 

at constant pressure, α  the thermal conductivity, µ  

the fluid viscosity, /ν µ ρ=  is the kinematics 

viscosity of the fluid, ρ  the density of fluid, 

2 1 2(2 ) (1 )wT T ax ctν − −
∞= + −  is the temperature of 

the stretching sheet, T∞  the temperature of the fluid 

outside the boundary layer, 
1/2

0 (1 )u uD D ct= −  is the 

velocity slip factor which changes with time, 
1/2

0(1 )T TD D ct= −  is the thermal slip factor which 

also changes with time, 0uD  and 0TD  are the initial 

values of velocity and thermal slip factors, 

respectively. The term 1/2 1/2( )w wv C U xν −= −  

represents the mass transfer on the sheet with 0C <  

for injection and 0C >  for suction. Q  is the heat 

generation when 0Q >  or heat absorption when 

0Q < . The variable magnetic field B  is of the form 

1/2 1/2
0 ( )wB B U xν −= . 

 The radiative heat flux 
rq  under Rosseland 

approximation has the form: 
 

1 44

3
r

T
q

k y

σ ∂
= −

∂
  …(6) 

 

where 1σ  and k  are the Stefan-Boltzman constant 

and the mean absorption coefficient, respectively. The 

temperature difference within the flow is assumed to 

be sufficiently small so that 
4

T  may be expressed as a 

linear function of temperature, thus: 

 
4 3 44 3T T T T∞ ∞≈ −   …(7) 

 

Based on Eq. (7), Eq. (6) becomes: 

 
3 1

1

16

3
r

T T
q

yk

σ∞ ∂
= −

∂
  … (8) 

 In order to obtain similarity solutions of the 

problem, we introduce the following dimensionless 

variables: 

 
1/2 1/2( )wU x yη ν −= , 1/2( , ) ( ) ( )wx y xU fψ ν η= , 

( )
w

T T

T T
θ η ∞

∞

−
=

−
  …(9) 

 

where ( , )x yψ  is the stream function that satisfies the 

continuity Eq. (1). Because of /u yψ= ∂ ∂  and 

/v xψ= −∂ ∂ , the following equations can be 

immediately obtained:  

 

'( )wu U f η=  and 1/2 1/2( ) ( )wv U x fν η−= −   …(10) 

 

 Substituting Eqs. (8 and 9) into Eqs (2 to 5), the 

present problem can be expressed as: 

 

2

2

''' " ' ' " ( ' )
2

0

f ff f A f f R Mn f R

R

η

γθ

� �
+ − − + − − −� �

� �

+ + =

  …(11) 

 

1(1 ) " ( 2 ) ' ' ' 0
2

A
Pr Nr A f fθ λ θ ηθ θ θ− + + − − − + =   

 …(12) 
 

with the boundary conditions: 

 

(0) ,   '(0) 1 ''(0),  uf C f h f= = +
 

(0) 1 '(0) Thθ θ= +   … (13) 

 

'( ) ,f R∞ =  ( ) 0θ ∞ =   … (14) 

 

 In Eqs (7 to 14), /A c a=  is the dimensionless 

measure of the unsteadiness and the prime indicates 

differentiation with respect to η , / (2 )Tg aγ β ν=  is 

the mixed convection parameter, /pPr cµ α=  is the 

Prandtl number, A  is a parameter that measures the 

unsteadiness, 3 116 / (3 )Nr T kσ α∞=  is the thermal 

radiation parameter, 2
0 / ( )Mn Bσ ρν=  is the magnetic 

parameter, /x wRe U x ν=  is the local Reynolds 

number, /wRe Uα α ν= , 
2/ ( )x pQ Re c Reαλ α µ=  is 

the heat source parameter. In addition, 0λ >  

corresponds to heat generation, 0λ >  corresponds to 
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heat absorption, 
1/2

0( )
u u

h D aν=  is the dimensionless 

velocity slip parameter and 
1 1/2

0( )
T T

h D aν −=  is the 

dimensionless thermal slip parameter.  

 The physical quantities of interest are the skin 

friction coefficient fC  and the local Nusselt number 

xNu , which are defined as: 
 

2 / 2

w
f

w

C
U

τ

ρ
= , 

( )

w
x

w

xq
Nu

T Tα ∞

=
−

 

 

where the wall shear stress wτ  and the wall heat flux 

wq  are given by: 
 

0

w

y

u

y
τ µ

=

� �∂
= � �

∂� �
, 

0

.w

y

T
q

y
α

=

� �∂
= − � �

∂� �
 

 

 Using the similarity variables as in Eq. (9), we 

obtain: 
1/2 / 2 "(0)f xC Re f= , 1/2/ '(0).x xNu Re θ= −  

 

3 Solutions of DTM-BF 

 Now, we apply the DTM-BF, which was elaborated 

by Su et al
30

., for solving the boundary value 

problems as in Eqs. (11-14). For this purpose, we first 

utilize the DTM to solve the IVP for Eqs. (11) and 

(12) under the following initial value conditions : 
 

1 1(0) ,   '(0) 1 2 ,   "(0) 2uf C f h fβ β= = + =   … (15) 

 

2 2(0) 1 ,  '(0)Thθ β θ β= + =  …(16) 

 

 The corresponding differential transformations of 

the conditions given in Eqs (15 and 16) are: 
 

(0)F C= , 1(1) 1 2 uF h β= + , 1(2)F β=   … (17) 

 

2(0) 1 ,Th βΘ = +  2(1) βΘ =   … (18) 

 

where 1β  and 2β  are two parameters whose values 

are to be determined through the rest of the problem-

solving process. Implementing the differential 

transformation for Eqs. (11 and 12) by using the 

fundamental operations of the DTM presented in the 

literature
26

, we get the following iterative formulas of 

( )F k  and ( )kΘ  which are the differential 

transformation functions of ( )f η  and ( )θ η , 

respectively. 

( )
2

0

/ 2 ( 1) ( 1)

( ) ( ) ( )

( 1)( 1) ( 1) ( 1)

( 1)( 2) ( ) ( 2)
( 3)

( 1)( 2)( 3)

k

i

A Mn kA k F k

AR MnR R k k

i k i F i F k i

k i k i F i F k i
F k

k k k

δ γ

=

� �
	 	+ + + +
	 	
	 	

− + + + Θ +
 �
	 	+ − + + − +� 
	 	

� �	 	− − + − + − +� �� �+ =
+ + +

�

 
 

0

( 2 ) ( ) ( / 2) ( )

Pr ( 1) ( ) ( 1)

( 1) ( ) ( 1)
( 2)

( 1)( 2)(1 )

k

i

A k A k k

k i i F k i

k i F i k i
k

k k Nr

λ

=

− Θ − Θ +� �
	 	

− − − + Θ − +� 

 �
� �	 	+ − + Θ − +� �� �Θ + =

+ + +

�
 

 

In this way all the terms of ( )F k  and ( )kΘ  can be 

easily calculated by substituting Eqs (17) and (18) 

into the above iterative formulas. Then we can get the 

solutions of the IVP consisting of Eqs (11 and 12) and 

the conditions given in Eqs (15 and 16) in power 

series forms, i.e.,  
 

0 0
( ) ( ) ( )

nk k

k k
f F k F kη η η

∞

= =
= ≈� �   … (19) 

 

0 0
( ) ( ) ( )

mi i

i i
i iθ η η η

∞

= =
= Θ ≈ Θ� �   … (20) 

 

 The next step is to express the solutions to the 

coupled BVP as in Eqs (11-14) as a linear form of 

basis functions. According to Eqs (11 and 12) and the 

boundary conditions [Eqs (13 and 14)], it is 

reasonable to assume that ( )f η  and ( )θ η  are 

expressed by the following sets of basis functions, 

respectively. 
 

0, 0 , ( 1, 2, 3, , 1, 2, 3, ,){ ( ),  ( ) }i j i jf fη η = =� �
 and  

0, 0 , ( 1, 2, , 1, 2, ){ ( ),  ( ) }i j i jθ η θ η = =� �  
in the form : 

1 2

1 2

, 21
0

, 0, 0 , , 
3 1

0, 0 , 
3 1

( ) ( ) ( ) ( )

                            ( )
j

N N

N N i j i j
j i

NN
iaj

i j
j i

f f f b f

f b e
η

η η η η

η η

= =

= =

≈ = +

= +

��

� �

  

 … (21) 

3 4

3 4

, 43
0

, 0, 0 , , 
2 2

0, 0 , 
2 1

( ) ( ) ( ) ( )

                          ( )
j

N N

N N i j i j
j i

NN
ij

i j
j i

d

d e
γ η

θ η θ η θ η θ η

θ η η

= =

= =

≈ = +

= +

��

� �

  

 … (22) 
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where 

0 0 02
0, 0 1 2( )

a a a
f C H R He b e b e

η η ηη η η η= − + + + +   

and 0 0
0, 0 1( ) Le d e

γ η γ ηθ η η= +   

( 2

0 0 2 0 0 0(1 2 2 ) / ( )u u uH h b a b h b R a h a= + + − − − , 

1 0(1 ) / (1 )
T T

L h d h γ= + − ) respectively satisfy the 

inhomogeneous boundary conditions given in Eqs (13 

and 14). Besides that, the functions 

0
, , ( )

iaj
i j i jf b e

ηη η=  ( 1,  2,  3, , 3,  4, )i j= =� �  and 

0
, , ( )

ij
i j i jd e

γ ηθ η η=
 

( 1,  2,  3, , 2,  3, )i j= =� �  obey 

the homogeneous boundary conditions, respectively. 

 

(0) 0,   '(0) 0,   '( ) 0f f f= = ∞ =   …(23) 

 

(0) 0,   '( ) 0θ θ= ∞ =   … (24) 

 

 In which 0 0a <  and 0 0γ <  are two undetermined 

decaying parameters. In order to reduce the amount of 

computation, we truncate the series 
1 2, ( )N Nf η  and 

3 4, ( )N Nθ η  to 4iN ≤ ( 1,  2,  3,  4)i = . In the present 

paper, we choose 1 4,N =  2 3,N =  , 2 2 ( 3,4),jN j= =  

2, 4 3,N = 3, 4 2N = . Then, we expand the right sides 

of Eqs (21 and 22) as power series of η : 
 

2
20

1 0 2

3 2 2
30 1 0

2 0 , 3
1

4 3 2 2 2
40 1 0 2 0

0 , 3 , 4
1 1

( )
2!

      
3! 2!

      
4! 3! 2!

i
i

i i
i i

Ha
f C H R b a b

Ha b a
b a b

Ha b a b a
ia b b

η η η

η

η

=

= =

� �
= − + + + +� �� �

� �

� �
+ + + +� �� �
� �

� �
+ + + + + +� �� �
� �

�

� � �

  

 … (25) 
 

( )
2 3

2 20
0 1 1 0 , 2

1

3 2 3 2
30 1 0

0 , 2 , 3
1 1

24 3 3 2
0 , 2 40 1 0

0 , 3
1 1

( )
2!

          
3! 2!

( )
         

4! 3! 2!

i
i

i i
i i

i
i

i i

L
L L d d d

L d
i d d

i dL d
i d

γ
θ η γ η γ η

γ γ
γ η

γγ γ
γ η

=

= =

= =

� �
= + + + + +� �� �

� �

� �
+ + + +� �� �
� �

� �
+ + + + +� �
� �
� �

�

� �

� � �

  

 … (26) 

 In view of Eqs (19), (20), (25) and (26), the 

following equations yield: 

2
20

1 0 2
0

3 2 2
30 1 0

2 0 , 3
1

( )
2!

                    
3! 2!

i

i

i
i

Ha
F i C H R b a b

Ha b a
b a b

η η η

η

∞

=

=

� �
= − + + + +� �� �

� �

� �
+ + + + +� �� �
� �

�

� �

  

 …(27) 

( )
2 3

20
0 1 1 0 , 2

0 1

3 2 3 2
30 1 0

0 , 2 , 3
1 1

( )
2!

                  
3! 2!

i
i

i i

i i
i i

L
i L L d d d

L d
i d d

γ
η γ η γ η

γ γ
γ η

∞

= =

= =

� �
Θ = + + + + +� �� �

� �

� �
+ + + + +� �� �
� �

� �

� � �

 
  …(28) 

 By comparing the coefficients of like powers of η  

on both sides of Eqs. (27 and 28), we get a system of 

algebraic equations: 

 
2
0

1 0 2 (2)
2!

Ha
b a b F+ + =  

3 2 2
0 1 0

2 0 , 3
1

(3)
3! 2!

i
i

Ha b a
b a b F

=

+ + + =�  

1 2
1 20 0 0

3 42 2
0 , 3 0 , 4

1 1

! ( 1)! ( 2)!

( ) ( )

( 3)! ( 4)!

( )  ( 4,  5,  6,  7,  8,  9)

j j j

j j
i i

i i

Ha b a b a

j j j

ia b ia b

j j

F j j

− −

− −

= =

+ + +
− −

+
− −

= =

� �  

0 1 (1)L dγ + = Θ  

2 3
0

1 0 , 2
1

(2)
2!

i
i

L
d d

γ
γ

=

+ + = Θ�  

21 3
0 , 210 0

0 , 2
1

32
0 , 3

1

( )

! ( 1)! ( 2)!

( )
( )   ( 3,  4,  5,  6,  7,  8)

( 3)!

jj j
i

i
i

j
i

i

i dL d
d

j j j

i d
j j

j

γγ γ
γ

γ

−−

=

−

=

+ + +
− −

= Θ =
−

�

�

 

 
 The values of the undetermined parameters 

1 "(0) / 2fβ = , 2 '(0)β θ= , 0a , 0γ , 1b , 2b , 

,  ( 1,  2,  3,  4)i jb i j= = , 1d , , 2  ( 1,  2,  3)id i =  and 

, 3  ( 1,  2)id i =  can be obtained by solving the above 

nonlinear algebraic equations. Finally, after 

substituting the values of the above parameters into 



INDIAN J PURE & APPL PHYS, VOL 53, OCTOBER 2015 

 

 

648 

the expressions given in Eqs (21) and (22), then we 

get the DTM-BF solutions of the coupled BVP in Eqs 

(11)-(14). For example, the DTM-BF solutions to the 

coupled BVP given in Eqs (11-14) for 0.1
u

h = , 

0.1
T

h = , 0.5C = , 1.2A = ,  1Mn = , 2R = , 1Nr = , 

= 1Pr , 1γ =  and 1λ = −  are:  

 

0

0

0

0

0

0

2

3

2

4

( ) 0.2706846474 2

         0.2293153526

         0.1218970384

         0.08994285063

         (0.05194808802

         0.001149181495 )

          + (0.03739482413

       

a

a

a

a

a

a

f

e

e

e

e

e

e

η

η

η

η

η

η

η η

η

η

η

η

= +

+

−

−

+

+

02
  0.0007061715022 )

a
e

η+

 

 

0

0

0

0

0

0

0

2

2

3

3

2

( ) 0.8475608399

         0.1259578390

         ( 0.1968616308

        0.006710952631

        0.0007715643591 )

        (0.05523751050

        0.01023535446 )

e

e

e

e

e

e

e

γ η

γ η

γ η

γ η

γ η

γ η

γ η

θ η

η

η

η

=

−

+ −

+

−

+

+
 

 

where 0 2.815590725a = −  and 0 1.649950889γ = − . 

The values of the skin friction coefficient and wall 

temperature gradient are "(0) 1.162223911f =  and 

'(0) 1.524391601θ = − , respectively. 

 
4 Results and Discussion 

 In order to validate the accuracy of the results 

obtained by the DTM-BF, we also solved the BVP 

Eqs (11-14) numerically by using classical fourth-

order Runge-Kutta scheme along with the 

conventional shooting method which was used 

successfully in the paper
31

. All the results obtained by 

the DTM-BF and the numerical method are presented 

in Tables 1 and 2 and Figs. 2 to 12, which presents a 

comparison between the two methods. From these 

Figs 2 to 12, it is observed that the results obtained by 

the DTM-BF and the numerical method are in very 

close agreement. 

 The effects of the velocity slip parameter 
u

h  and 

thermal slip parameter 
T

h  are presented in Tables 1-2 

and Figs. 2 and 3. It is shown from Table 1 and Fig. 2 

that the values of the skin friction coefficient "(0)f ,  

 

Table 1 — Values of "(0)f  and '(0)θ−  for various 
uh  when 

0.1Th = , 1γ = , 1.0λ = − , 1.0Pr = , 1Mn = , 0.5C = , 

2R = , 1Nr = , 1.2A =  
 

"(0)f  '(0)θ−  
uh  

DTM-BF Numerical DTM-BF Numerical 
 

0 2.92171594 2.92322479 1.50281899 1.50286053 

0.1 2.32444782 2.32530213 1.52439160 1.52413116 

0.3 1.63522133 1.63546598 1.54774617 1.54733285 

0.5 1.25659190 1.25660942 1.55996283 1.55945683 

1.0 0.79329937 0.79315720 1.57438559 1.57375406 

2.0 0.45558765 0.45549001 1.58452632 1.58383503 

5.0 0.19921520 0.19979661 1.59118162 1.59138384 
 

Table 2 — Values of "(0)f  and '(0)θ−  for various 
Th  when 

0.1uh = , 1γ = , 1.0λ = − , 1.0Pr = , 1Mn = , 0.5C = , 

2R = , 1Nr = , 1.2A =  

 

"(0)f  '(0)θ−  Th  

DTM-BF Numerical DTM-BF Numerical 

 

0 2.35425155 2.35500028 1.79981199 1.79942782 

0.2 2.30252294 2.30344703 1.32225506 1.32206776 

0.4 2.27241089 2.27342336 1.04528717 1.04517332 

0.7 2.24518688 2.24626532 0.79552646 0.79546249 

1.0 2.22855042 2.22955081 0.64215868 0.64211780 

2.0 2.20233839 2.20211239 0.39099060 0.39097693 

 

 
 

Fig. 2 — Velocity profiles for various values of 
uh  and R when 

0.1Th = , 1γ = , 1.0λ = − , 1.0Pr = , 1Mn = , 0.5C = , 1Nr = , 

1.2A =  
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Fig. 3 — Temperature profiles for various values of 
Th  when 

0.1uh = , 1γ = , 1.0λ = − , 1.0Pr = , 1Mn = , 0.5C = , 2R = , 

1Nr = , 1.2A =  
 

 
 

Fig. 4 — Velocity profiles for various values of R when 0.1uh = , 

0.1Th = , 1γ = , 1.0λ = − , 1.0Pr = , 1Mn = , 0.5C = , 1Nr = , 

1.2A =  
 

 
 

Fig. 5 — Temperature profiles for various values of R when 

0.1uh = , 0.1Th = , 1γ = , 1.0λ = − , 1.0Pr = , 1Mn = , 0.5C = , 

1Nr = , 1.2A =  

 
 

Fig. 6 — Velocity profiles for various values of γ  when 0.1uh = , 

0.1Th = , 1.0λ = − , 1.0Pr = , 1Mn = , 0.5C = , 1Nr = , 

1.2A = , 1.2R =  
 

 
 

Fig. 7 — Velocity profiles for various values of A when 0.1uh = , 

0.1Th = , 1γ = , 1.0λ = − , 4.0Pr = , 1Mn = , 0.5C = , 1Nr = , 

1.2R =  
 

 
 

Fig. 8 — Temperature profiles for various values of A when 

0.1uh = , 0.1Th = , 1γ = , 1.0λ = − , 4.0Pr = , 1Mn = , 

0.5C = , 1Nr = , 1.2R =  
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Fig. 9 — Velocity profiles for various values of Mn and R when 

0.1uh = , 0.1Th = , 1.0λ = − , 1.0Pr = , 1Nr = , 1γ = , 1.2A = , 

0.5C =  

 

 
 

Fig. 10 — Temperature profiles for various values of Pr when 

0.1uh = , 0.1Th = , 1.0Nr = , 1λ = − , 1Mn = , 2R = , 1γ = , 

1.2A = , 0.5C =  

 

 
 

Fig. 11 — Temperature profiles for various values of Nr and when 

0.1uh = , 0.1Th = , 1.0λ = − , 1.0Pr = , 1Mn = , 2R = , 1γ = , 

1A = , 0.5C =  

 
 

Fig. 12 — Temperature profiles for various values of λ and when 

0.1uh = , 0.1Th = , 1.0Nr = , 1.0Pr = , 1Mn = , 2R = , 1γ = , 

1A = , 0.5C =  
 

and the thickness of the momentum boundary layer 

reduce with the increase of the velocity slip parameter 

u
h . It reveals that only part of the momentum, due to 

the pulling of the stretching sheet, can be transmitted 

to the fluid in the case of the partial velocity slip flow. 

In addition, it is drawn that the frictional resistance 

between the fluid and the surface decreases when the 

velocity slip starts increasing. A similar change about 

the surface heat transfer gradient '(0)θ−  and the 

thermal boundary layer can be seen in Table 2 and 

Fig. 3 when the thermal slip parameter 
T

h  increases. 

As a result, the thermal slip parameter hT  

substantially decreases the heat transfer rate from the 

surface to the ambient fluid. 

 Figures 4 and 5 show the effects of velocity ratio 

parameter R  on velocity and temperature profiles. An 

increase in R  leads to a rise of velocity gradient in 

the boundary layer in the two cases of (0,  1)R ∈  and 

1R > . Moreover, it displays that the fluid velocity 

decreases when (0,  1)R ∈  and has an opposite trend 

when 1R >  with the values of R  increasing. On the 

other hand, the temperature is found to decrease, and 

the temperature gradient increases with the increasing 

values of R  when 0R ≥ .  

 The velocity profiles for different values of the 

mixed convection parameter γ  are shown in Fig. 6. 

The maximum peak value of the velocity is obtained 

as 1.4γ = , and then decays to the free stream 

velocity. In addition, the minimum value of the peak 

values occurs in the absence of the thermal buoyancy 

force. That is because the thermal buoyancy force 

enhances fluid velocity and increases the velocity 
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boundary layer thickness with the value of γ  

increasing. 

 Figures 7 and 8 show the velocity and temperature 

profiles for different values of the unsteadiness 

parameter A . It reveals that the gradient of the 

velocity increases for an increase of unsteadiness 

parameter A  and the thickness of the boundary layer 

decreases with increasing values of A . For all the 

cases of A  considered, the increase of the 

unsteadiness parameter A  has the tendency to reduce 

the thermal boundary layer thickness which results in 

an increase in the temperature gradient in the 

boundary layer. 

 Figure 9 shows the velocity profiles for various 

values of the magnetic parameter Mn as 2R =  and 

2R = , respectively. The velocity curves show that an 

increase in the magnetic parameter Mn  will be to 

decrease the momentum boundary layer thickness and 

increase the velocity gradient in the boundary layer. 

This is entirely due to the fact that variation of Mn  

leads to the variation of the Lorentz force due to the 

magnetic field and the Lorentz force produces more 

resistance with the values of Mn  increasing. 

 Finally, Figs 10-12 show the effects of Prandtl 

number Pr, radiation parameter Nr and heat 

absorption/generation parameter λ  on the temperature 

profiles, respectively. From these Figs 10-12, it can be 

observed that an increase in the Prandtl number Pr 

leads to a reduction in the thermal boundary layer 

thickness, which in turns causes to decrease the 

temperature in the boundary layer. On the contrary, 

Figs. 11 and 12 show that the thickness of the 

temperature boundary layer decreases with the 

increasing of Nr  or λ . 
 

5 Conclusions 

 The effects of partial velocity and temperature slip 

on the unsteady MHD mixed convective flow and 

heat transfer of a moving viscous, incompressible, 

electrically conducting fluid past a vertical continuous 

stretching sheet in the presence of thermal buoyancy 

force, suction/injection, thermal radiation and heat 

generation/absorption, have been studied. By 

employing similarity transformation technique, the 

governing equations are transformed into a system of 

highly nonlinear coupled differential equations with 

boundary conditions at infinity. We derive the 

approximate analytical solutions of by the DTM-BF. 

A comparison between the approximate analytical 

solutions and the numerical solutions is implemented. 

It is found that the results obtained by the two 

methods are in very close agreement. The effects of 

various parameters on the velocity and temperature 

fields in the momentum and thermal boundary layers 

are presented. 
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