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The probability distribution of pattern of rainfall during the monsoon season (June-September) over different regions of 
West Bengal (India) has been analysed with the help of Markov chain models of various orders. The analysis is based on 
relevant data of 25 years (1971-1995) for ten meteorological stations spread over the state. The determination of the proper 
order that best describes the precipitation over the region is carried out using Akaike’s Information Criteria. The analysis 
clearly indicates that first order Markov chain model is the best one for rainfall forecasting. It is found that there is a period 
of occurrence of rainfall phenomenon (2-4 days) over the various stations. Moreover, the steady state probabilities and mean 
occurrence time of precipitation days and dry days have also been calculated for first and second order Markov chain 
models. The computation reveals that the observed and theoretical values of steady state probabilities are realistically 
matched. 
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1 Introduction 

The natural systems are complex and no exact laws 
have yet been developed that can explain precisely the 
natural hydrological phenomena. Rainfall itself is the 
one that affects weather variables affecting the growth 
and development of crops and spread of diseases and 
pests. Hence, rainfall forms the principal input to all 
agronomic models. The future probability of 
occurrence of rainfall can be used for crop planning 
and management and water management decisions 
and consequently, the risk due to weather uncertainty 
can be reduced. It is known that meteorological 
observations, such as rainfall, are separated by short 
interval of time either similar or highly correlated. 
The occurrence or non-occurrence of rainfall on a day 
is a simple meteorological example and the sequence 
of days at a particular location constitutes a time 
series. Tyagi et al.1, Chatterjee et al.

2, Iyenger & 
Basak3 and others attempted to predict the occurrence 
of rainfall in a variety of methods, such as synoptic, 
numerical and statistical techniques. One such 
statistical method, viz. time series analysis was 
utilized by Sengupta & Basak4 and Iyenger5. The 
Markov models are appropriate one and frequently 
proposed to quickly obtain forecasts of the weather 

states (such as dry or wet day) at some future time 
using information given by the current state. 

Many researchers in the past utilized Markov chain 
for modeling atmospheric phenomenon. Mimikou6 
reported that monthly sums of wet days are modeled 
better by a second order auto-regressive model than 
by aggregating daily precipitation generated from a 
Markov chain. SØrup et al.

7 reported theoretically 
that first order Markov chain is very important, 

whereas the 2nd order Markov chain is found to be 
significant. It is supported by the models developed 
for Sri Lanka by Perera et al.8 Jimoh & Webster9 
noticed that Akaike information criteria (AIC) 
estimates are consistently greater than or equal to 
Bayesian information criteria (BIC) estimates for an 
order of Markov chain. Also, there is no discernible 
difference between the model parameters of 1st and 
2nd order. For Bangladesh, Hossain & Anam10 
stressed that wet day of previous two time period 
influence positively the wet day of current time period 
in the rainy season as compared to the dry day of 
previous two time period. Aneja & Srivastava11 

utilized 3-state Markov chain with 5 independent 
parameters for analysis for Haryana, India. Dash12 
reported that first order Markov chain can adequately 
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represent the precipitation occurrence for all months 
in Odisha, India. Other efforts on modeling on 
Markov chain performed in the past are, namely 
Dasgupta & De13, Pant & Shivhare14, Thiagarajan  
et al.

15 and Senthivelan et al.
16 The Markov chain 

models have few advantages: firstly, forecasts are 
available immediately after the observations because 
of the use of predictors only on the local information 
on the weather. Secondly, the chain needs minimal 
computation after the climatologically data have been 
processed. It may be also be revealed that if the record 
length is short, lower order chain represents the 
appropriate fit. However, the study of weather state in 
region of West Bengal, India is not adequately 
studied. The reliability of prediction of the amount 
first depends on the accuracy of the prediction of wet 
and dry days. The objective of this study is to simulate 
daily rainfall sequences (weather state) for different 
regional stations of West Bengal to use as inputs for 
crop, hydrologic and water resources models. 

The yield of crop particularly in rain fed condition 
depends on rainfall patterns. Simple criteria related to 
sequential phenomenon, like wet and dry spells could 
be used for analyzing rainfall to obtain specific 
information needed for crop planning and carrying out 
agricultural operation13. Markov chains specify the 
state of each day as wet or dry and develop a relation 
between the state of the current day and the states of 
the preceding days. The order of the Markov chain is 
the number of preceding days taken into account. 
Most Markov chain models referred in the literature 
are first order, perhaps for the reason that the number 
of parameters would be kept minimum, yielding a 
better estimate. Many researchers17,18 have used 
Markov chains to model the daily occurrence of 
rainfall. The common observations of these studies 
suggest that the occurrence of weather state is best 
described by first order Markov chain. Consequently, 
in the present study, attempts have been made to 
study the weather state over the region of West 
Bengal during the monsoonal season. 
 

2 Data and Method of analysis 
The daily rainfall at ten meteorological stations in 

different zones of West Bengal, namely, Alipore 
(22.51°N, 88.33°E), Balurghat (25.22°N, 88.76°E), 
Bankura (23.25°N, 87.07°E), Dumdum (22.62°N, 
88.42°E), Jalpaiguri (26.70°N, 89.00°E), Kalingpong 
(27.06°N, 88.47°E), Kuchbihar (26.52°N, 89.45°E), 
Malda (25.00°N, 88.15°E), Midnapore (22.43°N, 
87.33°E) and Purulia (23.33°N, 86.37°E) are considered. 

In south-west monsoon season (1 June - 30 
September), daily rainfall data for a period of 25 years 
(1971-1995) have been utilized in the present paper. 
This data is provided by India Meteorological 
Department (IMD), Pune. The original daily data has 
been transformed into binary events (0, 1) for the 
monsoonal period as per dry day (DD) and wet day 
(WD), respectively. The missing data, if any, are 
distributed randomly in terms of DD and WD. The 
binary data representing DD and WD days are well 
represented in terms of random variable as: 
 

k

0, if rainfall does not occurs on the k day
X

1,  if rainfall occurs on the k day

th

th


= 
  

where, k=1, 2, ………,etc. 
 

The data for each season of a particular year are 
considered as a separate sample of the above time 
series. Each of the two states would pertain to one of 
the possible data values for a two-state Markov chain. 
As the process may be in any of the two states, the 
process may remain in the same state or move to the 
other state. In the second case, a transition occurs 
from one state to another state. The probability 
concerning such transition is considered as transition 
probability. 

Let, {Xt, t € T} to be a Markov chain with index set 
T and state space S [0, 1] (DD, WD), then {Xt, t € T} 
is a two-state Markov chain. The most common form 
of transition probability of a two-state first-order 
Markov chain (following Wilks19) is:  
 

Pij = {Xt+1 = j | Xt = i} 
 

The transition probabilities for two-state second 
order and third order Markov chains in the above 
notation are:  
 

Pijk = {Xt+1 = k | Xt = j, Xt-1 = i}  
Pijkl = {Xt+1 = l | Xt = k, Xt-1 = j, Xt-2 = i} 
 

The two-state Markov chain of any order is completely 
determined by its initial state and a set of transition 
probabilities Pij, Pijk, Pijkl. The transition probabilities are 
estimated using conditional relative frequencies. 

The parameter estimates of the above three orders 
of Markov chain, in the paper, have been estimated by 
averaging the estimates for each of the sample and the 
overall estimates are then extracted by averaging the 
estimates from all the samples for the data previously 
specified. Thereafter, the proper order of the Markov 
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chain for modeling the time series of DD and WD is 
assessed by AIC. Following the criteria, for a given  
s-state, Markov chain of order ‘m’ is the most 
appropriate model, if it minimizes the function: 
 

AICm = -2Lm + 2sm(s – 1) 
 

where,  
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At the selected ten stations, the observed and 
expected number of dry and wet spells of different 
orders are compared for the chosen data period 1996-
2000, using the Chi-square test20. The data for the 
years 1996-2000 were not used in the development of 
the Markov model but were kept reserved for the 
cross validation of the result obtained. 

The n-step probabilities have been obtained by 
using first order Markov chain. In connection with 
some earlier works using Markov chains of first order, 
the transition probabilities of the chain are the 
elements of the matrix Pn, where P is the one-step 
transition matrix of the chain. After completion of 
four to five steps, it is generally observed that these 
probabilities become constant and thereby, 
independent of the initial state. These steady-state 
probabilities are noted as: 
 
π0 = steady state probabilities of DD 

π1 = steady state probabilities of WD 

Using computational formula on conditional 
probability on the Markov chain of first order: 
π1 = P01/(1 + P01 + P11) 
π0 = 1 – π1 
 

The Markov chain of second order may be 
computed as:  
 

π0 = (P10P100 + P11P110)/(1 – P00P000 + 
P10P100 – P01P010 + P11P110) 

π1 = 1 – π0 
 

The expressions for the chain of higher orders are 
computed but not presented in the paper due to its 
complicated nature. 
 
3 Results and Discussion 

The statistical analysis has been done for each year. 
However, results discussed here pertain to average of 
25 years. The estimated transition probabilities of 
occurrence of dry day (DD) and wet day (WD) for the 
Markov chain of first and second order for the 
occurrences of DD and WD are presented in  
Tables 1(a) and 1(b). It is revealed from the table that 
for the first order Markov chain considering all the 
stations, the probability of WD followed by WD 
(P11) is observed to be highest (varies from 0.6375 to 

Table 1(a) — Estimation of transition probabilities of two-state 
Markov chains for first order 

Station P00 P10 P01 P11 

Alipore 0.5122 0.2337 0.4878 0.7663 

Balurghat 0.6300 0.3624 0.3695 0.6375 

Bankura 0.5877 0.4122 0.5877 0.6897 

Dumdum 0.5006 0.2037 0.4994 0.7962 

Jalpaiguri 0.5487 0.1946 0.4512 0.8053 

Kalingpong 0.5623 0.2790 0.4377 0.7209 

Kuchbihar 0.4929 0.1975 0.4929 0.8024 

Malda 0.5818 0.2870 0.4181 0.7130 

Midnapur 0.5732 0.2956 0.5732 0.7043 

Purulia 0.5417 0.2830 0.4583 0.7169 

Table 1(b) — Estimation of transition probabilities of two-state Markov chains for second order 

Station P000 P001 P010 P100 P011 P101 P110 P111 

Alipore 0.2901 0.5031 0.1388 0.1045 0.3518 0.4291 0.1647 0.6015 

Balurghat 0.4202 0.6293 0.1428 0.2291 0.2214 0.4178 0.2036 0.1572 

Bankura 0.3503 0.5810 0.1320 0.2816 0.2118 0.4794 0.1749 0.1338 

Dumdum 0.2818 0.4948 0.1328 0.3677 0.1476 0.6488 0.0889 0.1147 

Jalpaiguri 0.3320 0.5389 0.1155 0.3378 0.1457 0.6609 0.0905 0.1028 

Kalingpong 0.3450 0.5538 0.1484 0.2934 0.1861 0.5352 0.1347 0.1439 

Kuchbihar 0.2670 0.4865 0.1283 0.3801 0.1482 0.6547 0.0872 0.1099 

Malda 0.3546 0.5108 0.1474 0.2727 0.1827 0.5295 0.1540 0.1338 

Midnapur 0.3452 0.5697 0.1386 0.2890 0.1982 0.5051 0.1574 0.1393 

Purulia 0.3150 0.5318 0.1575 0.3037 0.1848 0.5316 0.1383 0.1453 
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0.8053) than the probability of DD followed by DD 
(P00) (varies from 0.4929 to 0.6300); on the other 
hand, the probabilities of WD followed by DD (P10) 
and DD followed by WD (P01) lies between the 
corresponding P00 and P11. 

Other features observed for the second order 
Markov chain are such as the transition probabilities 
P001 (varies from 0.4865 to 0.6293 over the stations) 
and P101 (varies from 0.4178 to 0.6609) are 
strikingly high whereas the probabilities 
corresponding to P000 (varies from 0.2670 to 0.4202) 
and P100 (varies from 0.1045 to 0.3801) are 
strikingly low. These probabilities indicate that during 
the south-west monsoon season, WDs are more 
frequent as compared to DDs. It is interesting to note 
that in both the orders of Markov chain (first and 
second), the transition probability P11, P111 and 
P001 have the greatest magnitude compared to the 
remaining transitions. 

Having obtained the transition probabilities of the 
chains of different orders and taking into account 
various transition counts, the AIC values for the first 

and second order Markov chains with their 
corresponding log likelihood estimates are computed 
and presented in Table 2. It is observed that for all the 
stations, two-state first order chain minimizes the  
AIC criteria. 

Utilizing the transition probabilities of the chains 
of first orders, the expected number of DD and WD 
spells of different lengths has been calculated for 
different years 1996-2000. The corresponding 
observed and expected values for these years have 
been computed; thereafter, nearness of the values has 
been tested using Chi-square20 test (Table 3). The test 
is accepted in 90 out of 94 cases. 

The steady state probabilities as obtained from the 
n-step probabilities are presented in Table 4. These  
n-step probabilities are the elements matrix of the 
type Pn, which stabilizes usually after 7-8 iterations 
where P is the one-step transition matrix. The 
aforesaid Pn model is undoubtedly realistic and 
simulates the chances of forecasting DD and WD 
perhaps better than any other14,21. Also, the 
corresponding matrix is computed from the 
computational formula from 1st order chain and is 
presented in Table 4. It is seen that those are nearly 
same in the specific cases. 

The mean recurrence time for DD and WD are 
computed as reciprocal of steady state probabilities 
(from computational formula). Those mean 
recurrence times for DD and WD are presented in 
Tables 5(a) and 5(b). For example, in Alipore, mean 
recurrence time for DD and WD are 3.0872 and 
1.4791. Those are compared with the observed mean 
recurrence time for the data period 1996-2000 for 
both DD and WD period in the respective cases. The 
observed mean recurrence time is found to nearly 
match with the computed mean recurrence time. 

Table 2 — AIC scores for the model of different orders at ten 
stations 

Station Order I Order II 

 LI AICI LII AICII 

Alipore -1233.1373 2468.2747 -1791.4951 3586.9902 

Balurgat -1421.6881 2845.3762 -1986.6333 3977.2666 

Bankura -1394.5678 2791.1355 -1949.7644 3903.5288 

Dumdum -1153.3908 2308.7815 -1695.2932 3394.5864 

Jalpaiguri -1177.4917 2356.9834 -1669.3511 3342.7021 

Kalimpong -1344.4453 2690.8906 -1900.2510 3804.5020 

Kuchbihar -1119.6182 2241.2363 -1669.5520 3343.1040 

Malda -1370.1864 2742.3728 -1912.3239 3828.6477 

Midnapur -1375.6204 2753.2407 -1930.4905 3864.9810 

Purulia -1340.2660 2682.5320 -1911.4440 3826.8880 

Table 3 — Goodness of fit test for observed and expected count (for first order Markov chain) of dry and wet spells for test data 

Years 

1996 1997 1998 1999 2000 

Station 

Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet 

Alipore 2.4104 17.5902 3.4371 1.3816 5.1222 9.0401 3.4411 4.8692 6.2512 9.3211 

Balurgat 5.3967 6.1301 1.7097 5.5512 3.6967 5.8705 9.5894 3.4704 5.2611 3.9118 

Bankura 4.8350 0.6749 7.4075 5.5536 - - 5.0263 6.8331 6.1243 0.3544 

Dumdum 5.3923 7.0130 1.1087 5.5596 3.6966 5.8705 9.9478 3.8044 8.2014 0.0675 

Jalpaiguri 2.0410 18.5095 3.3147 1.8314 5.2222 9.0409 3.4500 4.2819 9.7894 5.8705 

Kalingpong 6.3967 6.1301 1.7097 5.5512 3.6967 5.8705 9.5894 3.4704 5.2611 3.9118 

Kuchbihar 4.8350 0.6749 7.4075 5.5536 6.1877 2.6028 5.0263 6.8331 6.1243 10.3544 

Malda 2.6310 18.6095 6.3147 1.8344 5.2222 9.0309 3.4567 4.2819 9.794 5.8705 

Midnapur 4.8350 0.6749 7.4075 5.5536 - - 5.0263 6.8331 2.6028 6.1877 

Purulia 2.2860 5.1877 3.0987 1.3456 6.1236 7.2198 8.6522 15.2178 - - 

Upper 5% value of chi-square distribution with 5 degrees of freedom is 11.07.  
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4 Conclusions 
The time series analysis of monsoonal dry days 

(DD) and wet days (WD) for 25 years (1970-1995) 
has made by two-state Markov Chain (first and 
second order) to visualize the probabilistic 
distribution of DD and WD pattern over ten regional 
stations of West Bengal in the south-west monsoon 
season. The study reveals the following: 

(i)  The data series consisting of the DD and WD 
days is best explained by the two-state first 
order Markov chain. The said models also 
very realistically simulate the fact that any 

weather spell (DD or WD) of shorter length is 
generally more frequent and longer spells are 
of rare occurrences. 

(ii)  For first and second order Markov chain, the 
transition probabilities P11, P001, P111 are 
found to be higher compared with the 
remaining transition probabilities. This 
implies that during the monsoonal season, the 
state of occurrence of WD is more frequent 
over the stations in West Bengal in south-
west monsoon season. The reason seems to be 
very much justified. 

Table 4 — Comparison of stationary probabilities obtained from N-step transition matrix and computational  
formula on a first order chain 

Station Stationary probability of dry day Stationary probability of wet day 

 From matrix From first order From matrix From first order 

Alipore 0.3239 0.3239 0.6761 0.6761 

Balurghat 0.4952 0.4952 0.5048 0.5048 
Bankura 0.4952 0.4294 0.5706 0.5706 
Dumdum 0.2897 0.2897 0.7102 0.7102 
Jalpaiguri 0.3013 0.3013 0.6987 0.6987 
Kalingpong 0.3893 0.3893 0.6107 0.6107 
Kuchbihar 0.2803 0.2803 0.7197 0.7197 
Maldah 0.4070 0.4070 0.5930 0.5930 
Midnapur 0.4092 0.4092 0.5908 0.5908 

Purulia 0.3818 0.3818 0.6182 0.6182 
 

Table 5(a) — Mean recurrence time for dry days from stationary probability at different stations 

Station From Markov model Observed mean recurrence 

 Stationary probability Mean recurrence time 1996 1997 1998 1999 2000 

Alipore 0.3239 3.0872 2.6000 1.3704 2.2619 1.8387 2.2820 

Balurghat 0.4952 2.0195 1.6770 2.7143 2.7143 1.0213 1.2407 
Bankura 0.4952 2.0195 1.4061 1.6889 2.2727 1.4102 - 
Dumdum 0.2897 3.4513 2.0486 1.7500 1.6176 2.0512 1.3214 
Jalpaiguri 0.3013 3.3188 2.3801 1.9687 2.7894 1.9130 2.2222 
Kalingpong 0.3893 2.5688 2.2690 1.2364 2.0454 2.7945 3.1299 
Kuchbihar 0.2803 3.5672 1.9648 3.3415 2.2352 2.2353 1.4444 
Malda 0.4070 2.4570 2.3674 2.6000 2.1136 2.8125 2.3548 
Midnapur 0.4092 2.4436 2.0952 2.8052 1.9000 2.7733 1.7460 

Purulia 0.3818 2.6192 2.1880 2.4615 1.8276 2.2444 2.4167 
 

Table 5(b)—Mean recurrence time for wet days from stationary probability at different stations 

Station From Markov model Observed mean recurrence 

 Stationary probability Mean recurrence time 1996 1997 1998 1999 2000 

Alipore 0.6761 1.4791 2.5834 2.8513 2.4000 2.3189 2.6842 
Balurghat 0.5048 1.9809 1.7335 2.0625 2.0625 1.9219 1.2414 
Bankura 0.5706 1.7525 2.1406 1.9706 2.3151 - - 
Dumdum 0.7102 1.4079 2.8654 2.9062 2.7027 1.5972 2.6173 
Jalpaiguri 0.6987 1.4312 2.0006 2.3151 2.2187 1.4156 2.0000 
Kalingpong 0.6107 1.6374 2.2690 1.2364 2.0454 2.7945 3.1299 
Kuchbihar 0.7197 1.3895 1.9300 1.5246 2.9827 2.3239 2.3521 
Malda 0.5930 1.6863 2.2610 2.3871 2.1549 2.6032 2.6579 
Midnapur 0.5908 1.6927 2.1179 2.0952 2.8052 1.9000 1.7460 

Purulia 0.6182 1.6175 2.3059 2.6164 2.1094 2.2222 2.5757 
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(iii)  The overall climatologically probability of 
rainfall on a given day in the season as obtained 
from the first order chain is seen to be in the 
range 0.5048 and 0.7102 over the stations. 

(iv)  The climatologically probabilities as obtained 
from the chain of second order is almost 
identical to the value obtained from the first 
order chain. This indicates the steady state 
probabilities are not only independent of the 
initial state of the chain but also of the order 
which is a significant finding in respect of the 
general behaviour of the Markov chain. 

(v)  The stationary and climatologically 
probability of the occurrence of DD following 
WD such as P10, P100, P101 over the state 
of West Bengal is observed to be very low 
during the season. 

(vi)  The first order Markov chain satisfactorily 
describe the process of analysis of DD and 
WD over time as is exposed by the sensibly 
close values of the observed and theoretical 
mean recurrence times for the test data. 

(vii)  As per the AIC selection criteria, first order 
Markov chain is least over all stations and is 
utilized for building up model. 
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