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Artificial neural network (ANN) technique has been used to derive water vapour pressure profiles in the troposphere 
from radio occultation data over India and adjoining region. A fully connected three-layer network, with one hidden layer, 
has been constructed and standard back propagation algorithm has been used to train the network. While month, latitude and 
vertical profile of refractivity/bending angle constitute the input vector, the water vapour partial pressure profile forms the 
output vector. Only the moisture-laden summer monsoon months of June, July, August and September of 2010 have been 
considered for developing the retrieval algorithm. There are 2120 input and output pairs, out of which 1696 pairs form the 
training set while the remaining pairs constitute the validation set. The retrieved profiles of water vapour pressures in the 
validation set have been compared with the corresponding COSMIC operational products of water vapour pressure profiles. 
The effectiveness of the algorithm is apparent from this comparison and also from the vertical profiles of bias and root mean 
square error (RMSE). The statistics show better performance of the algorithm with refractivity as one of the inputs than with 
bending angle. The RMSE in water vapour retrieval from refractivity is within 1.5-2 hPa compared to markedly higher 
values of 6 hPa when derived from bending angle. Additionally, the algorithm has also been tested in an independent year 
2009 and the performance of the refractivity based retrieval has been found to be highly consistent in the year 2010, with 
RMSE within 1.5 hPa.  
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1 Introduction 
 Monitoring of climate change inevitably requires 
numerical weather prediction models and knowledge 
of atmospheric temperature and water vapour profiles 
is an essential prerequisite of such models. Although 
the radiosonde networks are distributed over the 
globe, these are simply inadequate for global 
numerical weather prediction models. Moreover, the 
vast oceanic area cannot be monitored by such 
networks. Hence, remote sounding via satellites is the 
only viable alternative for global profiling of 
atmosphere, and particularly so over the oceans. 
Radio occultation (RO) plays a vital role in such type 
of sounding1,2. During such an occultation, the GPS 
receiver placed on a Low-Earth Orbiting (LEO) 
Satellite records the excess phase delay induced by 
the Earth’s atmosphere, from which the atmospheric 
Doppler shift, bending angle and refractivity can be 
derived3,4. In the dry atmosphere, where the value of 

water vapour mixing ratio is generally less than a 
value of ~ 10-4, pressure and temperature can be 
derived quite easily with hydrostatic equation and 
ideal gas law2,5. However, the atmosphere is seldom 
dry, and particularly so in the lower troposphere. 
Hence, an accurate knowledge of water vapour in 
such a wet atmosphere is crucial in making accurate 
numerical weather prediction.  
 As mentioned, the bending angle obtained from 
radio occultation is used to derive the vertical profile 
of refractivity from which atmospheric temperature 
profile can be derived in the case of dry atmosphere. 
However, the derivation of vertical profile of water 
vapour requires additional a priori information6. This 
is often termed as water vapour ambiguity. 
 There are three distinct approaches for deriving 
water vapour profiles from RO measurements, which 
are: (i) A direct method based on a priori knowledge 
of the temperature and pressure profiles7; (ii) An 
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iterative method using the combination of the 
equation of state, hydrostatic equation and prior 
knowledge of the temperature profile6,8; (iii) An 
optimal estimation inverse method based on the prior 
temperature and water vapour pressure profiles9-11. 
Recently, a variant of the approaches (i) and (ii) has 
been devised using modeled wet component of the 
total refractivity, and surface temperature and surface 
pressure as a priori information12. 
 All these approaches suffer from the major 
drawback that a prior knowledge of temperature 
profile is absolutely essential for the derivation and 
hence, the results are pre-determined to a certain 
extent. To overcome this difficulty, the data adaptive 
approach of artificial neural network (ANN) has been 
advocated in more recent time13. The retrieval using 
ANN was, however, restricted to China and nearby 
regions and input-output pairs of bending angle and 
water vapour pressure was used for training the 
network13. In the present study, ANN technique is 
used for deriving water vapour pressure profiles over 
India and adjoining regions. Moreover, unlike the 
earlier study, both refractivity profiles and bending 
angle profiles are used separately as input to the 
network and studied the performance of the 
algorithms inter se. The former is subsequently being 
designated as RANN (i.e. refractivity based ANN) 
and the latter by BANN (bending angle based ANN).  
 
2 Method 
 ANNs have been used in a wide variety of 
geophysical applications and a comprehensive review 
exists14. Nevertheless, the salient features are 
recapitulated here for the sake of self-consistency.  
ANN is a data-driven technique, also known as 
machine-learning. A generic ANN mapping between 
a set of input and output patterns can be symbolically 
written as:  
 

Y = M (X),   X є Rn ,  and Y є Rm …(1) 
 

where, X and Y are the input and output vectors 
belonging to n and m dimensional vector spaces, 
respectively. The mapping represented by M, or rather 
a very close approximation to it, is performed by the 
network consisting of simple interconnected elements 
known as neurons, the terminology being inspired by 
biological nervous systems. As in nature, the 
connections between the neurons largely determine 
the network function. The network is trained to 
perform a particular function by adjusting the values 

of the connections (weights) between elements. 
Typically, neural networks are adjusted or trained, so 
that a particular input leads to a specific target output. 
Thereafter, the network is adjusted, based on 
comparison of the output and the target, until the 
network output matches the target, albeit within 
specified error limits. Typically, many such 
input/target pairs are needed to train a network. The 
training of the network can be affected using a variety 
of algorithms. But more often than not, the back 
propagation algorithm is preferred over others 
because of its relative simplicity. This algorithm has 
been used in the present study. 
 

 The back propagation algorithm computes the 
gradient of the output error of the multilayered 
network with respect to each of the connection 
weights15 and adjusts the ANN weights (and biases) in 
the descending gradient direction. In other words, it 
tries to improve the performance of the neural 
network by reducing its error along its gradient. The 
error is expressed by the mean squared error (MSE) or 
the root-mean-square error (RMSE) given by: 
 

MSE, e = 
n

oy ii

2)( −∑
 

 

where, yi, is the predicted target output; and oi, the 
actual target output vector. Further, RMSE = 
(MSE)1/2. In each training step, the weights (w) are 
adjusted towards the direction of maximum decrease, 
scaled by some learning rate,  
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components of the error gradient with respect to all 
the weights. There are two popular variants of the 
back propagation algorithm based on the 
minimization algorithm used, viz. Gradient Descent 
back propagation algorithm and Levenberg-
Marquardt backpropagation algorithm. The latter has 
been used owing to faster and assured convergence.  
 A typical ANN architecture is shown in Fig. 1. This 
consists of an input layer, an output layer and one or 
more hidden layers. Whereas the numbers of input 
and output neurons are dictated by the problem at 
hand, the number of neurons in each hidden layer is 
largely a matter of trial and error. In the present case, 
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the number of input neurons is 46 [n in Eq. (1)], while 
the number of output neurons is 22 [m in Eq. (1)]. 
More specifically, the input consists of month, 
latitude, 22 altitude levels and refractivity values at 
these levels. The output is simply the water vapour 
pressure at these altitudes. As regards the number of 
hidden layers and the number of neurons in each of 
these layers, various network topologies have been 
tested by varying the number of hidden layers from 
one to three and the number of neurons from six to 
ten. Mean squared error for each of these trials were 
compared. The topology with smallest RMSE, in turn 
producing the best input output match, was selected. 
It is worth pointing out that many of the distinct 
topologies among the trials did have similar 
performance, and so the one with minimum number 
of hidden layers and number of neurons in that order 
has been selected. This topology, consisting of one 
input layer with 46 neurons, one hidden layer with  
10 neurons and one output layer with 22 neurons, has 
been used in the paper.  
 
3 Data 
 The area of the present study is the Indian landmass 
and its adjoining region (8°-38°N; 66°-98°E). The 
data consist of COSMIC occultation data16 for the 
summer monsoon months of June, July, August, 
September for the years 2009 and 2010. The data are 
accessed from the website http://tacc.cwb.gov.tw/ for 
the above mentioned periods. The occultation data of 
interest in this study comprise of refractivity, bending 
angle and operational water vapour partial pressure 
products from COSMIC at various vertical levels up 
to 14 km. To begin with, the occultation data are 
preprocessed to select only those RO profiles  
which penetrate at least up to 2 km and are confined 

to the chosen geographical domain. The 2 km 
penetration criterion is a consideration following  
from the presence of significant N-bias in COSMIC 
refractivity data, especially in the tropics and 
subtropics, due to super-refraction effects 
characterizing the atmospheric boundary layer. A total 
of 2120 and 2808 occultations data have been 
obtained for the years 2010 and 2009, respectively on 
applying the two criteria. The data for 2010 have been 
subdivided into two sets. One is the training set and 
another is the validation set. The training set consists 
of 1696 points, which have been used for developing 
the algorithm. The remaining set has been used for 
validation. As far as the data for 2009 is concerned, 
the entire set has been used for validation. Further, 
bending angle, refractivity and water vapour profiles 
in the selected datasets are retained upto 14 km and 
interpolated at the following variable vertical 
resolutions which are: 200 m up to 1 km; 0.5 km in 
the range 1-5 km; and 1 km in the range 6-14 km. The 
particular choice of the assumed vertical resolutions is 
intended to capture the sharp gradients of water 
vapour, known to exist in the lower troposphere, 
while at the same time keeping the number of neurons 
at a reasonable level. The latter is significant from the 
point of view of the complexity of the network and 
consequently the computational time, both of which 
may be affected by the number of neurons at the input 
level. Beyond 14 km, the water vapour content in the 
atmosphere has been found to be negligible.  

 
4 Results and Discussion  
 The locations of the occultation events used in the 
study are shown in Fig. 2. The dots are the profiles 
used for training while the profiles set aside for 
retrieval and validation are earmarked as ‘+’ symbol. 
Quantitatively, the numbers are 1696 and 424, 
respectively. These numbers are same for the bending 
angle as well as the refractivity, since the latter is 
derived from the former. Following the usual practice, 
at the beginning of the ANN’s training process, a 
desired value of the average error, is set as the 
convergent criterion of the forward computations. The 
root mean squared error of 0.1 hPa has been 
considered as the convergent criterion. As soon as the 
criterion is reached, the training is stopped. The 
performance of the training can be best judged from a 
scatter plot between the target water vapour pressure 
and the water vapour pressure obtained as a result of 
training.  Ideally,  the  plot should be a linear line with 

 
 
Fig. 1 — A typical ANN architecture based on feed-forward back 
propagation method  
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 negligible bias and slope near unity. This plot is 
shown in Fig. 3(a) for RANN. Separately, the 
algorithm is also developed for bending angle as input 
and the training procedure is carried out similar to that 
of refractivity. Figure 3(b) shows the scatter plot 
between the target water vapour partial pressure and 
the one retrieved with BANN. It is apparent from the 
two plots that the training of the neurons is effective 
in replicating the target profiles exceedingly well 
from refractivity than from bending angle, especially 
in the lower troposphere. Relatively larger scatter of 
points for bending angle [Fig. 3(b)] may possibly be 
attributed to the complicated implicit relationship 

between atmospheric water vapour partial pressure 
and bending angle in contrast to the more direct 
physical relationship between refractivity and water 
vapour partial pressure7.  
 Once the training is finished, the parameters of the 
trained network are used to derive water vapour 
pressure profiles from an independent dataset, 
earmarked for validation in the beginning, using the 
months, latitudes, altitude levels and RO refractivity 
profiles as inputs for RANN. Bending angle profiles 
replaces the refractivity profiles in case of BANN, 
keeping all other input parameters intact. In order to 
quantify the quality of the retrieved profiles, the 
results are compared with the corresponding water 
vapour profiles available from COSMIC dataset. 
These comparative water vapour profiles have been 
obtained using one-dimensional variational optimal 
estimation method (1DVAR), operational for 
COSMIC products. The bias and root mean square 
error (RMSE), in absolute term, of the retrieved water 
vapour profiles for RANN and BANN are shown in 
Figs 4(a) and 4(b) respectively. Figures 5(a) and (b) 
show the same in percent terms. The retrieval bias is 
better than 0.2 hPa below ~8 km, translating to a 
difference of less than 10% in the water vapour 
dominant region. Above 8 km, bias shows an 
increasing trend with a peak value of 40% at 10 km 
for RANN [Fig. 5(a)] and about 50% for BANN  
[Fig. 5(b)] and sporadic decrease at a few vertical 
levels. By and large, the nature of bias above 8 km is 
similar in both RANN and BANN as is evident from 
the Figs 4(a-b) and 5(a-b), although the latter is 
largely in excess of the former. At 8 km, the bias is 

 
 
Fig. 3 — Linear relationship between the target water vapour pressures and the training results of ANN forward computations with 
COSMIC network input as: (a) refractivity and (b) bending angle  

 
 
Fig. 2 — Geo-location of COSMIC occultation events over Indian 
region for the year 2010 (June-September) [Same geographical 
region is selected for the validation dataset (year 2009)] 
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within 15% for RANN, while it is 35% for BANN 
[Fig. 5(a & b)]. The differences are remarkable below 
8 km with both bias and RMSE being better than  
10-15% for RANN. Below 4 km, bias and RMSE are 
better than 0.2 hPa (0.5-1%) and 1 hPa (up to 5-6%) 
in case of RANN, as shown in Figs 4(a) and 5(a).  
The result for BANN is markedly distinct  
compared to that for RANN, particularly in the  
humid lower troposphere (i.e. below 6 km). Not only 
does the bias show large under estimation of up to  
2 hPa at around 1 km, the RMSE has increased by 
more than 5 times the peak RMSE for RANN.  
In percent terms, the bias and RMSE are in the  
range -2.0 to -10% and 1-3%, respectively, for BANN 
as shown in Figs 4(b) and 5(b). 
 

 The comparative results for six retrieval examples 
are shown in Fig. 6(a-f) for RANN. The retrieval is of 
reasonably good accuracy for all the profiles and 
matches well with the COSMIC 1DVAR profiles of 

water vapour pressure. Some discrepancy is seen for 
the third and fourth example plots as shown in  
Fig. 6(c and d), respectively. For the third profile, this 
is evident in the altitude range of 4-10 km. Below  
3 km, the retrieval performs quite well. In the fourth 
example, there are discrepancies in the altitudes 
between 6 and 10 km, although the discrepancy is not 
as high as in the case of third example. 
 

 Although the performance of the retrieval 
algorithm has been tested on an independent 
validation data set of the year 2010, specifically 
earmarked for this purpose. It is quite interesting to 
see whether the algorithms performs equally well for 
any other year. For this, the RANN algorithm is 
applied on the COSMIC RO data for the monsoon 
months of the year 2009 also. The retrieval statistics 
in terms of mean bias and RMSE, in absolute  
and percent values, are shown in Fig. 7(a and b)  
As can be clearly  seen,  Fig. 7(a-b)  closely  resemble 

 
 

Fig. 4 — Vertical profiles of bias and root mean square error in water vapour partial pressure derived from ANN with: (a) refractivity and 
(b) bending angle, as input for the validation dataset of 2010, vis-a`-vis the COSMIC operational water vapour products from the same dataset 

 

 
 

Fig. 5 — Vertical profiles of bias and root mean square error, in percent, in water vapour partial pressure derived from ANN with: 
(a) refractivity and (b) bending angle, as input from the validation dataset of 2010, vis-a`-vis the COSMIC operational water vapour 
products from the same dataset 
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Fig. 6 (a-f) — Comparison of water vapour pressures retrieved for RANN with the COSMIC water vapour pressures for six examples 
from the validation set of 2010 
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Fig. 7 — Vertical profiles of bias and root mean square error: (a) in absolute unit and (b) in percent, of water vapour partial pressure 
derived from ANN with refractivity as input from the validation dataset of 2009, vis-a`-vis the COSMIC operational water vapour 
products from the same dataset 

 

 
 

Fig. 8 (a-d) — Comparison of water vapour partial pressures retrieved for RANN with the COSMIC water vapour pressures for the less 
humid (< 8-10 hPa at 2-3 km) cases taken from the validation set of 2010 
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analogous to Figs. 4(a) and 5(a) barring very minor 
differences, especially below 2-4 km. However, these 
inconsistencies are rather due to significantly lesser 
number of occultation profiles available at depths  
of 2 km and below, than to the incapability of the 
ANN algorithm to retrieve water vapour profiles 
accurately. Unfortunately, the issue of lack of or 
meagre amount of data available at depths below  
2 km or so persists with the radio occultation 
processed data. Notwithstanding such aberrations, the 
overall quality of retrieval can be seen from the 
consistency in the results above 2 km. 
 The lowest near-surface humidity values for the 
study domain and during the selected months were 
searched and zeroed-in on the profiles with humidity 
range of 8-10 hPa at around 2-3 km as relatively dry 
cases. Figure 8 (a-d) shows the comparison of derived 
water vapour partial pressure with corresponding 
COSMIC 1DVAR retrievals for the relatively less 
humid conditions. Figure 8(a and d) show discrepancy 
of ~1-1.5 hPa for 1-2 km, with observable deviations 
at altitudes in the range 4-8 km. Similarly, reasonable 
deviations are observed for the remaining two figures. 
In summary, all the Fig. 8(a-d) show over estimation 
by ANN at various vertical levels. The results indicate 
the existing ANN network limitations in deriving very 
accurate humidity values in typical dry cases, as has 
also been discussed in the statistical analysis of 
retrieval errors for the altitudes above 8 km, where the 
humidity has scant presence. 
 

5 Conclusions 
 The technique of artificial neural network (ANN) 
has been used for the retrieval of water vapour 
pressure profiles in the atmosphere from radio 
occultation measurements of refractivity over the 
Indian landmass and adjoining region. The advantage 
of the technique is that the profile of water vapour 
pressure could be derived directly from radio 
occultation measurements without the need for using 
other auxiliary measurements, e.g. the temperature 
profiles from climate/NWP models. The result shows 
that the network is able to quickly learn the hidden 
relationship known to exist between the refractivity - 
water vapour pressure pairs than between bending 
angle - water vapour pressure pairs. The few typical 
retrieval examples shown in the study confirm this 
inference. This inference holds good for humidity 
abundant regions of atmosphere. However, for the 
drier regions of atmosphere, the retrieval accuracy, 
whether in respect of RANN or BANN, degrades 

albeit rather adequately for BANN than for RANN, 
thus indicating the limitation of the ANN-based 
algorithm in dry regions. Nevertheless, the 
consistency of the RMSE for the two years of data 
appears to suggest that the ANN technique has 
produced results which are quite promising. Apart 
from its use as a standalone retrieval technique, the 
technique can be used as a precursor to other 
operational iteration-based and optimal estimation 
methods by treating the retrievals as ‘initial guess’. As 
a priori temperature profile information is also 
required in optimal method like the 1DVAR, it will be 
worthwhile to explore the retrieval of temperature 
from refractivity. It is believed to be plausible, since 
temperature, similar to water vapour pressure, is 
physically related to atmospheric refractivity. 
 

 In this study, the algorithm has been developed 
using satellite (COSMIC) data alone. It would be 
worthwhile to see if the results are equally good for 
water vapour pressure data derived from in situ source 
like radiosonde over the chosen region. However, due 
largely to lack of collocated good quality radiosonde 
data over Indian and adjoining region, satellite 
products alone have been considered for the study. 
Quality of the radiosonde apart, the quasi-random 
nature of radio occultation events make it difficult to 
find spatio-temporal collocation with radiosonde, 
known to be launched only at 00Z and 12Z  
(Z for Zulu time or equivalent time in UTC). 
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