A review of potential radiative effect of aerosol on climate

Guleria, Raj Paul; Kumar, Raj


The study of physical and chemical properties of aerosol is of significant importance, because their radiative effects exert strong impact on Earth’s climate. Aerosols scatter and absorb solar radiation. Backscattering of solar radiation towards space results loss in surface reaching solar radiation leads to cooling of the climate system. Absorption of solar radiation is associated with heating within the aerosol layer, thereby modifies the vertical temperature profile, and this also results loss in surface reaching solar radiation. Such processes alter the radiative balance of Earth directly so-called direct effects. A subset of aerosols also alters the radiative balance of the Earth by modifying microphysical and radiative properties of clouds via so-called indirect effects. Based on observations and models studies present work suggest that the regional radiative perturbations are several Wm-2 due to changes in aerosol emissions. Furthermore, if the black carbon emission is checked out may lead to a sudden change in the normal pattern of warming/cooling. This paper summarized the various potential radiative mechanisms associated with aerosol-climate interaction.


Atmospheric aerosol;Black carbon;Radiative effect;Climate

Full Text: PDF (downloaded 1425 times)


  • There are currently no refbacks.
This abstract viewed 1951 times