A comprehensive scientific overview of Blepharispermum subsessile DC. (Asteraceae), a conservation concern medicinal plant with promising pharmaceutical potential

Soumendra Kumar Naik*,1,6,†, Shashikanta Behera18, Sakti Kanta Rath2 & Jayanta Kumar Patra3
1 Department of Botany and Center of Excellence in Environment and Public Health, Ravenshaw University, Cuttack 753 003, Odisha, India
2 Rama Devi Women’s University, Bhubaneswar 751 022, Odisha, India
3 Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si, Republic of Korea
E-mail: *sknuu@yahoo.com

Received 27 November 2018; revised 15 October 2019

Blepharispermum subsessile DC., belonging to family Asteraceae, is known for its uses in the treatment of arthritis and related joint pain in folkloric medicine in different states of India. Additionally, ethnomedicinal uses of this plant include treatment of dysentery, diarrhoea, various ophthalmic problems, common cold, rinitis, skin diseases, scabies, wound and gynaecological disorders. Most importantly, traditional use of B. subsessile to treat arthritis has been recently supported by scientific pharmacological studies including a clinical trial. However, overexploitation, unregulated trade and habitat destruction has put the B. subsessile under severe threat in their natural habitats of India in general and Odisha state of India in particular. To conserve the gene pool of this plant species along with other medicinal plants in their wild habitat (in situ) a medicinal plant conservation area (MPCA) has already been established in Odisha. Recently, attempt has also been made for development of tissue culture - mediated plant regeneration protocols aiming at its conservation by rehabilitation and ex situ means. In the present review, comprehensive and updated information on the distribution, botany, ethnomedicinal uses, phytochemistry and biological activities of B. subsessile has been summarized and focus has been given to the attempts made for conservation of this traditional medicinal plant species through conventional means as well as biotechnological intervention. Future research required for B. subsessile conservation and pharmaceutical utilization in fullest but in best sustainable manner has also been discussed.

Keywords: Blepharispermum subsessile, Conservation measures, Ethnomedicinal uses, In vitro propagation, Phytochemicals
IPC Code: Int. Cl. 20: A61K 36/00

Blepharispermum subsessile DC. is a valuable folklore medicinal plant of India belonging to family Asteraceae. The word ‘Blepharispermum’ has been derived from Greek ‘blepharis’: eyelash and ‘sperma’: seed, referring to the shape of the seeds. The plant is popular for its use in the treatment of rheumatism in traditional system of medicines. Besides, it is also used in a number of other diseases. B. subsessile is commonly known as ‘Rasna’ in different parts of India including Odisha. India is a large country where many different regional languages are spoken. Thus, interestingly, it has been found that besides B. subsessile a number of medicinal plants have been referred and used as Rasna / Rasnas (a ayurvedic drugs) in different parts of India which includes Pluchea lanceolata (Asteraceae) in North and West India; Alpinia galaga (Zingiberaceae) and Alpinia calcarata (Zingiberaceae) in South India including Kerala; Vanda roxburghii (Orchidaceae) in Eastern India including Odisha; Dodonaea viscosa (Sapindaceae) in Andhra Pradesh and Lepidagathis trinevis (Acanthaceae) in Bihar. However, in North as well as West part of India mostly P. lanceolata has been used as ‘Rasna’ and known as the accepted source plant and Alpinia galaga has been considered as the main substitute plant. On the other hand, recently it has been reported that B. subsessile showed better result compare to P. lanceolata for the treatment of sandhivata (osteoarthritis). B. subsessile is marketed in Odisha, Madhya Pradesh and Chattisgarh as Rasna or Rasnajadi or Raasna. Being a shrub with medicinally important root the plant has been uprooted unsustainably in...
wild. The root of the plant has trade value and sold in the local market of different parts of India particularly in Bilaspur and Raipur, Chhattisgarh state. Raipur market of B. subsessile root is also catered from Nuapada district of Odisha. In recent years the price of the roots which was sold at a cost of Rs. 500/kg in 2007-2008 has gone up. This may be due to both high demand of the plant as well as limited availability of the plant materials. In fact, B. subsessile is under serious threat in its natural habitat due to unsustainable harvest for medicinal uses, trading of roots and loss of habitats and merit urgent attention for conservation. Thus to protect the natural populations of this plant species and to achieve sustainability, development of different conservation strategies is of paramount importance.

Here we attempt to compile and present an updated and comprehensive overview on different aspects of B. subsessile including occurrence, botany, ethnomedicinal uses, phytochemistry, biological activities and efforts on conservation measures including biotechnological approaches through tissue culture. It was found that very little scientific research documentation is available on this medicinal plant species in the above said research domains. Thus the aim of this review is to bring B. subsessile, one of the pharmaceutically underexplored/overlooked but overexploited medicinal plants of India to the notice of the researchers by providing a platform to understand the plant species and design future strategies for its conservation as well as mining down its ethno-pharmacological attribute for potential therapeutic activities in a sustainable manner.

**Botany**

**Distribution**

The plant was thought to be endemic to India and reported to occur in several parts of India including Karnataka, Madhya Pradesh (Undivided), Maharashtra, Tamil Nadu, Odisha, Andhra Pradesh (Undivided), Telengana and Chhattisgarh. However, the plant is also known to occur in Sri Lanka and therefore its distribution range extends beyond the geographical boundary of India.

**Botanical description**

*Blepharispermum subsessile* DC. (Fig. 1a-f) is an erect under-shrub with woody root-stock, growing up to 1.5 m. Stem single or many arising from the root stock; young stem is greenish and solid but mature ones are hollow due to reduced central part of the pith. The leaves are simple, alternate, glabrous, subsessile or short-petioled, finely reticulate. The leaf blades are ovate, elliptic or obovate, entire and very rarely toothed, obtuse or subacute at the apex. Flowers are borne on capitula or heads. Heads are white in colour, solitary, terminal, aggregated into globose clusters and with broad leafy bracts. Female florets 2 and bisexual florets 3-8 in each head. Achenes of the inner bisexual florets are comparatively smaller than the outer female florets. Both types of achenes have pappus with few bristles or short hairs. The flowering and fruiting in this species have been observed between July - September and August - January respectively.

**Ethnomedicinal uses**

*B. subsessile* has been reported to be found in different parts of India; however the ethno-botanical literatures indicated its use mainly in Chhattisgarh (including undivided Madhya Pradesh), Odisha and Karnataka. The ethno-medicinal uses of different plant parts of *B. subsessile* have been presented in Table 1. The literature indicated that the plant is largely valued for its root which is usually used for the treatment of rheumatism and related joint and body pain (Table 1). Besides, the plant is used as tonic and also for treatment of dysentery and delivery related problems. Juice of the leaves is used to treat ophthalmic and ear related problems in Odisha and Karnataka, respectively. However, some examples of *B. subsessile* used in combination with other medicinal plants to treat ailments is also available (Table 1). In undivided Madhya Pradesh (Bastar region, presently in Chhattisgarh) cattle are given plant-juice on the day of ‘Polra’ festival with a belief of keeping them free from intestinal worms for the entire year.

**Phytochemistry**

Comprehensive work is yet to be done on the phytochemistry of *B. subsessile*. Owing to its medicinal properties most of the work till now has been focused on roots/rhizomes. Till date, five chromene compounds and more than twenty other biologically active compounds have been isolated and identified from aerial parts and roots of the plant respectively. The details of the compounds isolated/identified from various plant parts of *B. subsessile* have been enlisted in Table 2.

In 1987, Kulkarni et al. isolated and identified four new compounds [chromenes: 8- methoxy-2, 2-
dimethylchromene; desmethylisoencecalin; 5-hydroxy-6-acetyl-2-hydroxymethyl-2-methylchromene; (-)-artemesinol] as well as a known chromene, desmethoxyencecalin from the acetone extract of the aerial parts of the plant. These compounds were identified using IR, $^1$H NMR and $^{13}$C NMR spectra.
<table>
<thead>
<tr>
<th>Plant parts</th>
<th>Country/State/District</th>
<th>Ethno-medicinal use</th>
<th>Method of preparation</th>
<th>Route of administration</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
<td>Undivided Madhya Pradesh (Bastar&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>Tonic and stimulants</td>
<td>Decoction of the plant</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Root</td>
<td>Odisha (Koraput)</td>
<td>Rheumatism, joint pains and body ache</td>
<td>Juice</td>
<td>Internally (Dose:10 mL)</td>
<td>21</td>
</tr>
<tr>
<td>Root</td>
<td>Undivided Madhya Pradesh (Bastar&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>Scabies and other skin diseases</td>
<td>Powder</td>
<td>5 g</td>
<td>4</td>
</tr>
<tr>
<td>Plant</td>
<td>Undivided Madhya Pradesh (Bastar&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>Flatulence in cattle (Ethno-veterinary practices)</td>
<td>-</td>
<td>Orally (50-70 g)</td>
<td></td>
</tr>
<tr>
<td>Root</td>
<td>Odisha (Koraput)</td>
<td>Rheumatism, joint pains and body ache</td>
<td>Juice</td>
<td>Internally (Dose:10 mL)</td>
<td>21</td>
</tr>
<tr>
<td>Root</td>
<td>Odisha (Koraput)</td>
<td>Rheumatism, joint pains and body ache</td>
<td>Juice</td>
<td>Internally (Dose:10 mL)</td>
<td>21</td>
</tr>
<tr>
<td>Root</td>
<td>Odisha (Sundargarh)</td>
<td>Scabies and other skin diseases</td>
<td>Powder</td>
<td>5 g</td>
<td>4</td>
</tr>
<tr>
<td>Plant</td>
<td>Undivided Madhya Pradesh (Bastar&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>Common cold and rhinitis in children</td>
<td>Plant juice</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Plant</td>
<td>Undivided Madhya Pradesh (Bastar&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>Diarrhoea</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>- Leaves</td>
<td>Odisha (Sundargarh)</td>
<td>Various ophthalmic diseases</td>
<td>Juice</td>
<td>Eye drop</td>
<td>23</td>
</tr>
<tr>
<td>Root</td>
<td>Odisha (Sundargarh)</td>
<td>Backache due to Rheumatism (due to anti-inflammatory properties)</td>
<td>Water extract of root with honey</td>
<td>Oral</td>
<td>23</td>
</tr>
<tr>
<td>- Madhya Pradesh</td>
<td>-</td>
<td>Rheumatic affections</td>
<td>-</td>
<td>Externally and Internally</td>
<td>2</td>
</tr>
<tr>
<td>Root</td>
<td>Chhattisgarh</td>
<td>Irregular menstruation</td>
<td>Decoction of Ashoka (Saraca asoca) root, Arjun (Terminalia arjuna) bark, Rasna (Blepharispermum subsessile) root and Giloy (Tinospora malabarica) stem.</td>
<td>Oral; Half glass decoction twice daily for one month</td>
<td>24</td>
</tr>
<tr>
<td>- Chhattisgarh (Raipur and Mahasamund)</td>
<td>Arthritis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Root</td>
<td>Chhattisgarh</td>
<td>Well-being of mother after delivery</td>
<td>Decoction made of ‘Rasna jadi’ (Root of Blepharispermum subsessile) together with Kulthi beej (seed of Horse gram: Dolichos biflorus) and soft, apical shoot of Phoenix acaulis (Chhind kanda)</td>
<td>One dose (after two days of delivery)</td>
<td>26</td>
</tr>
<tr>
<td>Seed/Fruit</td>
<td>Chhattisgarh (Raigarh)</td>
<td>Wound (antiseptic), Dysuria, Delivery problem</td>
<td>-</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Root</td>
<td>Chhattisgarh (Bastar)</td>
<td>Delivery problem, Dysentery</td>
<td>-</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>Root</td>
<td>Chhattisgarh (Bastar)</td>
<td>Delivery problem, Dysentery</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Rhizome, whole plant</td>
<td>Chhattisgarh (Bastar)</td>
<td>Delivery problem, Dysentery</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Leaves</td>
<td>Karnataka (Belgaum, Bellary, Chickmagalore, Dharwad, Mysore, North Kannada)</td>
<td>Otitis and other inflammatory conditions</td>
<td>Juice of leaves</td>
<td>Dropped in ear</td>
<td>28</td>
</tr>
<tr>
<td>Root</td>
<td>Karnataka (Belgaum, Bellary, Chickmagalore, Dharwad, Mysore, North Kannada)</td>
<td>Dyspepsia, bronchitis and fevers.</td>
<td>Roots form a constituent of medicated oils.</td>
<td>External</td>
<td>28</td>
</tr>
</tbody>
</table>

<sup>3</sup>Now in Chhattisgarh; - no information
<table>
<thead>
<tr>
<th>Extract</th>
<th>Plant parts used</th>
<th>Area of plant sample collection</th>
<th>Compounds isolated and/or identified</th>
<th>Biological activities</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>Aerial parts</td>
<td>Pune (Katraj Ghat), Maharashtra, India</td>
<td>8-Methoxy-2,2-dimethylchromene* Desmethylisoencecalin* Desmethoxyencecalin 5-Hydroxy-6-acetyl-2-hydroxymethyl-2-methylchromene* (-)-Artemesinol*</td>
<td>Oviposition deterrent activity against the potato tuber moth (<em>Phthorimaea operculella</em>)</td>
<td>29</td>
</tr>
<tr>
<td>Methanol</td>
<td>Rhizome</td>
<td>Raipur*, Undivided Madhya Pradesh, India</td>
<td>Desmethylisoencecalin</td>
<td>Anti-implantation activity</td>
<td>30</td>
</tr>
<tr>
<td>Methanol</td>
<td>Rhizome</td>
<td>Cuttack, Odisha, India</td>
<td>Two minor chromenes Desmethylisoencecalin</td>
<td>Antifeedant activity against larvae <em>Spilarctia oblique</em> and antifungal activity against <em>Candida albicans</em> &amp; <em>Cryptococcus neoformans</em>.</td>
<td>31</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>Root</td>
<td>Gurudongar Reserve Forest, Odisha, India</td>
<td>Betulin Dronabinol Benzoic acid, 4-heptyl-, 4-cyanophenyl ester Benzamid,4-chloro,o-(2,6-dimethoxybenzoyl) oxime 9,12-Octadecadienoic acid (Z,Z)-n-Propyl 9, 12-octadecadienoate n-Hexadecanoic acid 2-Amino-4-(2-cyclohexyl-ethyl)-7-methyl-5-oxo-4H,5H-pyran-3-carbonitrile Carbanult Carvacrol</td>
<td>Tumor disorders, skin irritations, insect bites and tuberculosis** Analgesic, anti-inflammatory** Anti-inflammatory, acen reductive, antioxidant** Anti-inflammatory** Pesticide** Nematocide**</td>
<td>32</td>
</tr>
<tr>
<td>Methanol</td>
<td>Root</td>
<td>Gurudongar Reserve Forest, Odisha, India</td>
<td>Clindamycin m-Guaiacol Carvacrol Syringol Methyl 4-methoxysalicylate Carbanult Benzoic acid, 2-hydroxy-6-methoxy 2-(3,4-Dimethoxyphenyl)-6-methyl-3,4-chromanediol Phenol, 4-allyl-2,6-dimethoxy 2-Amino-4-(2-cyclohexyl-ethyl)-7-methyl-5-oxo-4H,5H-pyran-3-carbonitrile 4-(1E)-3-Hydroxy-1-propapenyl-2-methoxyphenol Piperine n-Hexadecanoic acid (Palmatic acid) 9,12-Octadecadienoic acid (Z,Z)- (Linoleic acid) n-Propyl 9,12-Octadecadienoate Totarol Anthiaergostan-5,7,9,22-tetraen-14-ol-15-one</td>
<td>-</td>
<td>33</td>
</tr>
</tbody>
</table>

*Contd.*
The chemical structures of four new chromenes isolated from *B. subsessile* have been provided in Fig. 2. As the root/rhizome of *B. subsessile* has been used mainly in folkloric medicine most of the subsequent works related to compound isolation were based on root/rhizome. Besides two minor chromenes, Agarwal *et al.*\(^{30}\) isolated and reported desmethylisoencecalin from the methanolic extract of rhizome. In addition to desmethylisoencecalin, Agarwal *et al.*\(^{31}\) reported 5-hydroxy-6-acetyl-2-hydroxymethyl-2-methylchromene from methanolic rhizome extracts. These compounds were isolated using chromatographic purification of the chloroform fraction on silica gel and identified by comparing the mp, IR, \(^1\)H NMR and MS spectra with that of the known compounds. However, both these chromenes have already been reported from the aerial part of the plant by Kulkarni *et al.*\(^{29}\). Das and Suresh Kumar\(^{32}\) identified ten different compounds from ethyl acetate root extract of *B. subsessile*. Identity of these compounds were established by comparing their retention time and peak area with that of literature and GC-MS spectra. Recently, Das and Suresh Kumar\(^{33}\) have successfully indentified 19 compounds from the methanolic root extracts using GC-MS analysis. However, about six of these nineteen compounds have also been identified in ethyl acetate root extract by Das and Suresh Kumar\(^{32}\) (Table 2).

### Biological activities

*B. subsessile* has been used to treat a number of diseases as reported in different ethnomedicinal studies. However, till date, only a few studies have been carried out to test the bioactivities of various extracts as well as compounds isolated from *B. subsessile* to substantiate its folkloric uses (Table 2). This plant possesses antifeedant, antifungal as well as antifertility activities due to the presence of bio-active constituents called chromene. Kulkarni *et al.*\(^{29}\) demonstrated that desmethylisoencecalin has oviposition deterrent activity against the *Phthorimaea operculella* (potato tuber moth). Agarwal *et al.*\(^{30}\) studied the antifertility activity of *B. subsessile* (rhizome) using crude methanol extract, its chloroform/ methanol/ water soluble fractions and chromene (desmethylisoencecalin) isolated from the chloroform soluble fraction on virgin female rats and adult Sprague-Dawley rats. Oral doses (250 mg/kg) of methanol extract (crude) and its chloroform fraction exhibited 75% and 50% antifertility activity respectively. However, the methanol and water soluble fractions showed no infertility activity. At the same time chromene (desmethylisoencecalin) at a significantly lower dose (50 mg/kg) showed 50% antifertility activity, which reflected its potential for use as active constituent in antifertility related issues. One year later, Agarwal *et al.*\(^{31}\) reported the antifungal and antifeedant activities of the rhizome of *B. subsessile*. Crude methanol extract of rhizome and two chromenes isolated from there i.e. desmethylisoencecalin and 5-hydroxy-6-acetyl-2-hydroxymethyl-2-methylchromene, showed anti-*Candida albicans* and *Cryptococcus neoformans* activity, with MIC values ranging between 25-250 µg/mL. Ketoconazole (0.1-0.3 µg/mL) was taken as positive control in the study. Further it was found that both the chromenes have antifeedant activity against larvae *Spilactea obliqua*. However, of the two chromenes at equal concentration, desmethylisoencecalin was found to be 22% more...
efficient than 5-hydroxy-6-acetyl-2- hydroxymethyl-2-methylchromene.

A recent study by Jadhav on humans supported the traditional use of *B. subsessile* for remedy of arthritis. They found that *B. subsessile* was more effective than *P. lanceolata* for treatment of osteoarthritis (sandhivata). During the clinical trial study, Jadhav divided thirty patients suffering from the said diseases into two groups of fifteen patients each. The decoction (at a dose of 50 mL for 3 weeks) of *P. lanceolata* root was compared with that of the *B. subsessile* for relief of osteoarthritis (sandhivata). It was observed that the fifteen patients treated with the decoction of *B. subsessile* exhibited higher relief (85.72%) compared to the other group administered with *P. lanceolata* (71.43%).

Besides, Das and Sureshkumar identified ten compounds and reported the biological activities of six of them based on Dr Duke’s Phytochemical and Ethnobotanical Databases (online database) by Dr Jim Duke of Agricultural Research Service/USDA, (Table 2). Among the isolated compounds ‘dronabinol’, “9, 12-octadecadienoic acid” and “n-hexadecanoic acid” have been known for their anti-inflammatory properties. May be these are among the active principles of *B. subsessile* roots responsible for its effectiveness against arthritis, which is an inflammatory disorder mainly affecting bone and cartilages around joints. A recent work by Das and Sureshkumar also supported the use of *B. subsessile* root to treat arthritis in folklore medicine of India. They studied the anti-arthritic potential of methanolic root extract using both *in vitro* models (Human Red Blood Cell [HRBC] membrane stabilization, inhibition of protein denaturation and proteinase inhibitory activities) as well as *in vivo* models (Freund’s Complete Adjuvant (FCA)-, Formaldehyde- and carrageenan-induced arthritis models). According to their report the methanolic root extract showed membrane stabilization properties by inhibiting the lysis of HRBC membrane, which indicated the anti-inflammatory properties of the root extract. The methanolic root extract also showed inhibition of protein denaturation and proteinase inhibitory activity. Anti-inflammatory activity of *B. subsessile* root extract was further ascertained by Das and Sureshkumar using FCA, Formaldehyde- and carrageenan-induced models of arthritis. In all the three models, the root extract was found to inhibit the paw edema in Male albino wistar rats. According to Das and Sureshkumar FCA-induced paw inflammation was significantly reduced by methanolic root extract (100 mg/kg) of *B. subsessile* after 28 days of administration. Radiographic examinations also confirmed the usefulness of root extract in preventing the FCA- induced soft tissue swelling and destruction ankle joints. Highest inhibitory effect (43.9%) of methanolic root extract of *B. subsessile* was observed with an oral dose of 100 mg/kg at 4 h post-carrageenan injection.

Till date only a few compounds have been isolated from the plant and yet a number of compounds identified from this plant have not been evaluated for their biological activity. In light of ethno-medicinal data, further bioactivity studies of these compounds, can start a new course of action for development of drugs to cure ailments like arthritis, cancer, neurodegenerative disorders etc.

**Toxicity**

Some of the important and well known drugs have natural origin. One of the prominent natural sources is medicinal plants. But for a compound (either natural or synthetic in origin) to become an efficient and safe drug, toxicological studies are essential. Till date, only a single report on the toxicity study of *B. subsessile* is available. The acute toxicity study of *B. subsessile* methanolic root extract (2000 mg/kg) by oral administration showed no symptoms of toxicity and mortality after 14 days in male albino wistar rats. However, toxicity studies have already been carried out in other plants for some of the compounds present in *B. subsessile*. For example, acute toxicity studies of Betulin (a pentacyclic triterpene alcohol) on rats and mice revealed no significant effect on body weight of animals and no lethal effect were observed during 14 days administration in rats and mice in all doses tested. The median lethal dose of Carvacrol (a monoterpenic phenol) in rats was 810 mg/kg of body weight when administered by oral gavage while this dose administered intravenously or intraperitoneally to mice has been estimated at 80.0 and 73.3 mg/kg of body weight respectively. At the same time, toxicity studies on Piperine (alkaloid) have also been carried out on mice, rats and hamsters. Further, toxicity studies on other bioactive compounds from *B. subsessile* need to be evaluated in order to prove this plant as a potential source of drugs.

**Conservation measures**

The plant has been identified as an endangered species in the state of Odisha, India in the Conservation
Assessment and Management Prioritisation Workshop (CAMP), 2007 due to overexploitation and habitat destruction. Thus, conservation efforts and sustainable utilization of *B. subsessile* are necessary. It was also found that the wild gene pool of *B. subsessile* is present in Gurudongar area (latitude 20°25′ and longitude 82°55′) of Nuapada district, Odisha, India along with numerous other medicinal plants. Thus, subsequently, Gurudongar has been declared as Medicinal Plant Conservation Area (MPCA) in 2008-2009 with United Nations Development Programme (UNDP) assistance through The Foundation for Revitalisation of Local Health Traditions (FRLHT), Bangalore to conserve the gene pool of this valuable medicinal plant species along with other medicinal plants in its natural habitat as *in situ* conservation measures. Like any other species, the conservation of *B. subsessile* required the involvement of both the Government and local community. Thus awareness among local people near to the natural gene pool of *B. subsessile* should be created for its conservation and sustainable uses. Natural propagation of this plant is through seed, which is hampered by low seed setting, viability and germination rates. Unfortunately no cultivation practises at commercial scale have been reported for the plant species. Thus, cultivation methods for this plant species must be standardized. Once developed it should be promoted among local populations so that they can be benefited without depending on wild populations for harvest.

At the same time plant tissue culture has been successful in a number of medicinal plant species to serve as an alternative source of different bioactive compounds for pharmaceutical use. Development of large number of plants through tissue culture with same biochemical and genetic profile has potential to be used in place of wild populations. Thus, with the development of such plant regeneration protocol(s) the demand of this plant species from its wild habitat will be reduced and sustainability could be achieved. Besides they have the ability to overcome the limitations of the conventional propagation and regenerate large number of plants which can be used for reintroduction of threatened medicinal plants in their natural habitat. Recently two *in vitro* plant regeneration protocols have been reported on *B. subsessile*. Nayak and Kalidass developed a plant regeneration system in *B. subsessile* by adventitious shoot organogenesis. They recorded best shoot organogenesis from cotyledon explants derived from axenic seedlings on Murashige and Skoog’s (MS) medium supplemented with 2.5 mg/L 6-benzylaminopurine (BAP) and the shoots were rooted on ½ MS medium augmented with 1.0 mg/L indole-3-acetic acid (IAA). Subsequently another micropropagation protocol was also reported by the same group using axenic shoot tip explants. Best shoot proliferation was observed from shoot tip explants on 1.5 mg/L BAP and 0.2 mg/L IAA supplemented MS medium. They reported best rooting of these shoots on ½ MS medium supplemented with 1.0 mg/L IAA. The success of tissue culture depends upon the ability of regenerated plantlets to acclimatize themselves in outdoor free-living autotrophic conditions with negligible mortality following transfer from culture medium. But only about 30-40% of the *in vitro* regenerated plantlets of *B. subsessile* were successfully acclimatized. Thus, these protocols have their limitations and further work is necessary to improve the acclimatization rate of the plants prior to their use in conservation and validation of ethno-pharmacological aspects.

**Future prospects**

*B. subsessile* may be underexplored pharmaceutically yet overexploited in its wild habitat due to its popularity in ethno-medical uses. Ethnobotanical studies indicated that *B. subsessile* has been prescribed to treat different ailments in India and the most prevalent medicinal use of the plant has been for the treatment of arthritis and related problems. But the ethno-medical uses of this plant has not yet been pharmacologically exploited fully. Thus, sincere efforts should be given to isolate more unexplored compounds and evaluate their pharmacological activities. In spite of its limited distribution, the plant could be of potential interest for development of drugs especially for arthritis and joint pain. But as *B. subsessile* has no known cultivation practice and is suffering from destructive harvesting, formulation of strategies for sustainable use is imperative to avoid resource exhaustion and even species extinction. To achieve sustainability emphasis should be given to isolate more unexplored compounds and develop good cultivation methods including organic farming. Medicinal plants grown by organic farming have the potential to produce materials with high productivity and better quality. For example, Kaur et al. reported that organic cultivation of *Withania somnifera*, a valuable medicinal plant in Ayurvedic system of medicine, resulted in plants with high content of secondary metabolites (withanolides, withanine, withanolide A and withaferin A) and improved...
biomass. Efforts should also be made to develop efficient tissue culture mediated - plant regeneration protocols with improved acclimatization rate, which will open new avenues for large scale plant production for re-introduction or pharmaceutical usages and research in a sustainable manner. More importantly cell suspension and hairy root culture systems, which can be the source of pharmaceutically important metabolites, have not yet been established in *B. subsessile*. It is well known by now that a number of secondary metabolites are produced in a tissue specific manner. Keeping this and importance of root of *B. subsessile* in mind, the development of hairy root system for this plant species seems to be imperative.

In conclusion, further extensive research including isolation and identification of bioactive compounds, pharmacological activities of these compounds with their mechanism of action, and strategies for conservation is necessary to explore the pharmaceutical potential of *B. subsessile* in a sustainable way.

**Acknowledgements**

The financial support of the University Grant Commission (UGC), New Delhi to SKN in the form of UGC - Research Award is gratefully acknowledged. Financial assistance to the Center of Excellence in Environment and Public Health by Higher Education Department, Government of Odisha under OHEPPE is gratefully acknowledged (HE-PTC-WB-02017). The authors thank the Forest and Environment Department, Government of Odisha for the permission to visit different forest areas and use the plant for study. The authors also wish to thank Dr Pratap Chandra Panda, Principal Scientist, Regional Plant Resource Centre, Bhubaneswar, Odisha for his suggestion during writing this manuscript and help in identifying the plant materials. We also thank Mr Biswa Nath Hota, Deputy Conservator of Forest (Retd) and Mr Siba Prasad Pidika for their help and enlightening discussion during this work. Our thanks are due to Dr Sitaram Mohapatra, Assistant Professor in Chemistry, Ravenshaw University, Cuttack, Odisha for critically reading the phytochemistry section of the manuscript.

**Authors contribution**

SKN conceptualized the topic. SKN and SB collected the literature and wrote the manuscript. SKN, SKR and JKP checked and edited the manuscript. All the authors read and approved the manuscript.

**Conflict of interest**

Authors declare no conflict of interest.

**References**

28 http://www.karnataka.gov.in/kampa/Documents/MEDICINA LP/LPLANTSINKARNATAKAPDF (Karnataka State Medicinal Plants Authority, Government of Karnataka) (last accessed 9-2-2018)
31 Agarwal SK, Verma S, Singh SS, Tripathi AK, Khan ZK & Kumar S, Antifeedant and antifungal activity of chromone compounds isolated from Blepharispermum subsessile, J Ethnopharmacol, 71 (2000) 231-234. DOI: 10.1016/S0378-8741(00)01586-6
38 Forest and Environment Department, Activities of Forest and Environment Department for the year 2008-2009, (Government of Orissa, India).