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Abstract: Nanofluids (Engineered colloidal suspension of nanoparticles) are the new and promising heat transfer fluids 

with exceptional properties. Low stability, high pressure drop, and viscosity are the important drawbacks limiting the 

industrial application of nanofluids. The aggregation and sedimentation of nanoparticles are related to the colloidal 

structure of nanofluids, which directly affects the stability and viscosity. Several studies have revealed that the 

thermophysical properties of nanofluid are influenced by the nanoparticle type, size, shape, and concentration, base fluid 

type, and operating conditions. Furthermore, the ultrasonication probe type, time, power, frequency, and intensity, as 

well as surfactant type and concentration, are the primary factors influencing nanofluid stability. Among them, 

ultrasonication treatment is the simplest and most effective technique with longer nanofluid stability period. It is 

expected that, the present review will provide guidance and contribute towards various considerable ultrasonication 

factors which can prolong the stability period of the nanofluid. 
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I.  INTRODUCTION 

anofluids are formed from the dispersion of nanoparticles 

in a heat transfer base fluid like water, refrigerants, 

ethylene glycol, propylene glycol, oils, and alcohols [1]–[10]. 

At least one particle dimension should be in the nanometer 

range with the superior thermal, electrical, optical, physical, 

and rheological properties. Prominent results confirmed the 

increment of the thermal conductivity with the addition of 

distinct nanoparticles [11], [12]. From the past few years 

nanofluids have gathered more attention especially in the field 

of heat transfer, lubrication, drug delivery, solar, oil recovery, 

drilling fluid, anti-freeze, paint, and wastewater treatment 

applications [13], [14]. Generally, liquid samples with 

dispersed particles are susceptible to form unstable 

agglomerates from the various particle to particle attraction 

forces including, gravitational, van der waals force, friction, 

combustion, Brownian and electrostatic forces to compromise 

the stability of the nanofluids [15]–[24]. Also, compared to 

nanoparticles barely movement was seen in the micro size 

particles in a dispersion phase whereas, nanoparticles are 

continuously moving in a random molecular motion and do 

not clog the flow. As the mass of nanoparticle is so small, the 

effect of gravitational force becomes negligible, but in some 

cases due to high surface activity the nanoparticles are prone 

to form clusters. At the same time, the nanofluids major 

applicability is also based on the proposed stability 

mechanism to avoid the further issues while loading, pumping, 

and processing [25]–[34]. 

 

According to this prospective, the proposed correlations for 

predicting nanofluid thermophysical properties like thermal 

conductivity, electrical conductivity, density, and viscosity are 

based on the assumption of stable suspension of nanoparticles 

[35]–[44]. So, poor stability mechanism may reduce the 

performance of the nanofluid. Also, the aggregates may clog 

the flow with the increased viscosity and pressure drop and 

decrease the rate of heat transfer with reduced thermal 

conductivity [45]. Various studies revealed that, choosing 

proper nanoparticle and base fluid type, and operating 

conditions (pH, temperature, ultrasonication parameters and 

zeta potential are the main factors responsible for the 

nanofluid stability [46]–[51]. Among them, ultrasonication 
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treatment is the simplest and most effective technique with 

longer nanofluid stability period. Instead of overstressing on 

the thermophysical properties of nanofluid, the current paper 

reviewed various ultrasonication treatment parameters on the 

colloidal suspension of nanoparticles in the base fluid. 

II.  MATERIALS AND METHODS 

Effect of ultrasonication treatment on the nanofluid stability 
 

Ultrasound is well known for its homogeneous dispersion 

of nanoparticles in the base fluid techniques. Generally, using 

the chaotic principle more than 20 kHz of ultrasonic 

frequencies are applied to the solution for attaining longer 

period of stability. leading to the commonly known process as 

ultrasonication. Studies revealed that, using different type of 

ultrasonic transducer at distinct sonication time, frequency, 

power, and amplitude unique dispersion behavior of 

nanoparticles can be achieved [52], [53]. Finally, various 

scientific instruments and machines are used by the 

researchers to study the stability, particle distribution, cluster 

size of the nanoparticles in the base fluid after the preparation 

of nanofluid. Some of the largely used devices include X-ray 

powder diffraction (XRD), field emission scanning electron 

microscopy (FESEM), thermogravimetry analysis (TGA), 

transmission electron microscope (TEM) and UV–Vis 

spectrometer, etc. 
 

The effect of type of ultrasonic transducer 
 

The ultrasonication transducers scatters the acoustic energy 

into medium in the form of ultrasonic waves. These ultrasonic 

vibrations can be applied in an indirect and direct way. As 

shown in Fig. 1, ultrasonic bath is used for applying the 

indirect form of waves and whereas probe sonicator is used for 

delivering direct form of ultrasonic waves. In the bath 

ultrasonic transducer, the sample is taken in a conical flask 

and immersed in the water bath. As the wave does not pass 

directly through the sample the cavitation process distribution 

is non-uniform. The ultrasonic wave intensity is also very low. 

As a result, the repeatability and scalability of the process is 

difficult. 
 

Whereas, in direct sonication the ultrasonication transducer 

probe/horn is directly immersed in the sample to create the 

high intensity mechanical vibrations. Later, these vibrations 

directly pass through the sample in the form of acoustic 

waves. As the acoustic power is higher in the transducer the 

local heating is created in the form of heat energy. Moreover, 

the acoustic power intensity of the probe is nearly 100 times 

higher than the bath type ultrasonication. So, the probe type 

sonicator can provide better dispersion of particles compared 

to bath type by reducing particle size distribution. 

 

For example, Noroozi et al. [54] compared the Al2O3 

particle size distribution (PSD) between bath and probe type 

sonicator. As shown in Fig. 2(a), the PSD was narrow 

representing the proper dispersion of nanoparticles in case of 

probe type sonicator. Also, with the reduction in particle size 

there was a shift in the absorption spectra was noticed in case 

of sonication (Fig. 2(b)). Similarly, Pradhan et al. [55] also 

confirmed that, mono dispersion of particles are possible by 

using probe type compared to bath type ultrasonic transducer 

Fig. 2(c). 
 

 
 

Figure 1 The ultrasonic transducers (a) bath type (b) probe or 

horn type 

 

The effect of ultrasonication time 

 

Even today, there is no proper approach on how much 

ultrasonication time is required to maintain/prolong the 

stability period of nanofluid. In most of the studies 

homogenization of the nanofluid was achieved at longer 

period of ultrasonic duration [56], [57]. In contrary, some of 

the studies also mentioned the creation of local heating from 

the prolonged ultrasonication time [58], [59]. In many studies 

researchers reported the effect of ultrasonication time on the 

particle size distribution and the thermophysical properties of 

the nanofluid [31], [47], [50]. In this regard, Amrollahi et al. 

[60] investigated the effect of ultrasonication time on the 

stability of a carbon nanotube-based nanofluid. They 

investigated the stability period of nanofluids in various 

nanoparticle compositions with varying ultrasonication times. 

They discovered that during ultrasonication times of up to 10 

hours, the sedimentation time of elevated nanofluid 

concentrations is longer than that of lower concentrations. 

Nonetheless, at sonication times greater than 10 h, the 

tendency is vastly different; at higher concentrations, longer 

sediment time was achieved at longer ultrasonication time. 

According to their findings, increasing the ultrasonic 

irradiation time results in a much higher concentration of 

colloidal particles rather than cluster centres; the ultrasonic 

process breaks down large clumps of particles into relatively 

small subsets or even separates them into suspended particles. 

They also explained that at higher particle densities, Brownian 

motion between particles is greater than at lower 

concentrations, resulting in a longer sedimentation time. 

Sonawane et al. [16] studied the effect of ultrasonication time 

on the thermal conductivity enhancement (TCE Fig. 3(a)) of 

the TiO2/water nanofluid. Their results confirmed the 

generation of the local heat after 60 min of ultrasonication 

time and from the clustering the TCE was decreased. The local 

heat generated by ultrasound iss proportional to the acoustic 

energy dissipated (Equation 1) and intensity of ultrasound 

waves can be represented as the power dissipated per unit area 

(Equation 2). Here, P, m, Cp and Ap are denoting power (W), 

mass (kg), specific heat and cross-sectional area, respectively. 

Further, Chakraborty et al. [61] stated that the settling time of 

0.2 wt % Ag/water nanofluid was decreased with increasing 

ultrasonication time as shown in Fig. 3(b). 
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Figure 2: (a) The UV-vis absorption spectra of the Al2O3 

nanoparticles without and with the bath and probe-type 

sonicators (b) The particle size distribution of the Al2O3 [54] 

(c) aluminum [55] nanoparticle with the bath and probe-type 

sonicators. 

 

 

 

 
Figure 3 (a) The effect of ultrasonication time on the TCE of 

TiO2/water nanofluid [16] (b) Effect of ultrasonication time on 

the settling time of the Ag /water nanofluid [61] 

 

The effect of ultrasonication frequency and amplitude 

 

Based on frequency, ultrasound is categorized into low (20–

100 kHz), high frequency (100 kHz–1 MHz) and diagnostic 

(1–500 MHz) [62]–[64]. Ultrasonic frequencies in the range of 

20–100 kHz is commonly used for the dispersion of nanofluid 

in the base fluid [65], [66]. Ultrasound within this range can 

produce acoustic shock waves which are used to maintain the 

stability of the nanofluid [67]. Asadi et al. [15] also 

emphasized the significance of ultrasonication parameters 

such as irradiation time, power, frequency, and amplitude on 

the stability and thermophysical properties of nanofluid. They 

concluded that by maintaining optimal ultrasonication 

parameters, we can achieve greater dispersion of the 

nanoparticles as well as improved heat transfer properties of 

the nanofluid. 

 

In this regard, Santos et al. [68] experimented on the bath 

type ultrasonicator to identify the high intensity zones. Based 

on results, the maximum perforations appeared at maximum 

intensity which confirmed the non-homogeneous intensity 
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distribution of bath type ultrasonicator. In other study, 

Mahbubul et al. [69] and Nguyen et al., [70] studied the effect 

of ultrasonication amplitude on the PSD of the Al2O3 

nanoparticles in the water based nanofluid. They observed 

that, higher the amplitudes, lower the aggregate size from the 

enhanced rate of bubble collapse at higher vibration amplitude 

(Fig 4 and 5). Al-Waeli et al. [71] investigates the effect of 

nanofluid stability with variations in ultrasonication 

parameters. Their research concluded that the longer the 

ultrasonication period, the less settling of nanoparticles 

without further mixing. 

 

 
 

Figure 4. Al2O3 nanoparticles PSD at 25% and 50% 

amplitudes [52] 

 

 
 

Figure 5 Al2O3 nanoparticles PSD at 10%, 30%, 60% 

amplitudes [70] 

 

Amato et al. [72] investigated the effect of ultrasonication 

time and amplitude (%) on the particle size distribution of 

nanoparticles. According to their findings, ultrasonication of 

the can cause local heating due to cavitation of the sample. 

This heat can cause nanoparticles to re-agglomerate and form 

larger clusters. Furthermore, increasing the ultrasonication 

amplitude % can reduce the ultrasonic irradiation time, 

thereby improving stability. Noroozi et al. [54] investigated 

the impact of ultrasonic transducer type and intensity on the 

stability and thermophysical properties of an alumina-based 

nanofluid. Their comparative study concluded that higher and 

more focused ultrasonication from a probe type transducer at a 

higher intensity can effectively increase the stability and 

dispersion of the nanofluid. 

III.  CONCLUSION 

Achieving well dispersed and stable suspensions have been 

one of the important drawbacks in nanofluid investigations. 

All favorable morphological, thermal, electrical and physical 

properties of nanofluid can be tuned as required by 

maintaining the stability of the nanofluid. In this current 

review, a special attention was given to the ultrasonication 

technique of deagglomeration of the nanoparticles because of 

its simplicity. In this regard, the effect of various parameters 

including ultrasonication transducer type, ultrasonication time, 

and ultrasonication frequency and amplitude on the stability of 

the nanofluid was reviewed. The study concluded that, the 

probe type ultrasonic transducer with high ultrasonication time 

and ultrasonication amplitude can result a well dispersed 

nanofluid with prolonged stability period. Moreover, based on 

the quantity of the nanofluid optimum ultrasonication time and 

frequency can be tuned to avoid the local heating while 

processing. 
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