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Electromyography (EMG) signals are bioelectric signals generated by the electrical activities of muscle fibers during 

contraction or relaxation. Detailed analysis and classification of the complex nature of the signal when related to movements 

is complicated. However, these are useful for controlling prosthesis and orthosis control systems. In this paper the relevant 

set of features and the classifier that maps these features to carry out EMG signal classification for four different foot 

movements is proposed. These movements such as plantar-flexion (PF), dorsi-flexion (DF), inversion (IV) and eversion 

(EV) are chosen, since these are useful for rehabilitation of persons having a lower limb ankle joint injury which results in 

gait abnormality. EMG signals are acquired using BIOPAC System (MP 150). The features for EMG signals, in time and 

frequency domain have been extracted to find optimal features. Further these are classified using support vector machine 

(SVM), neural network (NN) and logistic regression (LR). From the results, it is depicted that the time domain features 

reflected better performance. The maximum classification accuracy achieved is 99.69% and average classification accuracy 
being 94.92 ± 3.03 % using linear SVM for root mean square (RMS) as optimal feature. 
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Introduction 

The most useful method to analyze muscular 
condition, a technique to capture and measure the 
electrical activity during voluntary and involuntary 
activities is EMG.

1
 EMG is the most prevalent 

technique as it has the least response time from the 
initiation of muscle activity till the measurement of 

the electrical activity by sensors directly. Moreover, 
the use of EMG allows predicting movements in 
advance as compared to inertial sensors.

2
 The ability 

to detect movement intention
3
 as electrical activity in 

muscles exists even if its power is insufficient to 
initiate the movement, as a result of nervous 

connection injury. It is also considered to be an 
analytical way that evaluates the strength of muscles 
and motor neurons termed as nerve cells that controls 
them. Moreover, the electrical signal generated can be 
used to analyze the activation level of the muscles. 
Each movement of muscle produces a specified 

pattern owing to its activation; this EMG signal 
recording can be useful for the identification of 
movements.

1
 The EMG signals are non-linear and 

complex in nature, easily interrupted by 

environmental noise and other motion artifacts
4
 that 

produces complexity in its analysis and classification. 

When a muscle contracts or relaxes, the muscle fiber 
action potential of an individual can be determined 
by two approaches viz. using needle electrodes 
(an invasive process) and through the use of skin 
surface electrodes (non-invasive process). The latter is 
increasingly used for recording, from superficial 

muscles due to its non-invasive nature and no need for 
surgical intervention.

5,6
 It is used in a wide range of 

applications such as human-machine interfaces, 
robotic assisted rehabilitation therapies and, 
prosthetics and orthotic devices.

1,4,7–11
 However, most 

of the studies optimized the redundant information 

from recording sites i.e. EMG channels to enhance 
system performance. These incorporated applications 
of dimensionality reduction techniques mainly for 
upper

12–14
 limb movement. Also, pattern recognition 

of EMG signal for upper limb
15,16

 has been widely 
explored compared to lower limb. The lower limb 

EMG analysis, especially in isometric contraction are 
required for therapeutic interventions.

17
 Thus, there is 

a wide scope in this area. Nevertheless, the 
multifactorial analysis determines that the 
performance of a particular classifier depends upon 
the choice of feature vector. There is a need to 
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determine relevant features and an accurate EMG 
signal classifier, which aids to map selected features 
to a target class for recognition of foot movements. 
As the proliferation in the number of features with 
least or no relevance and more channels

18
, produces 

high computational time leading to increased 
computational complexity. Thus, this paper describes 
the optimal classifier by comparing the classification 
accuracy of different classifiers with time and 
frequency domain feature set. EMG signals from two 
most prominent superficial muscles were acquired. 

Section II describes the experimental paradigm along 
with data acquisition protocol and extraction of time 
and frequency domain features. The section III 
presents the results of our research work. Lastly, 
conclusion of the paper is provided in section IV. 

Methods and Materials 

Experimental Paradigm 

EMG signals were collected from 10 healthy 
subjects (5 females, 5 males) aged between 
20–33 years with no past lower limb injuries and prior 
verbal consent. The data was acquired from the 
superficial muscles viz. fibularis longus (FL) and 

hallucis longus (HL) that were identified using the 
anatomical landmark system using BIOPAC Systems 
(MP 150). Every participant was given verbal 
instructions to perform four different foot movements 
consisting of PF, DF, IV and EV. Ten isometric 
maximum voluntary contractions for a period of 

10 seconds corresponding to each movement were 
acquired. The collected EMG signal requires pre-
processing, filtering and rectification. The features in 
time and frequency domain were extracted for 
evaluation. The EMG signal was band pass filtered at 

   with a notch set at 50 Hz. The use of the 

forward reverse digital filter provides no time shift 
compared to unidirectional filters.

19
 In order to 

analyse the EMG signal, time and frequency domain 
features were extracted. These were used for 
classification of foot movements. 
Data Acquisition Protocol and Feature Extraction 

The right foot was chosen for all the subjects as 
being dominant side. The four trials for static sitting 

conditions were acquired as a baseline data. Another 
four trials for dynamic conditions i.e. PF, DF, IV and 

EV were taken for each subject for a period of 10 

seconds. The data was acquired by BIOPAC (MP150) 
system using highly conductive disposable solid gel 

electrodes. For bipolar configuration, two electrodes 
were placed in close proximity to each other on the 

selected muscles. The signals were captured at a set 

gain of 2000 and sampling frequency 1000 Hz. 
The Fig. 1 shows placement of electrodes on one of 

the subjects at selected muscles. Thereafter, 
feature extraction for pre-processed EMG signal 

includes time domain (TD) and frequency domain 

(FD) characteristics. Even time-frequency domain 
characteristics also exist but require signal 

transformation for classification with not much added 
accuracy. However, it increases the signal complexity. 

The EMG signal is time dependant so TD features can 
be easily extracted without any transformation. But 

these types of signals are influenced by noise due to 

amplitude dependability and electrode shifting. So, 
extra care is taken at the acquisition time to record 

noise free signal. FD features are accessed using 
periodogram of the signal. Being insensitive to noise 

such signals are complex. So, this study includes four 

TD and only one FD feature. The Table 1 highlights 
various TD and FD features extracted with their 

definition. 

Results and Discussion 

Five features were extracted in time and frequency 

domain (RMS, MAV, WA, PSR, ARC) for each foot 
movement from all the subjects. The classifiers used 
in this study are support vector machine (SVM), 
neural network (NN) and logistic regression (LR). To 
determine the optimal classifier in our work, all kernel 
versions of SVM

24–26 
and various activation functions 

of NN
27

 were analyzed and discussed using leave-
one-out cross validation.  

The Table 2 demonstrated the classification accuracy 
statistics using training and test data from all the 
subjects by using each of the features independently 
and in combination with other features. The results 

presented in Table 2 depicted the comparable 
accuracies    as    devised    for   upper   limbs.

15,16  
As  

Fig. 1 — EMG Electrode Placement 
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Table 2 — Time and frequency domain features accuracy 
statistics 

FEATURES TRAINING 
ACCURACY  

(Mean and Standard 
Deviation) 

TESTING 
ACCURACY  

(Mean and Standard 
Deviation) 

RMS 91.3 ± 6 94.92 ± 3.03 
MAV 91.73 ± 6.13 92.72 ± 6.62 
WA 84.63 ± 9.51 85.64 ± 9.77 
PSR 48.01 ± 6.37 48.1 ± 5.43 
ARC 67.95 ± 10.79 67.08 ± 7.04 
RMS and MAV 92.17 ± 6.15 94.64 ± 3.19 
RMS and WA 92.33 ± 5.79 93.87 ± 4.53 
RMS and PSR 91.52 ± 5.93 91.49 ± 7.27 
RMS and ARC 91.91 ± 5.39 95.16 ± 3.07 
MAV and WA 92.55 ± 5.93 93.61 ± 5.5 
MAV and PSR 92.05 ± 6.58 92.53 ± 6.7 
MAV and ARC 92.74 ± 5.28 91.15 ± 7.7  
WA and PSR  85.41 ± 9.15 85.50 ± 8.84 
WA and ARC 90.69 ± 5.26 92.4 ± 5.64  
PSR and ARC 68.9 ± 10.35 67.6 ± 6.23  
RMS, MAV and WA 92.71 ± 5.87 92.28 ± 6.3  
RMS, MAV and 
PSR  

92.45 ± 5.97 92.87 ± 6.75 

RMS, MAV and 
ARC  

93.23 ± 5.41 94.98 ± 2.75 

MAV, WA and PSR 92.84 ± 5.46 92.11 ± 6.99  
MAV, WA and ARC 92.95 ± 5.51 86.35 ± 10.58  
WA, PSR and ARC 90.82 ± 5.05 92.53 ± 5.57  
RMS, MAV, WA 
and PSR  

93.14 ± 5.37 93.43 ± 6.15  

RMS, MAV, WA 
and ARC  

93.15 ± 5.45 93.56 ± 4.8  

MAV, WA, PSR and 
ARC 

93.1 ± 5.15 94.22 ± 5.62  

RMS, MAV, WA, 
PSR and ARC 

92.97 ± 5.04 94.3 ± 5.55 

 

concluded from the analysis that RMS is the dominant 
feature which outperforms the classification accuracy 
of all other features using linear SVM classifier with 
deviation of ± 3.03%. The performance of MAV in 
combination with RMS (94.64 ± 3.19 %) is also 
comparable to RMS with almost similar deviation. 
Another feature i.e. RMS and ARC provides accuracy 
of 95.16 ± 3.07 % even though ARC independently 
provides only 67.08 ± 7.04% accuracy. The PSR in 
combination with RMS is able to achieve CA of  
91.49 ± 7.27 % even though its CA independently 
was 48.1 ± 5.43%. Thus, its use with other features 
helps to improve the accuracy. Another feature which 
is of significant interest is the combination of RMS, 
MAV and ARC with CA of 94.98 ± 2.75 %.  
This combination has reported the least deviation of 
magnitude 0.28% even less than RMS alone. This can 
be considered as the most stable factor with additional 
increase in computational time and producing almost 
comparable results. Thus, it can be concluded from 
above mentioned statistics that combination of 
features with RMS is able to achieve comparable 
results but with little more deviations as when only 
dominant feature RMS has been used. Moreover, the 
average individual contribution of various features 
taken independently clearly depicts that RMS is the 
most relevant feature for EMG signals to classify foot 
movements as shown in Fig. 2(a). 

Further, to determine the optimal classifier, the 
classification accuracies of three classifiers viz. LR, 
NN and SVM were compared using the test dataset. 
From the results, it can be noted that SVM 

Table 1 — Time and Frequency domain features 
S. No. Feature and its definition Formula 
1. Root Mean Square (RMS):A most robust feature representing the square root of 

the mean of squares of individual values.16,19-21 
= (∑ )1/2 

2. Mean Absolute Value (MAV): Defines the onset of movement and is used to 
measure the absolute amplitude of EMG signal in isometric contractions for 
given segment length.15,19-21 

= 	 1  

3. Wilson Amplitude (WA): Determines the number of counts that depicts 
difference between the values of two adjacent scales in a time frame of a signal 
exceeding the given threshold. The threshold value used is	20	 	.10It is a 
measure of frequency information in TD. 

= 	 ∑ (| − |)where, ( ) =1, > ℎ ℎ0, ℎ  

 
4. Auto-regressive coefficients (ARC): The time-series model in which the signal 

samples are predicted from their previous samples by using the linear 
combination of samples is the AR model.10,16,21,22 ARC provides information 
about muscle contraction state and are used as features. 

C ( , ) = 	 ( − , )  

where, p=2 depicts the order of the model, 
m and n are taken as lag elements in two-
dimensional plane and the coefficient k is 
the interval index. 

5. Power Spectral Ratio (PSR): It is defined as the ratio of maximum of the power 
(segment-wise) from given subset of EMG signal and the aggregate of the power 
of that EMG signal.23 

= (max)	( ) 
xi is the EMG signal and N is taken as the length of EMG signal. 
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outperforms the other classifiers for majority of the 

subjects as shown in Fig. 2(b). The average 

classification accuracy of 10 healthy subjects using 

various classifiers; SVM is 93.23%, NN is 89.86% 

and LR is 91.78%. As SVM is a kernel based 

approach for comparative analysis, the original EMG 

data was transformed into high dimensional plane and 

tested for different kernel functions of SVM classifier. 

The linear SVM classifier depicted highest average 

classification accuracy of 93.23% which was greater 

than all the other functions such as polynomial (by 

0.44%), RBF (by 0.16%) and sigmoid (by 13.25%) as 

highlighted in Fig. 2(c) for all the subjects. The 

classification performance of a particular dataset 

depends upon the signal characteristics. The features 

extracted in this study are TD and FD (RMS, MAV, 

WA, PSR and ARC). Thus, the hyperplane of SVM 

with optimization can accurately classify four 

different foot movements for the selected features. 

However, the same trend was reported in previous 

studies
13,16,18

 with SVM classifiers for upper limb 

movement. 

To evaluate the classification results, confusion 

matrix was used as a performance measure to depict 

the classification accuracy for each class has been 

presented in Fig. 2(d). It represented the classification 

performance computed using the test dataset of 

subject ‘S5’ with actual (true) and observed 

(predicted) class along the rows and columns, 

respectively. The predicted samples containing the 

percentage per class represent the classification 

accuracy. Here, four classes 0, 1, 2, 3 correspond to 

four different foot movements such as IV, EV, DF 

and PF respectively. As shown in Fig. 2(d) some data 

samples of class 1 were misclassified as belonging to 

class 3 resulting in degraded performance. The 

evaluation metrics i.e. precision, recall and f1-score 

were calculated for test dataset of subject ‘S5’ to 

determine the performance and reliability of linear 

SVM classifier. It can be further depicted from the 

statistical measures i.e. class 0 (IV) and class 2 (DF) 

can be predicted with 100% accuracy while some 

more consideration while collecting the data are 

required for other two foot movements that belongs 

to class 1 (EV) and class 3 (PF) for improvement. 

The f1-score for these two classes are 98%. 

Conclusions 

The study was successfully completed with the 

accomplishment of three main objectives. Firstly, to 

predict the relevant features for EMG signal 

classification related to different foot movements. 

Secondly, to determine the classifier that maps the 

selected feature to achieve maximum classification 

accuracy. Third, to reduce the computational time 

spent for training the classifier with huge amount of 

training data containing lots of features. The single 

feature i.e. RMS concluded in this study reports high 

accuracy as compared to multiple feature setfor EMG 

signal classification for different foot movements. 

The average classification accuracy of all the 

participants under study as predicted by linear SVM is 

Fig. 2 — Classification Accuracy (a) Features using SVM (b) using RMS with all classifiers (c) different kernel functions of SVM 

classifier (d) Confusion Matrix for SVM using RMS for subject ‘S5’ 
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94.92 ±3.03% which outperforms the other classifiers 

i.e. LR by 3.14% and NN by 5.06 %. Moreover, the

results presented showed lower variability as the

deviation is just around ± 3% and can be further

reduced by including more data at the time of

training. When RMS is combined with other feature

sets like MAV, WA, PSR and ARC its classification

accuracy is almost comparable with the increase in

deviation even though that being less than ± 7.5% but

it leads to increase in computational time and

complexity. Meanwhile, the maximum classification

accuracy is achieved using linear SVM in original

domain avoiding the need for transformation in high

dimensional plane. The classification results of the

applied classifier are noteworthy and thus can be used

to classify EMG signals for prosthesis control studies.

The present technique can be applied for

rehabilitation treatment. It includes control of ankle

therapeutic devices. This strategy will enhance muscle

strength. The future perspective is to make this offline

analysis to real-time. Moreover, the above set of

features analysed in this study can be applied on

patient group for more rigours’ analysis. Also, the

classification result can be tested with other classifiers

with more number of subjects and using the same

classifier in different fatigue conditions.
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